遗传 ›› 2014, Vol. 36 ›› Issue (12): 1185-1194.doi: 10.3724/SP.J.1005.2014.1185
• 综述 • 下一篇
潘学峰1, 2, 姜楠1, 陈细芳1, 周晓宏1, 丁良2, 段斐2
收稿日期:
2014-04-01
出版日期:
2014-12-20
发布日期:
2014-12-20
作者简介:
潘学峰, 博士, 教授, 研究方向:分子遗传学。
基金资助:
Xuefeng Pan1, 2, Nan Jiang1, Xifang Chen1, Xiaohong Zhou1, Liang Ding2, Fei Duan2
Received:
2014-04-01
Online:
2014-12-20
Published:
2014-12-20
摘要: R-环是由一个RNA:DNA杂交体和一条单链状态的DNA分子共同组成的三链核酸结构。其中, RNA:DNA杂交体的形成起因于基因转录所合成的RNA分子不能与模板分开, 或RNA分子重新与一段双链DNA分子中的一条链杂交。在基因转录过程中, 当转录泡遇到富含G碱基的非模板链区或位于某些与人类疾病有关的三核苷酸卫星DNA时, 转录泡后方累积的负超螺旋可促进R环形成。同时, 新生RNA分子未被及时加工、成熟或未被快速转运到细胞质等因素也会催生R环。研究表明, 细胞拥有多种管理R环的方法, 可以有效地管理R环的形成和处理已经形成的R环, 以尽量避免R环对DNA复制、基因突变和同源重组产生不利影响。文章重点分析了R-环的形成机制及R环对DNA复制、基因突变和同源重组的影响, 并针对R-环诱导的DNA复制在某些三核苷酸重复扩增有关的神经肌肉退行性疾病发生过程中的作用进行了分析和讨论。
潘学峰, 姜楠, 陈细芳, 周晓宏, 丁良, 段斐. R环的形成及对基因组稳定性的影响[J]. 遗传, 2014, 36(12): 1185-1194.
Xuefeng Pan, Nan Jiang, Xifang Chen, Xiaohong Zhou, Liang Ding, Fei Duan. R-loop structure: the formation and the effects on genomic stability[J]. HEREDITAS(Beijing), 2014, 36(12): 1185-1194.
[1] Helmrich A, Ballarino M, Nudler E, Tora L. Transcription-replication encounters, consequences and genomic instability. Nat Struct Mol Biol, 2013, 20(4): 412–418. [2] Aguilera A, García-Muse T. R Loops: From transcription byproducts to threats to genome stability. Mol Cell, 2012, 46(2): 115–124. [3] Lin YL, Pasero P. Interference between DNA replication and transcription as a cause of genomic instability. Curr Genomics, 2012, 13(1): 65–73. [4] Cook PR. The organization of replication and transcription. Science, 1999, 284(5421): 1790–1795. [5] Kogoma T. Stable DNA Replication: Interplay between DNA replication, homologous recombination, and transcription. Microbiol Mol Biol Rev, 1997, 61(2): 212–238. [6] Masai H, Arai K. Mechanisms of primer RNA synthesis and D-loop/R-loop-dependent DNA replication in Escherichia coli. Biochimie, 1996, 78(11–12): 1109–1117. [7] Roy D, Lieber MR. G clustering is important for the initiation of transcription-induced R-loops in vitro, whereas high G density without clustering is sufficient thereafter. Mol Cell Biol, 2009, 29(11): 3124–3133. [8] Kim N, Jinks-Robertson S. Guanine repeat-containing sequences confer transcription-dependent instability in an orientation-specific manner in yeast. DNA Repair (Amst), 2011, 10(9): 953–960. [9] Duquette ML, Handa P, Vincent JA, Taylor AF, Maizels N. Intracellular transcription of G-rich DNAs induces formation of G-loops, novel structures containing G4 DNA. Genes Dev, 2004, 18(13): 1618–1629. [10] Krasilnikova MM, Samadashwily GM, Krasilnikov AS, Mirkin SM. Transcription through a simple DNA repeat blocks replication elongation. EMBO J, 1998, 17(17): 5095–5102. [11] Belotserkovskii BP, Neil AJ, Saleh SS, Shin JHS, Mirkin SM, Hanawalt PC. Transcription blockage by homopurine DNA sequences: role of sequence composition and single-strand breaks. Nucleic Acids Res, 2013, 41(3): 1817–1828. [12] Roy D, Zhang Z, Lu ZF, Hsieh CL, Lieber MR. Competition between the RNA transcript and the nontemplate DNA strand during R-loop formation in vitro: a nick can serve as a strong R-loop initiation site. Mol Cell Biol, 2010, 30(1): 146–159. [13] Wongsurawat T, Jenjaroenpun P, Kwoh CK, Kuznetsov V. Quantitative model of R-loop forming structures reveals a novel level of RNA–DNA interactome complexity. Nucleic Acids Res, 2012, 40( 2): e16. [14] Shaw NN, Arya DP. Recognition of the unique structure of DNA: RNA hybrids. Biochimie, 2008, 90(7): 1026–1039. [15] Roberts RW, Crothers DM. Stability and properties of double and triple helices: dramatic effects of RNA or DNA backbone composition. Science, 1992, 258(5087): 1463–1466. [16] Molina-Navarro MM, Martinez-Jimenez CP, Rodriguez- Navarro S. Transcriptional elongation and mRNA export are coregulated processes. Genet Res Int, 2011: 652461. [17] Borukhov S, Lee J, Laptenko O. Bacterial transcription elongation factors: new insights into molecular mechanism of action. Mol Microbiol, 2005, 55(5): 1315–1324. [18] Washburna RS, Gottesman ME. Transcription termination maintains chromosome integrity. Proc Natl Acad Sci USA, 2011, 108(2): 792–797. [19] Jimeno S, Rondón AG, Luna R, Aguilera A. The yeast THO complex and mRNA export factors link RNA metabolism with transcription and genome instability. EMBO J, 2002, 21(13): 3526–3535. [20] Li XL, Manley JL. Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell, 2005, 122: 365–378. [21] Skourti-Stathaki K, Proudfoot NJ, Gromak N. Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol Cell, 2011, 42(6): 794–805. [22] Gómez-González B, García-Rubio M, Bermejo R, Gaillard H, Shirahige K, Marín A, Foiani M, Aguilera A. Genome-wide function of THO/TREX in active genes prevents R-loop-dependent replication obstacles. EMBO J, 2011, 30(15): 3106–3119. [23] Stitt BL. Escherichia coli Transcription termination factor Rho binds and hydrolyzes ATP using a single class of three sites. Biochemistry, 2001, 40(7): 2276–2281. [24] Kim HD, Choe J, Seo YS. The sen1(+) gene of Schizosaccharomyces pombe, a homologue of budding yeast SEN1, encodes an RNA and DNA helicase. Biochemistry, 1999, 38(44): 14697–14710. [25] Mischo HE, Gómez-González B, Grzechnik P, Rondon AG, Wei W, Steinmetz L, Aguilera A, Proudfoot NJ. Yeast Sen1 helicase protects the genome from transcription-associated instability. Mol Cell, 2011, 41(1): 21–32. [26] Steinmetz EJ, Conrad NK, Brow DA, Corden JL. RNA-binding protein Nrd1 directs poly(A)-independent 3’-end formation of RNA polymerase II transcripts. Nature, 2001, 413(6853): 327–331. [27] Thiebaut M, Kisseleva-Romanova E, Rougemaille M, Boulay J, Libri D. Transcription termination and nuclear degradation of cryptic unstable transcripts: a role for the nrd1-nab3 pathway in genome surveillance. Mol Cell, 2006, 23(6): 853–864. [28] Anupama K, Leela JK, Gowrishankar J. Two pathways for RNase E action in Escherichia coli in vivo and bypass of its essentiality in mutants defective for Rho-dependent transcription termination. Mol Microbiol, 2011, 82(6): 1330–1348. [29] Pan XF, Ding YF, Shi LF. The roles of SbcCD and RNaseE in the transcription of GAA?TTC repeats in Escherichia coli. DNA Repair (Amst), 2009, 8(11): 1321–1327. [30] Wahba L, Amon JD, Koshland D, Vuica-Ross M. RNase H and multiple RNA biogenesis factors cooperate to prevent RNA:DNA hybrids from generating genome instabi?lity. Mol Cell, 2011, 44(6): 978–988. [31] El Hage A, French SL, Beyer AL, Tollervey D. Loss of Topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis. Genes Dev, 2010, 24(14): 1546–1558. [32] Tuduri S, Crabbé L, Conti C, Tourrière H, Holtgreve-Grez H, Jauch A, Pantesco V, De Vos J, Thomas A, Theillet C, Pommier Y, Tazi J, Coquelle A, Pasero P. Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription. Nat Cell Biol, 2009, 11(11): 1315–1324. [33] Howard JA, Delmas S, Ivan?i?-Ba?e I, Bolt EL. Helicase dissociation and annealing of RNA-DNA hybrids by Escherichia coli Cas3 protein. Biochem J, 2011, 439(1): 85–95. [34] Boulé JB, Zakian VA. The yeast Pif1p DNA helicase preferentially unwinds RNA–DNA substrates. Nucleic Acids Res, 2007, 35(17): 5809–5818. [35] Chakraborty P, Grosse F. Human DHX9 helicase preferentially unwinds RNA-containing displacement loops (R-loops) and G-quadruplexes. DNA Repair (Amst), 2011, 10(6): 654–665. [36] Duch A, Felipe-Abrio I, Barroso S, Yaakov G, García- Rubio M, Aguilera A, de Nadal E, Posas F. Coordinated control of replication and transcription by a SAPK protects genomic integrity. Nature, 2013, 493(7430): 116–119. [37] Alzu A, Bermejo R, Begnis M, Lucca C, Piccini D, Carotenuto W, Saponaro M, Brambati A, Cocito A, Foiani M, Liberi G. Senataxin associates with replication forks to protect fork integrity across RNA-Polymerase-II-tran?scribed Genes. Cell, 2012, 151(4): 835–846. [38] Rondon AG, Mischo HE, Kawauchi J, Proudfoot NJ. Fail-safe transcriptional termination for protein-coding genes in S. cerevisiae. Mol Cell, 2009, 36(1): 88–98. [39] Suraweera A, Lim YC, Woods R, Birrell GW, Nasim T, Becherel OJ, Lavin MF. Functional role for senataxin, defective in ataxia oculomotor apraxia type 2, in transcriptional regulation. Hum Mol Genet, 2009, 18(18): 3384–3396. [40] Chen YZ, Bennett CL, Huynh HM, Blair IP, Puls I, Irobi J, Dierick I, Abel A, Kennerson ML, Rabin BA, Nicholson GA, Auer-Grumbach M, Wagner K, De Jonghe P, Griffin JW, Fischbeck KH, Timmerman V, Cornblath DR, Chance PF. DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am J Hum Genet, 2004, 74(6): 1128–1135. [41] French S. Consequences of replication fork movement through transcription units in vivo. Science, 1992, 258(5086): 1362–1365. [42] Postow L, Ullsperger C, Keller RW, Bustamante C, Vologodskii AV, Cozzarelli NR. Positive torsional strain causes the formation of a four-way junction at replication forks. J Biol Chem, 2001, 276(4): 2790–2796. [43] Pan XF, Xiao P, Li HQ, Zhao DX, Duan F. The gratuitous repair on undamaged DNA misfold. DNA Repair, 2011: 401–430. [44] McGlynn P, Lloyd RG. Modulation of RNA polymerase by (p)ppGpp reveals a RecG-dependent mechanism for replication fork progression. Cell, 2000, 101(1): 35–45. [45] Kusuya Y, Kurokawa K, Ishikawa S, Ogasawara N, Oshima T. Transcription factor GreA contributes to resolving promoter-proximal pausing of RNA polymerase in Bacillus subtilis cells. J Bacteriol, 2011, 193(12): 3090– 3099. [46] Tehranchi AK, Blankschien MD, Zhang Y, Halliday JA, Srivatsan A, Peng J, Herman C, Wang JD. The transcription factor DksA prevents conflicts between DNA replication and transcription machinery. Cell, 2010, 141(4): 595– 605. [47] Ganesan A, Spivak G, Hanawalt PC. Chapter 2 – Transcription-coupled DNA repair in prokaryotes. Prog Mol Biol Transl Sci, 2012, 110: 25–40. [48] Helmrich A, Ballarino M, Tora L. Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol Cell, 2011, 44(6): 966–977. [49] Huertas P, Aguilera A. Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol Cell, 2003, 12(3): 711–721. [50] Paulsen RD, Soni DV, Wollman R, Hahn AT, Yee MC, Guan A, Hesley JA, Miller SC, Cromwell EF, Solow-Cordero DE, Meyer T, Cimprich KA. A genome-wide siRNA screen reveals diverse cellular processes and pathways that mediate genome stability. Mol Cell, 2009, 35(2): 228–239. [51] Wellinger RE, Prado F, Aguilera A. Replication fork progression is impaired by transcription in hyperrecombinant yeast cells lacking a functional THO complex. Mol Cell Biol, 2006, 26(8): 3327–3334. [52] Mirkin EV, Mirkin SM. Replication fork stalling at natural impediments. Microbiol Mol Biol Rev, 2007, 71(1): 13–35. [53] Dutta D, Shatalin K, Epshtein V, Gottesman ME, Nudler E. Linking RNA polymerase backtracking to genome instability in E. coli. Cell, 2011, 146(4): 533–543. [54] Gottipati P, Helleday T. Transcription-associated recombination in eukaryotes: link between transcription, replication and recombination. Mutagenesis, 2009, 24(3): 203–210. [55] Rothstein R, Michel B, Gangloff S. Replication fork pausing and recombination or "gimme a break". Genes Dev, 2000, 14(1): 1–10. [56] Mortusewicz O, Herr P, Helleday T. Early replication fragile sites: where replication-transcription collisions cause genetic instability. EMBO J, 2013, 32(4): 493–495. [57] Savolainen L, Helleday T. Transcription-associated recombination is independent of XRCC2 and mechanistically separate from homology-directed DNA double-strand break repair. Nucleic Acids Res, 2009, 37(2): 405–412. [58] Stirling PC, Chan YA, Minaker SW, Aristizabal MJ, Barrett I, Sipahimalani P, Kobor MS, Hieter P. R-loop- mediated genome instability in mRNA cleavage and polyadenylation mutants. Genes Dev, 2012, 26(2): 163–175. [59] Bermejo R, Lai MS, Foiani M. Preventing replication stress to maintain genome stability: resolving conflicts between replication and transcription. Mol Cell, 2012, 45(6): 710–718. [60] Polak P, Arndt PF. Transcription induces strand-specific mutations at the 5' end of human genes. Genome Res, 2008, 18(8): 1216–1223. [61] Gómez-González B, Aguilera A. Activation-induced cytidine deaminase action is strongly stimulated by mutations of the THO complex. Proc Natl Acad Sci USA, 2007, 104(20): 8409–8414. [62] Robbiani DF, Bothmer A, Callen E, Reina-San-Martin B, Dorsett Y, Difilippantonio S, Bolland DJ, Chen HT, Corcoran AE, Nussenzweig A, Nussenzweig MC. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell, 2008, 135(6): 1028– 1038. [63] McIvor EI, Polak U, Napierala M. New insights into repeat instability: Role of RNA?DNA hybrids. RNA Biol, 2010, 7(5): 551–558. [64] Reddy K, Tam M, Bowater RP, Barber M, Tomlinson M, Edamura KN, Wang YH, Pearson CE. Determinants of R-loop formation at convergent bidirectionally transcribed trinucleotide repeats. Nucleic Acids Res, 2011, 39(5): 1749–1762. [65] Lin YF, Dent SYR, Wilson JH, Wells RD, Napierala M. R loops stimulate genetic instability of CTG?CAG repeats. Proc Natl Acad Sci USA, 2010, 107(2): 692–697. [66] Pan XF. Mechanism of trinucleotide repeats instabilities: The necessities of repeat non-B secondary structure formation and the roles of cellular trans-acting factors. Acta Genet Sin, 2006, 33(1): 1–11. [67] Salinas-Rios V, Belotserkovskii BP, Hanawalt PC. DNA slip-outs cause RNA polymerase II arrest in vitro: potential implications for genetic instability. Nucleic Acids Res, 2011, 39(17): 7444–7454. [68] Lin YF, Wilson JH. Nucleotide excision repair, mismatch Repair, and R-Loops modulate convergent transcription-induced cell death and repeat Instability. PLoS ONE, 2012, 7(10): e46807. [69] Ginno PA, Lott PL, Christensen HC, Korf I, Chédin F. R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol Cell, 2012, 45(6): 814–825. [70] Smolle M, Workman JL. Transcription-associated histone modifications and cryptic transcription. Biochim Biophys Acta, 2013, 1829(1): 84–97. |
[1] | 刘晓晶,楼慧强. DNA复制研究步入单分子时代[J]. 遗传, 2017, 39(9): 771-774. |
[2] | 姚远, 乔佳鑫, 李静, 李慧, 莫日根. 大肠杆菌TorS/TorR二组分体应答蛋白TorR对DNA复制起始的影响[J]. 遗传, 2015, 37(3): 302-308. |
[3] | 司鑫鑫, 孙玉洁. DNA甲基化异常与肿瘤耐药[J]. 遗传, 2014, 36(5): 411-419. |
[4] | 梁新全,杜贻鹏,王东来,杨洋. 赖氨酸甲基转移酶PR-SET7及其生物学功能[J]. 遗传, 2013, 35(3): 241-254. |
[5] | 宋博研,朱卫国. 组蛋白甲基化修饰效应分子的研究进展[J]. 遗传, 2011, 33(4): 285-292. |
[6] | 冯碧薇,陈建强,雷秉坤,潘贤,吕红. 酵母模式生物研究表观遗传调控基因组稳定性的进展[J]. 遗传, 2010, 32(8): 799-807. |
[7] | 王蕊,曾宪录. ATP依赖的染色质改构复合物及其作用机制[J]. 遗传, 2010, 32(4): 301-306. |
[8] | 邵根宝,黄晓佳,龚爱华,张志坚,陆荣柱,桑建荣. 组蛋白去甲基化酶LSD1及其生物学功能[J]. 遗传, 2010, 32(4): 331-338. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: