[1] | Rudin N, Haber JE . Efficient repair of HO-induced chromosomal breaks in Saccharomyces cerevisiae by recombination between flanking homologous sequences. Mol Cell Biol, 1988,8(9):3918-3928. | [2] | Capecchi MR . Altering the genome by homologous recombination. Science, 1989,244(4910):1288-1292. | [3] | Lin FL, Sperle K, Sternberg N . Recombination in mouse L-cells between DNA introduced into cells and homologous chromosomal sequences. Proc Natl Acad Sci USA, 1985,82(5):1391-1395. | [4] | Jasin M . Genetic manipulation of genomes with rare- cutting endonucleases. Trends Genet, 1996,12(6):224-228. | [5] | Belfort M, Roberts RJ . Homing endonucleases: keeping the house in order. Nucleic Acids Res, 1997,25(17):3379-3388. | [6] | Jeggo PA . DNA breakage and repair. Adv Genet, 1998,38:185-218. | [7] | Smith J, Grizot S, Arnould S, Duclert A, Epinat JC, Chames P, Prieto J, Redondo P, Blanco FJ, Bravo J, Montoya G, Paques F, Duchateau P . A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Research, 2006,34(22):e149. | [8] | Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC . Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature, 2005,435(7042):646-651. | [9] | Kim YG, Cha J, Chandrasegaran S . Hybrid restriction enzymes: zinc finger fusions to FokⅠ cleavage domain. Proc Natl Acad Sci U S A, 1996,93(3):1156-1160. | [10] | Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD . Genome editing with engineered zinc finger nucleases. Nat Rev Genet, 2010,11(9):636-646. | [11] | Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B . TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokⅠ DNA- cleavage domain. Nucleic Acids Res, 2011,39(1):359-372. | [12] | Li T, Huang S, Zhao X, Wright DA, Carpenter S, Spalding MH, Weeks DP, Yang B . Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res, 2011,39(14):6315-6325. | [13] | Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF . Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 2010,186(2):757-761. | [14] | Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ . A TALE nuclease architecture for efficient genome editing. Nat Biotechnol, 2011,29(2):143-148. | [15] | Wolfe SA, Nekludova L, Pabo CO . DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struct, 2000,29:183-212. | [16] | Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK . FLASH assembly of TALENs for high- throughput genome editing. Nat Biotechnol, 2012,30(5):460-465. | [17] | Boettcher M, Mcmanus MT . Choosing the right tool for the job: RNAi, TALEN, or CRISPR. Mol Cell, 2015,58(4):575-585. | [18] | Yang J, Zhang Y, Yuan P, Zhou Y, Cai C, Ren Q, Wen D, Chu C, Qi H, Wei W . Complete decoding of TAL effectors for DNA recognition. Cell Res, 2014,24(5):628-631. | [19] | Zhang Y, Liu L, Guo S, Song J, Zhu C, Yue Z, Wei W, Yi C . Deciphering TAL effectors for 5-methylcytosine and 5-hydroxymethylcytosine recognition. Nat Commun, 2017,8(1):901. | [20] | Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A . Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol, 1987,169(12):5429-5433. | [21] | Mojica FJ, Diez-Villasenor C, Soria E, Juez G . Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol, 2000,36(1):244-246. | [22] | Jansen R, Van Embden JDA, Gaastra W, Schouls LM . Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol, 2002,43(6):1565-1575. | [23] | Bolotin A, Ouinquis B, Sorokin A, Ehrlich SD . Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 2005,151(Pt 8):2551-2561. | [24] | Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV . A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct, 2006,1:7. | [25] | Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P . CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007,315(5819):1709-1712. | [26] | Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJ, Charpentier E, Haft DH, Horvath P, Moineau S, Mojica FJ, Terns RM, Terns MP, White MF, Yakunin AF, Garrett RA, Van Der Oost J, Backofen R, Koonin EV . An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol, 2015,13(11):722-736. | [27] | Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, Semenova E, Minakhin L, Joung J, Konermann S, Severinov K, Zhang F, Koonin EV . Discovery and functional characterization of diverse Class 2 CRISPR-Cas systems. Mol Cell, 2015,60(3):385-397. | [28] | Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, Van Der Oost J, Regev A, Koonin EV, Zhang F . Cpf1 is a single rna-guided endonuclease of a Class 2 CRISPR- Cas system. Cell, 2015,163(3):759-771. | [29] | Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, Zhang F . RNA editing with CRISPR-Cas13. Science, 2017,358(6366):1019-1027. | [30] | Wright AV, Liu JJ, Knott GJ, Doxzen KW, Nogales E, Doudna JA . Structures of the CRISPR genome integration complex. Science, 2017,357(6356):1113. | [31] | Kieper SN, Almendros C, Behler J, Mckenzie RE, Nobrega FL, Haagsma AC, Vink JNA, Hess WR, Brouns SJJ . Cas4 Facilitates PAM-Compatible Spacer Selection during CRISPR adaptation. Cell Rep, 2018,22(13):3377-3384. | [32] | Yosef I, Goren MG, Qimron U . Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res, 2012,40(12):5569-5576. | [33] | Heler R, Samai P, Modell JW, Weiner C, Goldberg GW, Bikard D, Marraffini LA . Cas9 specifies functional viral targets during CRISPR-Cas adaptation. Nature, 2015,519(7542):199-202. | [34] | Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E . CRISPR RNA maturation by trans-encoded small RNA and host factor RNase Ⅲ. Nature, 2011,471(7340):602-607. | [35] | Barrangou R, Marraffini LA . CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Mol Cell, 2014,54(2):234-244. | [36] | Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA . DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature, 2014,507(7490):62-67. | [37] | Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O . Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 2014,156(5):935-949. | [38] | Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E . A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012,337(6096):816-821. | [39] | Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F . Multiplex genome engineering using CRISPR/Cas systems. Science, 2013,339(6121):819-823. | [40] | Mali P, Yang L, Esvelt KM, Aach J, Guell M, Dicarlo JE, Norville JE, Church GM . RNA-guided human genome engineering via Cas9. Science, 2013,339(6121):823-826. | [41] | Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, Guimaraes C, Panning B, Ploegh HL, Bassik MC, Qi LS, Kampmann M, Weissman JS . Genome-scale CRISPR-mediated control of gene repression and activation. Cell, 2014,159(3):647-661. | [42] | Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R . One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas- mediated genome engineering. Cell, 2013,153(4):910-918. | [43] | Parnas O, Jovanovic M, Eisenhaure TM, Herbst RH, Dixit A, Ye CJ, Przybylski D, Platt RJ, Tirosh I, Sanjana NE, Shalem O, Satija R, Raychowdhury R, Mertins P, Carr SA, Zhang F, Hacohen N, Regev A . A genome- wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell, 2015,162(3):675-686. | [44] | Zhou Y, Zhu S, Cai C, Yuan P, Li C, Huang Y, Wei W . High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature, 2014,509(7501):487-491. | [45] | Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, Heckl D, Ebert BL, Root DE, Doench JG, Zhang F . Genome-scale CRISPR-Cas9 knockout screening in human cells. Science, 2014,343(6166):84-87. | [46] | Koike-Yusa H, Li Y, Tan EP, Velasco-Herrera Mdel C, Yusa K . Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol, 2014,32(3):267-273. | [47] | Wang T, Wei JJ, Sabatini DM, Lander ES . Genetic screens in human cells using the CRISPR-Cas9 system. Science, 2014,343(6166):80-84. | [48] | Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM, Doudna JA . CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 2018,360(6387):436-439. | [49] | Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA . Repurposing CRISPR as an RNA-Guided platform for sequence-specific control of gene expression. Cell, 2013,152(5):1173-1183. | [50] | Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, Zeina CM, Gao X, Rees HA, Lin Z, Liu DR . Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature, 2018,556(7699):57-63. | [51] | Fonfara I, Richter H, Bratovic M, Le Rhun A, Charpentier E . The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature, 2016,532(7600):517-521. | [52] | Yamano T, Nishimasu H, Zetsche B, Hirano H, Slaymaker IM, Li YQ, Fedorova I, Nakane T, Makarova KS, Koonin EV, Ishitani R, Zhang F, Nureki O . Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell, 2016,165(4):949-962. | [53] | Chen JS, Ma EB, Harrington LB, Da Costa M, Tian XR, Palefsky JM, Doudna JA . CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 2018,360(6387):436-439. | [54] | Li SY, Cheng QX, Liu JK, Nie XQ, Zhao GP, Wang J . CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA. Cell Res, 2018,28(4):491-493. | [55] | Zetsche B, Heidenreich M, Mohanraju P, Fedorova I, Kneppers J, Degennaro EM, Winblad N, Choudhury SR, Abudayyeh O, Gootenberg JS, Wu WY, Scott DA, Severinov K, Van Der Oost J, Zhang F . Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat Biotechnol, 2017,35(1):31-34. | [56] | Wang MG, Mao YF, Lu YM, Tao XP, Zhu JK . Multiplex gene editing in rice using the CRISPR-Cpf1 system. Mol Plant, 2017,10(7):1011-1013. | [57] | Li XS, Wang Y, Liu YJ, Yang B, Wang X, Wei J, Lu ZY, Zhang YX, Wu J, Huang XX, Yang L, Chen J . Base editing with a Cpf1-cytidine deaminase fusion. Nat Biotechnol, 2018,36(4):324-327. | [58] | Tak YE, Kleinstiver BP, Nunez JK, Hsu JY, Horng JE, Gong JY, Weissman JS, Joung JK . Inducible and multiplex gene regulation using CRISPR-Cpf1-based transcription factors. Nat Methods, 2017,14(12):1163-1166. | [59] | Gao LY, Cox DBT, Yan WX, Manteiga JC, Schneider MW, Yamano T, Nishimasu H, Nureki O, Crosetto N, Zhang F . Engineered Cpf1 variants with altered PAM specificities. Nat Biotechnol, 2017,35(8):789-792. | [60] | Li SY, Zhang X, Wang WS, Guo XP, Wu ZC, Du WM, Zhao YD, Xia LQ . Expanding the scope of CRISPR/ Cpf1-mediated genome editing in rice. Mol Plant, 2018,11(7):995-998. | [61] | Dong, Guo M, Wang S, Zhu Y, Wang S, Xiong Z, Yang J, Xu Z, Huang Z . Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein. Nature, 2017,546(7658):436-439. | [62] | Dong D, Ren K, Qiu X, Zheng J, Guo M, Guan X, Liu H, Li N, Zhang B, Yang D, Ma C, Wang S, Wu D, Ma Y, Fan S, Wang J, Gao N, Huang Z . The crystal structure of Cpf1 in complex with CRISPR RNA. Nature, 2016,532(7600):522-526. | [63] | Liu L, Li X, Ma J, Li Z, You L, Wang J, Wang M, Zhang X, Wang Y . The molecular architecture for RNA-guided RNA cleavage by Cas13a. Cell, 2017, 170(4): 714-726.e710. | [64] | Liu L, Li X, Wang J, Wang M, Chen P, Yin M, Li J, Sheng G, Wang Y . Two distant catalytic sites are responsible for C2c2 RNase activities. Cell, 2017, 168(1-2): 121-134.e112. | [65] | Wang J, Li J, Zhao H, Sheng G, Wang M, Yin M, Wang Y . Structural and mechanistic basis of PAM-dependent spacer acquisition in CRISPR-Cas systems. Cell, 2015,163(4):840-853. | [66] | Ma Y, Zhang J, Yin W, Zhang Z, Song Y, Chang X . Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat Methods, 2016,13(12):1029-1035. | [67] | Li X, Wang Y, Liu Y, Yang B, Wang X, Wei J, Lu Z, Zhang Y, Wu J, Huang X, Yang L, Chen J . Base editing with a Cpf1-cytidine deaminase fusion. Nat Biotechnol, 2018,36(4):324-327. | [68] | Zhu S, Li W, Liu J, Chen CH, Liao Q, Xu P, Xu H, Xiao T, Cao Z, Peng J, Yuan P, Brown M, Liu XS, Wei W . Genome-scale deletion screening of human long non- coding RNAs using a paired-guide RNA CRISPR-Cas9 library. Nat Biotechnol, 2016,34(12):1279-1286. | [69] | Li W, Teng F, Li T, Zhou Q . Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat Biotechnol, 2013,31(8):684-686. | [70] | Yan S, Tu Z, Liu Z, Fan N, Yang H, Yang S, Yang W, Zhao Y, Ouyang Z, Lai C, Yang H, Li L, Liu Q, Shi H, Xu G, Zhao H, Wei H, Pei Z, Li S, Lai L, Li XJ . A huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington's disease. Cell, 2018, 173(4): 989- 1002.e1013. | [71] | Ke Q, Li W, Lai X, Chen H, Huang L, Kang Z, Li K, Ren J, Lin X, Zheng H, Huang W, Ma Y, Xu D, Chen Z, Song X, Lin X, Zhuang M, Wang T, Zhuang F, Xi J, Mao FF, Xia H, Lahn BT, Zhou Q, Yang S, Xiang AP . TALEN-based generation of a cynomolgus monkey disease model for human microcephaly. Cell Res, 2016,26(9):1048-1061. | [72] | Chen Y, Yu J, Niu Y, Qin D, Liu H, Li G, Hu Y, Wang J, Lu Y, Kang Y, Jiang Y, Wu K, Li S, Wei J, He J, Wang J, Liu X, Luo Y, Si C, Bai R, Zhang K, Liu J, Huang S, Chen Z, Wang S, Chen X, Bao X, Zhang Q, Li F, Geng R, Liang A, Shen D, Jiang T, Hu X, Ma Y, Ji W, Sun YE . Modeling Rett syndrome using TALEN-edited MECP2 mutant cynomolgus monkeys. Cell, 2017, 169(5): 945-955.e910. | [73] | Yao X, Liu Z, Wang X, Wang Y, Nie YH, Lai L, Sun R, Shi L, Sun Q, Yang H . Generation of knock-in cynomolgus monkey via CRISPR/Cas9 editing. Cell Res, 2018,28(3):379-382. | [74] | Cui Y, Niu Y, Zhou J, Chen Y, Cheng Y, Li S, Ai Z, Chu C, Wang H, Zheng B, Chen X, Sha J, Guo X, Huang X, Ji W . Generation of a precise Oct4-hrGFP knockin cynomolgus monkey model via CRISPR/Cas9-assisted homologous recombination. Cell Res, 2018,28(3):383-386. | [75] | Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu JK . Efficient genome editing in plants using a CRISPR/Cas system. Cell Res, 2013,23(10):1229-1232. | [76] | Zong Y, Wang Y, Li C, Zhang R, Chen K, Ran Y, Qiu JL, Wang D, Gao C . Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol, 2017,35(5):438-440. | [77] | Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL . Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol, 2014,32(9):947-951. | [78] | Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C . Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol, 2013,31(8):686-688. | [79] | Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y, Shen R, Chen S, Wang Z, Chen Y, Guo J, Chen L, Zhao X, Dong Z, Liu YG . A robust CRISPR/Cas9 system for convenient, high- efficiency multiplex genome editing in monocot and dicot plants. Mol Plant, 2015,8(8):1274-1284. | [80] | Cyranoski D . Chinese scientists to pioneer first human CRISPR trial. Nature, 2016,535(7613):476-477. | [81] | Kim E, Koo T, Park SW, Kim D, Kim K, Cho HY, Song DW, Lee KJ, Jung MH, Kim S, Kim JH, Kim JH, Kim JS . In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat Commun, 2017,8:14500. | [82] | Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, Wyvekens N, Khayter C, Iafrate AJ, Le LP, Aryee MJ, Joung JK . GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol, 2015,33(2):187-197. | [83] | Kim D, Bae S, Park J, Kim E, Kim S, Yu HR, Hwang J, Kim JI, Kim JS . Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods, 2015,12(3):237-243, 231. | [84] | Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F . Rationally engineered Cas9 nucleases with improved specificity. Science, 2016,351(6268):84-88. | [85] | Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK . High-fidelity CRISPR- Cas9 nucleases with no detectable genome-wide off- target effects. Nature, 2016,529(7587):490-495. | [86] | Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA, Harrington LB, Sternberg SH, Joung JK, Yildiz A, Doudna JA . Enhanced proofreading governs CRISPR- Cas9 targeting accuracy. Nature, 2017,550(7676):407-410. | [87] | Lin S, Staahl BT, Alla RK, Doudna JA . Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. eLife, 2014,3:e04766. | [88] | Kim S, Kim D, Cho SW, Kim J, Kim JS . Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res, 2014,24(6):1012-1019. | [89] | Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, Gonzales AP, Li Z, Peterson RT, Yeh JR, Aryee MJ, Joung JK . Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature, 2015,523(7561):481-485. | [90] | Kleinstiver BP, Prew MS, Tsai SQ, Nguyen NT, Topkar VV, Zheng Z, Joung JK . Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol, 2015,33(12):1293-1298. | [91] | Hirano H, Gootenberg JS, Horii T, Abudayyeh OO, Kimura M, Hsu PD, Nakane T, Ishitani R, Hatada I, Zhang F, Nishimasu H, Nureki O . Structure and engineering of Francisella novicida Cas9. Cell, 2016,164(5):950-961. | [92] | Adli M . The CRISPR tool kit for genome editing and beyond. Nat Commun, 2018,9(1):1911. | [93] | Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR . Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 2016,533(7603):420-424. | [94] | Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR . Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature, 2017,551(7681):464-471. | [95] | Hess GT, Fresard L, Han K, Lee CH, Li A, Cimprich KA, Montgomery SB, Bassik MC . Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat Methods, 2016,13(12):1036-1042. | [96] | Kuscu C, Adli M . CRISPR-Cas9-AID base editor is a powerful gain-of-function screening tool. Nat Methods, 2016,13(12):983-984. | [97] | Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA . Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 2013,152(5):1173-1183. | [98] | Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS . CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 2013,154(2):442-451. | [99] | Cheng AW, Wang H, Yang H, Shi L, Katz Y, Theunissen TW, Rangarajan S, Shivalila CS, Dadon DB, Jaenisch R . Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res, 2013,23(10):1163-1171. | [100] | Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, Shmakov S, Makarova KS, Semenova E, Minakhin L, Severinov K, Regev A, Lander ES, Koonin EV, Zhang F . C2c2 is a single- component programmable RNA-guided RNA-targeting CRISPR effector. Science, 2016, 353(6299): aaf5573. | [101] | Smargon AA, Cox DBT, Pyzocha NK, Zheng K, Slaymaker IM, Gootenberg JS, Abudayyeh OA, Essletzbichler P, Shmakov S, Makarova KS, Koonin EV, Zhang F . Cas13b is a type VI-B CRISPR-associated RNA-Guided RNase differentially regulated by accessory oroteins Csx27 and Csx28. MolCell, 2017, 65(4): 618-630.e617. | [102] | Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W, Abudayyeh OO, Gootenberg JS, Makarova KS, Wolf YI, Severinov K, Zhang F, Koonin EV . Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol, 2017,15(3):169-182. | [103] | Yan WX, Chong S, Zhang H, Makarova KS, Koonin EV, Cheng DR, Scott DA . Cas13d is a compact RNA- targeting type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein. Mol Cell, 2018, 70(2): 327-339.e325. | [104] | Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F . Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science, 2018,360(6387):439-444. | [105] | Shalem O, Sanjana NE, Zhang F . High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet, 2015,16(5):299-311. | [106] | Liu SJ, Horlbeck MA, Cho SW, Birk HS, Malatesta M, He D, Attenello FJ, Villalta JE, Cho MY, Chen Y, Mandegar MA, Olvera MP, Gilbert LA, Conklin BR, Chang HY, Weissman JS, Lim DA . CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Science, 2017,355(6320):355. | [107] | Han K, Jeng EE, Hess GT, Morgens DW, Li A, Bassik MC . Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions. Nat Biotechnol, 2017,35(5):463-474. | [108] | Najm FJ, Strand C, Donovan KF, Hegde M, Sanson KR, Vaimberg EW, Sullender ME, Hartenian E, Kalani Z, Fusi N, Listgarten J, Younger ST, Bernstein BE, Root DE, Doench JG . Orthologous CRISPR-Cas9 enzymes for combinatorial genetic screens. Nat Biotechnol, 2018,36(2):179-189. | [109] | Joung J, Engreitz JM, Konermann S, Abudayyeh OO, Verdine VK, Aguet F, Gootenberg JS, Sanjana NE, Wright JB, Fulco CP, Tseng YY, Yoon CH, Boehm JS, Lander ES, Zhang F . Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood. Nature, 2017,548(7667):343-346. | [110] | Sanjana NE, Shalem O, Zhang F . Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods, 2014,11(8):783-784. | [111] | Xue W, Chen S, Yin H, Tammela T, Papagiannakopoulos T, Joshi NS, Cai W, Yang G, Bronson R, Crowley DG, Zhang F, Anderson DG, Sharp PA, Jacks T . CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature, 2014,514(7522):380-384. | [112] | Choi PS, Meyerson M . Targeted genomic rearrangements using CRISPR/Cas technology. Nat Commun, 2014,5:3728. | [113] | Zuckermann M, Hovestadt V, Knobbe-Thomsen CB, Zapatka M, Northcott PA, Schramm K, Belic J, Jones DT, Tschida B, Moriarity B, Largaespada D, Roussel MF, Korshunov A, Reifenberger G, Pfister SM, Lichter P, Kawauchi D, Gronych J . Somatic CRISPR/Cas9- mediated tumour suppressor disruption enables versatile brain tumour modelling. Nat Commun, 2015,6:7391. | [114] | Carroll KJ, Makarewich CA, Mcanally J, Anderson DM, Zentilin L, Liu N, Giacca M, Bassel-Duby R, Olson EN . A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9. Proc Natl Acad Sci USA, 2016,113(2):338-343. | [115] | Paquet D, Kwart D, Chen A, Sproul A, Jacob S, Teo S, Olsen KM, Gregg A, Noggle S, Tessier-Lavigne M . Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature, 2016,533(7601):125-129. | [116] | Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, Verdine V, Donghia N, Daringer NM, Freije CA, Myhrvold C, Bhattacharyya RP, Livny J, Regev A, Koonin EV, Hung DT, Sabeti PC, Collins JJ, Zhang F . Nucleic acid detection with CRISPR-Cas13a/ C2c2. Science, 2017,356(6336):438-442. | [117] | Wang HX, Li M, Lee CM, Chakraborty S, Kim HW, Bao G, Leong KW . CRISPR/Cas9-based genome editing for disease modeling and therapy: Challenges and opportunities for nonviral delivery. Chem Rev, 2017,117(15):9874-9906. | [118] | Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K , Sadelain M. Gene therapy comes of age. Science, 2018, 359(6372): pii: eaan4672. | [119] | Boulad F, Mansilla-Soto J, Cabriolu A, Riviere I, Sadelain M . Gene Therapy and genome editing. Hematol Oncol Clin North Am, 2018,32(2):329-342. | [120] | Mansilla-Soto J, Riviere I, Boulad F, Sadelain M . Cell and Gene Therapy for the beta-thalassemias: advances and prospects. Hum Gene Ther, 2016,27(4):295-304. | [121] | Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M, Koteliansky V, Sharp PA, Jacks T, Anderson DG . Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol, 2014,32(6):551-553. | [122] | Dever DP, Bak RO, Reinisch A, Camarena J, Washington G, Nicolas CE, Pavel-Dinu M, Saxena N, Wilkens AB, Mantri S, Uchida N, Hendel A, Narla A, Majeti R, Weinberg KI, Porteus MH . CRISPR/Cas9 beta-globin gene targeting in human haematopoietic stem cells. Nature, 2016,539(7629):384-389. | [123] | Tabebordbar M, Zhu K, Cheng JKW, Chew WL, Widrick JJ, Yan WX, Maesner C, Wu EY, Xiao R, Ran FA, Cong L, Zhang F, Vandenberghe LH, Church GM, Wagers AJ . In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science, 2016,351(6271):407-411. | [124] | Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Castellanos Rivera RM, Madhavan S, Pan X, Ran FA, Yan WX, Asokan A, Zhang F, Duan D, Gersbach CA . In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science, 2016,351(6271):403-407. | [125] | Long C, Amoasii L, Mireault AA, Mcanally JR, Li H, Sanchez-Ortiz E, Bhattacharyya S, Shelton JM, Bassel-Duby R, Olson EN . Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science, 2016,351(6271):400-403. | [126] | Gao X, Tao Y, Lamas V, Huang M, Yeh WH, Pan B, Hu YJ, Hu JH, Thompson DB, Shu Y, Li Y, Wang H, Yang S, Xu Q, Polley DB, Liberman MC, Kong WJ, Holt JR, Chen ZY, Liu DR . Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature, 2018,553(7687):217-221. | [127] | Hawksworth J, Satchwell TJ, Meinders M, Daniels DE, Regan F, Thornton NM, Wilson MC, Dobbe JG, Streekstra GJ, Trakarnsanga K, Heesom KJ, Anstee DJ, Frayne J, Toye AM . Enhancement of red blood cell transfusion compatibility using CRISPR-mediated erythroblast gene editing. EMBO Mol Med, 2018,10:e8454. | [128] | Huang YQ, Li GL, Yang HQ, Wu ZF . Progress and application of genome-edited pigs in biomedical research. Hereditas (Beijing), 2018,40(8):632-646. | [128] | 黄耀强, 李国玲, 杨化强, 吴珍芳 . 基因编辑猪在生物医学研究中的应用. 遗传, 2018,40(8):632-646. | [129] | Zhang DW, Zhang CF, Dong F, Huang YL, Zhang Y, Zhou H . Application of CRISPR/Cas9 system in breeding of new antiviral plant germplasm. Heredita (Beijing), 2016,38(9):811-820. | [129] | 张道微, 张超凡, 董芳, 黄艳岚, 张亚, 周虹 . CRISPR/ Cas9系统在培育抗病毒植物新种质中的应用. 遗传, 2016,38(9):811-820. | [130] | Li J, Meng X, Zong Y, Chen K, Zhang H, Liu J, Li J, Gao C . Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9. Nat Plants, 2016,2:16139. | [131] | Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE . ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J, 2017,15(2):207-216. | [132] | Zhou H, He M, Li J, Chen L, Huang Z, Zheng S, Zhu L, Ni E, Jiang D, Zhao B, Zhuang C . Development of commercial thermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/ Cas9-mediated TMS5 editing system. Sci Rep, 2016,6:37395. | [133] | Sun Y, Zhang X, Wu C, He Y, Ma Y, Hou H, Guo X, Du W, Zhao Y, Xia L . Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Mol Plant, 2016,9(4):628-631. | [134] | Wang M, Lu Y, Botella JR, Mao Y, Hua K, Zhu JK . Gene Targeting by homology-directed repair in rice using a geminivirus-based CRISPR/Cas9 system. Mol Plant, 2017,10(7):1007-1010. | [135] | Hai T, Teng F, Guo R, Li W, Zhou Q . One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res, 2014,24(3):372-375. | [136] | Liu X, Wang Y, Tian Y, Yu Y, Gao M, Hu G, Su F, Pan S, Luo Y, Guo Z, Quan F, Zhang Y . Generation of mastitis resistance in cows by targeting human lysozyme gene to beta-casein locus using zinc-finger nucleases. Proc Biol Sci, 2014,281(1780):20133368. | [137] | Luo J, Song Z, Yu S, Cui D, Wang B, Ding F, Li S, Dai Y, Li N . Efficient generation of myostatin (MSTN) biallelic mutations in cattle using zinc finger nucleases. PloS One, 2014,9(4):e95225. | [138] | Ni W, Qiao J, Hu S, Zhao X, Regouski M, Yang M, Polejaeva IA, Chen C . Efficient gene knockout in goats using CRISPR/Cas9 system. PloS One, 2014,9(9):e106718. | [139] | Cui C, Song Y, Liu J, Ge H, Li Q, Huang H, Hu L, Zhu H, Jin Y, Zhang Y . Gene targeting by TALEN-induced homologous recombination in goats directs production of beta-lactoglobulin-free, high-human lactoferrin milk. Sci Rep, 2015,5:10482. | [140] | Qian L, Tang M, Yang J, Wang Q, Cai C, Jiang S, Li H, Jiang K, Gao P, Ma D, Chen Y, An X, Li K, Cui W . Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs. Sci Rep, 2015,5:14435. | [141] | Wang K, Ouyang H, Xie Z, Yao C, Guo N, Li M, Jiao H, Pang D . Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system. Sci Rep, 2015,5:16623. | [142] | Whitworth KM, Rowland RR, Ewen CL, Trible BR, Kerrigan MA, Cino-Ozuna AG, Samuel MS, Lightner JE, Mclaren DG, Mileham AJ, Wells KD, Prather RS . Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat Biotechnol, 2016,34(1):20-22. |
|