遗传 ›› 2022, Vol. 44 ›› Issue (1): 25-35.doi: 10.16288/j.yczz.21-280
杨卓瑾1,2,3(), 张玉向1,2,3(), 杨茜茜1,2,3, 高菲菲1,2,3, 杨婧思1,2,3, 阎春霞1,2,3()
收稿日期:
2021-10-01
修回日期:
2021-12-21
出版日期:
2022-01-20
发布日期:
2022-01-04
通讯作者:
张玉向,阎春霞
E-mail:cloris_sunshine@stu.xjtu.edu.cn;yuxiangzhang@xjtu.edu.cn;yanchunxia@mail.xjtu.edu.cn
作者简介:
杨卓瑾,在读硕士研究生,专业方向:法医病理学及药物成瘾等脑疾病。E-mail: 基金资助:
Zhuojin Yang1,2,3(), Yuxiang Zhang1,2,3(), Xixi Yang1,2,3, Feifei Gao1,2,3, Jingsi Yang1,2,3, Chunxia Yan1,2,3()
Received:
2021-10-01
Revised:
2021-12-21
Online:
2022-01-20
Published:
2022-01-04
Contact:
Zhang Yuxiang,Yan Chunxia
E-mail:cloris_sunshine@stu.xjtu.edu.cn;yuxiangzhang@xjtu.edu.cn;yanchunxia@mail.xjtu.edu.cn
Supported by:
摘要:
组蛋白去甲基化酶KDM7家族包括KDM7A、KDM7B、KDM7C三种蛋白,主要通过去除与转录沉默相关的特定组蛋白赖氨酸甲基化修饰,进而对基因转录发挥调控作用。目前,对KDM7家族的研究主要集中于其在神经分化、肿瘤发生发展等过程中的作用,而对其在脑神经疾病中的作用却知之甚少。本文从该蛋白家族表观遗传调控机制、结构生物学及其在脑神经疾病中的作用等方面进行了综述,以期为研究其在脑神经疾病中的功能机制提供参考,为理解脑神经疾病分子病理机制以及探索基于该机制的有效治疗靶点带来新的启示。
杨卓瑾, 张玉向, 杨茜茜, 高菲菲, 杨婧思, 阎春霞. 组蛋白去甲基化酶KDM7家族在脑疾病中研究进展[J]. 遗传, 2022, 44(1): 25-35.
Zhuojin Yang, Yuxiang Zhang, Xixi Yang, Feifei Gao, Jingsi Yang, Chunxia Yan. The role of histone demethylases of KDM7 family in brain-related disorders[J]. Hereditas(Beijing), 2022, 44(1): 25-35.
表1
KDM7家族调控的常见组蛋白甲基化修饰类型与脑神经疾病关系"
脑神经疾病 | 研究的组织 | 组蛋白修饰的改变 | 下游靶分子变化 | 表型变化 | 参考文献 | |
---|---|---|---|---|---|---|
H3K4me3 | ||||||
智力障碍 | 小鼠胚胎、神经干细胞 | ↑(整体) | Ark基因敲除导致KDM5C下调,H3K4me3上调,消除REST介导的神经元基因调节 | 神经元功能障碍 | [29] | |
自闭症 | 左侧海马 | ↓(Crhrl基因启动子区) | — | 旷场实验认知行为异常 | [30] | |
精神分裂症 | 内侧前额皮层(mPFC) | ↓(整体及PV基因启动子区) | mPFC中H3K4me3总水平降低,PV、Gad1基因启动子区域结合的H3K4me3降低,导致PV mRNA和GAD67 mRNA水平降低 | 青年大鼠社会功能障碍 | [31] | |
可卡因成瘾 | 伏隔核 | ↑(Nr4a1基因启动子区) | Nr4a1激活正向调节Cartpt表达和相关的组蛋白修饰 | CPP增强 | [32] | |
酒精成瘾 | 前额叶皮层 | ↓(整体) | — | 酒精依赖 | [33] | |
安非他明成瘾 | 伏隔核 | ↑(伏隔核整体及Oxtr和Fos基因启动子区) | KMD5C敲除导致H3K4me3升高 | CPP增强 | [34] | |
H3K9me2 | ||||||
智力障碍/ 自闭症 | 海马 | ↑(整体) | EHMT1下调,Pcdhs基因表达减少 | 神经认知功能受损 | [35] | |
精神分裂症 | 大脑皮质及纹状体 | ↑(整体) | IL-6、Gad1等基因表达上调 | 认知功能异常 | [36] | |
可卡因/吗啡/ 酒精成瘾 | 伏隔核 | ↑(整体) | G9a过表达抑制BDNF-trkB-CREB信号传导,增强H3K9me2介导的基因抑制 | CPP减弱 | [37~39] | |
H3K27me2 | ||||||
自闭症 | 老龄小鼠精子 | ↑(整体) | — | 父系衰老诱发子代自闭症风险上调 | [40] | |
酒精成瘾 | 海马及大脑皮质 | ↑(整体) | 激活G9a可以抑制BDNF基因的转录及CREB的磷酸化等过程 | 神经退化 | [41] |
[1] |
GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019.BD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet, 2020, 396(10258):1204-1222.
doi: 10.1016/S0140-6736(20)30925-9 |
[2] |
Walker ER, McGee RE, Druss BG. Mortality in mental disorders and global disease burden implications: a systematic review and meta-analysis. JAMA Psychiatry, 2015, 72(4):334-341.
doi: 10.1001/jamapsychiatry.2014.2502 |
[3] | Fleischhacker WW, Arango C, Arteel P, Barnes TR, Carpenter W, Duckworth K, Galderisi S, Halpern L, Knapp M, Marder SR, Moller M, Sartorius N, Woodruff P. Schizophrenia—time to commit to policy change. Schizophr Bull, 2014, Suppl 3: S165-S194. |
[4] | The United Nations Office on Drugs and Crime(UNODC). World Drug Report 2021. Vienna, Austria: United Nations publication, 2021. |
[5] |
Richetto J, Meyer U. Epigenetic modifications in schizophrenia and related disorders: molecular scars of environmental exposures and source of phenotypic variability. Biol Psychiatry, 2021, 89(3):215-226.
doi: 10.1016/j.biopsych.2020.03.008 |
[6] |
Werner CT, Altshuler RD, Shaham Y, Li X. Epigenetic mechanisms in drug relapse. Biol Psychiatry, 2021, 89(4):331-338.
doi: 10.1016/j.biopsych.2020.08.005 |
[7] |
Tsukada YI, Ishitani T, Nakayama KI. KDM7 is a dual demethylase for histone H3 Lys 9 and Lys 27 and functions in brain development. Genes Dev, 2010, 24(5):432-437.
doi: 10.1101/gad.1864410 |
[8] |
Cavalli G, Heard E. Advances in epigenetics link genetics to the environment and disease. Nature, 2019, 571(7766):489-499.
doi: 10.1038/s41586-019-1411-0 |
[9] |
Zhao S, Allis CD, Wang GG. The language of chromatin modification in human cancers. Nat Rev Cancer, 2021, 21(7):413-430.
doi: 10.1038/s41568-021-00357-x |
[10] |
Ciafrè S, Carito V, Ferraguti G, Greco A, Chaldakov GN, Fiore M, Ceccanti M. How alcohol drinking affects our genes: an epigenetic point of view. Biochem Cell Biol, 2019, 97(4):345-356.
doi: 10.1139/bcb-2018-0248 |
[11] |
Cavalieri V. The expanding constellation of histone post-translational modifications in the epigenetic landscape. Genes (Basel), 2021, 12(10):1596.
doi: 10.3390/genes12101596 |
[12] |
Zhang D, Tang ZY, Huang H, Zhou GL, Cui C, Weng YJ, Liu WC, Kim S, Lee S, Perez-Neut M, Ding J, Czyz D, Hu R, Ye Z, He MM, Zheng YG, Shuman HA, Dai LZ, Ren B, Roeder RG, Becker L, Zhao YM. Metabolic regulation of gene expression by histone lactylation. Nature, 2019, 574(7779):575-580.
doi: 10.1038/s41586-019-1678-1 |
[13] |
Zhu ZS, Han Z, Halabelian L, Yang XK, Ding J, Zhang NW, Ngo L, Song JB, Zeng H, He MM, Zhao YM, Arrowsmith CH, Luo MK, Bartlett MG, Zheng YG. Identification of lysine isobutyrylation as a new histone modification mark. Nucleic Acids Res, 2021, 49(1):177-189.
doi: 10.1093/nar/gkaa1176 |
[14] | Jiang ZW, Liu XG, Zhou ZJ. The regulation of histone modifications. Prog Biochem Biophys, 2009, 36(10):1252-1259. |
蒋智文, 刘新光, 周中军. 组蛋白修饰调节机制的研究进展. 生物化学与生物物理进展, 2009, 36(10):1252-1259. | |
[15] |
Chaturvedi SS, Ramanan R, Waheed SO, Karabencheva- Christova TG, Christov CZ. Structure-function relationships in KDM7 histone demethylases. Adv Protein Chem Struct Biol, 2019, 117:113-125.
doi: S1876-1623(19)30059-8 pmid: 31564306 |
[16] |
Biel M, Wascholowski V, Giannis A. Epigenetics—an epicenter of gene regulation: histones and histone- modifying enzymes. Angew Chem Int Ed Engl, 2005, 44(21):3186-3216.
doi: 10.1002/(ISSN)1521-3773 |
[17] |
Luo SL, Pei JN, Li XT, Gu WR. Decreased expression of JHDMID in placenta is associated with preeclampsia through HLA-G. J Hum Hypertens, 2018, 32(6):448-454.
doi: 10.1038/s41371-018-0062-1 |
[18] | Zhang JT. Epigenetic mechanism in cognitive function. Chinese Pharmacol Bull, 2015, 31(1):1-6, 7. |
张均田. 认知过程中的表观遗传学机制. 中国药理学通报, 2015, 31(1):1-6, 7. | |
[19] |
Albert M, Helin K. Histone methyltransferases in cancer, Semin Cell Dev Biol, 2010, 21(2):209-220.
doi: 10.1016/j.semcdb.2009.10.007 |
[20] | Yao JP, Zhang L. Histone methylation/demethylation and adipogenesis. Int J Endocrinol Met, 2019, 39(1):36-39. |
姚俊鹏, 张林. 组蛋白甲基化/去甲基化与脂肪形成, 国际内分泌代谢杂志, 2019, 39(1):36-39. | |
[21] | Martin C, Zhang Y. The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol, 2005, 6(11):838-849. |
[22] | Luo XM, Li S, Huang LX, Peng BH, Peng C. Effects of histone hypomethylation induced by alcohol during pregnancy on overexpression of cardiomyogenesis genes offspring mice. Chin J Pathophysiol, 2019, 35(4):673-678. |
罗孝美, 李硕, 黄丽欣, 彭波辉, 彭昌. 孕期饮酒介导的组蛋白低甲基化对子代心脏发育基因过表达的影响. 中国病理生理杂志, 2019, 35(4):673-678. | |
[23] | Zhou X, Wang Y, Deng ZF. Histone modification and neural stem cell differentiation. International Journal of Cerebrovascular Diseases, 2012, 20(9):717-720. |
周翔, 汪泱, 邓志锋. 组蛋白修饰与神经干细胞分化, 国际脑血管病杂志, 2012, 20(9):717-720. | |
[24] |
Shi YJ, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell, 2004, 119(7):941-953.
doi: 10.1016/j.cell.2004.12.012 |
[25] |
Burgold T, Spreafico F, De Santa F, Totaro MG, Prosperini E, Natoli G, Testa G. The histone H3 lysine 27-specific demethylase Jmjd3 is required for neural commitment. PLoS One, 2008, 3(8):e3034.
doi: 10.1371/journal.pone.0003034 |
[26] |
Johnstone AL, Andrade NS, Barbier E, Khomtchouk BB, Rienas CA, Lowe K, Van Booven DJ, Domi E, Esanov R, Vilca S, Tapocik JD, Rodriguez K, Maryanski D, Keogh MC, Meinhardt MW, Sommer WH, Heilig M, Zeier Z, Wahlestedt C. Dysregulation of the histone demethylase KDM6B in alcohol dependence is associated with epigenetic regulation of inflammatory signaling pathways. Addict Biol, 2021, 26(1):e12816.
doi: 10.1111/adb.12816 |
[27] |
Chaudhury S, Aurbach EL, Sharma V, Blandino P, Turner CA, Watson SJ, Akil H. FGF2 is a target and a trigger of epigenetic mechanisms associated with differences in emotionality: partnership with H3K9me3. Proc Natl Acad Sci USA, 2014, 111(32):11834-11839.
doi: 10.1073/pnas.1411618111 |
[28] |
Heller EA, Hamilton PJ, Burek DD, Lombroso SI, Peña CJ, Neve RL, Nestler EJ. Targeted epigenetic remodeling of the Cdk5 gene in nucleus accumbens regulates cocaine- and stress-evoked behavior. J Neurosci, 2016, 36(17):4690-4697.
doi: 10.1523/JNEUROSCI.0013-16.2016 |
[29] |
Poeta L, Fusco F, Drongitis D, Shoubridge C, Manganelli G, Filosa S, Paciolla M, Courtney M, Collombat P, Lioi MB, Gecz J, Ursini MV, Miano MG. A regulatory path associated with X-linked intellectual disability and epilepsy links KDM5C to the polyalanine expansions in ARX. Am J Hum Genet, 2013, 92(1):114-125.
doi: 10.1016/j.ajhg.2012.11.008 |
[30] |
Schaafsma SM, Gagnidze K, Reyes A, Norstedt N, Månsson K, Francis K, Pfaff DW. Sex-specific gene- environment interactions underlying ASD-like behaviors. Proc Natl Acad Sci USA, 2017, 114(6):1383-1388.
doi: 10.1073/pnas.1619312114 |
[31] |
Maćkowiak M, Latusz J, Głowacka U, Bator E, Bilecki W. Adolescent social isolation affects parvalbumin expression in the medial prefrontal cortex in the MAM-E17 model of schizophrenia. Metab Brain Dis, 2019, 34(1):341-352.
doi: 10.1007/s11011-018-0359-3 pmid: 30519836 |
[32] |
Carpenter MD, Hu QW, Bond AM, Lombroso SI, Czarnecki KS, Lim CJ, Song HJ, Wimmer ME, Pierce RC, Heller EA. Nr4a1 suppresses cocaine-induced behavior via epigenetic regulation of homeostatic target genes. Nat Commun, 2020, 11(1):504.
doi: 10.1038/s41467-020-14331-y pmid: 31980629 |
[33] |
Gavin DP, Hashimoto JG, Lazar NH, Carbone L, Crabbe JC, Guizzetti M. Stable histone methylation changes at proteoglycan network genes following ethanol exposure. Front Genet, 2018, 9:346.
doi: 10.3389/fgene.2018.00346 |
[34] |
Aguilar-Valles A, Vaissière T, Griggs EM, Mikaelsson MA, Takács IF, Young EJ, Rumbaugh G, Miller CA. Methamphetamine-associated memory is regulated by a writer and an eraser of permissive histone methylation. Biol Psychiatry, 2014, 76(1):57-65.
doi: 10.1016/j.biopsych.2013.09.014 |
[35] |
Iacono G, Dubos A, Méziane H, Benevento M, Habibi E, Mandoli A, Riet F, Selloum M, Feil R, Zhou HQ, Kleefstra T, Kasri NN, van Bokhoven H, Herault Y, Stunnenberg HG,. Increased H3K9 methylation and impaired expression of Protocadherins are associated with the cognitive dysfunctions of the Kleefstra syndrome. Nucleic Acids Res, 2018, 46(10):4950-4965.
doi: 10.1093/nar/gky196 |
[36] |
Chase KA, Feiner B, Ramaker MJ, Hu E, Rosen C, Sharma RP. Examining the effects of the histone methyltransferase inhibitor BIX-01294 on histone modifications and gene expression in both a clinical population and mouse models. PLoS One, 2019, 14(6):e0216463.
doi: 10.1371/journal.pone.0216463 |
[37] | Anderson EM, Lopez MF, Kastner A, Mulholland PJ, Becker HC, Cowan CW. The histone methyltransferase G9a mediates stress-regulated alcohol drinking. Addict Biol, 2021, e13060. |
[38] |
Sun HS, Maze I, Dietz DM, Scobie KN, Kennedy PJ, Damez-Werno D, Neve RL, Zachariou V, Shen L, Nestler EJ. Morphine epigenomically regulates behavior through alterations in histone H3 lysine 9 dimethylation in the nucleus accumbens. J Neurosci, 2012, 32(48):17454-17464.
doi: 10.1523/JNEUROSCI.1357-12.2012 |
[39] |
Anderson EM, Larson EB, Guzman D, Wissman AM, Neve RL, Nestler EJ, Self DW. Overexpression of the histone dimethyl transferase G9a in nucleus accumbens shell increases cocaine self-administration, stress-induced reinstatement, and anxiety. J Neurosci, 2018, 38(4):803-813.
doi: 10.1523/JNEUROSCI.1657-17.2017 pmid: 29217682 |
[40] |
Tatehana M, Kimura R, Mochizuki K, Inada H, Osumi N. Comprehensive histochemical profiles of histone modification in male germline cells during meiosis and spermiogenesis: comparison of young and aged testes in mice. PLoS One, 2020, 15(4):e0230930.
doi: 10.1371/journal.pone.0230930 |
[41] |
Subbanna S, Shivakumar M, Umapathy NS, Saito M, Mohan PS, Kumar A, Nixon RA, Verin AD, Psychoyos D, Basavarajappa BS. G9a-mediated histone methylation regulates ethanol-induced neurodegeneration in the neonatal mouse brain. Neurobiol Dis, 2013, 54:475-485.
doi: 10.1016/j.nbd.2013.01.022 pmid: 23396011 |
[42] |
Hausinger RP. FeII/alpha-ketoglutarate-dependent hydroxylases and related enzymes. Crit Rev Biochem Mol Biol, 2004, 39(1):21-68.
doi: 10.1080/10409230490440541 |
[43] |
Sagarkar S, Choudhary AG, Balasubramanian N, Awathale SN, Somalwar AR, Pawar N, Kokare DM, Subhedar NK, Sakharkar AJ. LSD1-BDNF activity in lateral hypothalamus- medial forebrain bundle area is essential for reward seeking behavior. Prog Neurobiol, 2021, 202:102048.
doi: 10.1016/j.pneurobio.2021.102048 pmid: 33798614 |
[44] |
Pedersen MT, Helin K. Histone demethylases in development and disease. Trends Cell Biol, 2010, 20(11):662-671.
doi: 10.1016/j.tcb.2010.08.011 |
[45] |
Fortschegger K, Shiekhattar R. Plant homeodomain fingers form a helping hand for transcription. Epigenetics, 2011, 6(1):4-8.
doi: 10.4161/epi.6.1.13297 pmid: 20818169 |
[46] | Ma HH, Fang CL, Zeng PY. The PHD finger: a reader of the histone code. Prog Biochem Biophys, 2008, 35(6):625-630. |
马红辉, 方存磊, 曾平耀. 植物同源结构域(PHD结构域)——组蛋白密码的解读器. 生物化学与生物物理进展, 2008, 35(6):625-630. | |
[47] |
Ng SS, Kavanagh KL, McDonough MA, Butler D, Pilka ES, Lienard BMR, Bray JE, Savitsky P, Gileadi O, von Delft F, Rose NR, Offer J, Scheinost JC, Borowski T, Sundstrom M, Schofield CJ, Oppermann U,. Crystal structures of histone demethylase JMJD2A reveal basis for substrate specificity. Nature, 2007, 448(7149):87-91.
doi: 10.1038/nature05971 |
[48] |
Chen ZZ, Zang JY, Whetstine J, Hong X, Davrazou F, Kutateladze TG, Simpson M, Mao QL, Pan CH, Dai SD, Hagman J, Hansen K, Shi Y, Zhang GY. Structural insights into histone demethylation by JMJD2 family members. Cell, 2006, 125(4):691-702.
doi: 10.1016/j.cell.2006.04.024 |
[49] |
Horton JR, Upadhyay AK, Qi HH, Zhang X, Shi Y, Cheng XD. Enzymatic and structural insights for substrate specificity of a family of jumonji histone lysine demethylases. Nat Struct Mol Biol, 2010, 17(1):38-43.
doi: 10.1038/nsmb.1753 pmid: 20023638 |
[50] |
Yang XY, Wang GN, Wang Y, Zhou J, Yuan HR, Li XX, Liu Y, Wang BL. Histone demethylase KDM7A reciprocally regulates adipogenic and osteogenic differentiation via regulation of C/EBPalpha and canonical Wnt signalling. J Cell Mol Med, 2019, 23(3):2149-2162.
doi: 10.1111/jcmm.2019.23.issue-3 |
[51] | Higashijima Y, Matsui Y, Shimamura T, Nakaki R, Nagai N, Tsutsumi S, Abe Y, Link VM, Osaka M, Yoshida M, Watanabe R, Tanaka T, Taguchi A, Miura M, Ruan XA, Li GL, Inoue T, Nangaku M, Kimura H, Furukawa T, Aburatani H, Wada Y, Ruan YJ, Glass CK, Kanki Y. Coordinated demethylation of H3K9 and H3K27 is required for rapid inflammatory responses of endothelial cells. EMBO J, 2020, 39(7):e103949. |
[52] |
Rissi VB, Glanzner WG, De Macedo MP, Gutierrez K, Baldassarre H, Gonçalves PBD, Bordignon V. The histone lysine demethylase KDM7A is required for normal development and first cell lineage specification in porcine embryos. Epigenetics, 2019, 14(11):1088-1101.
doi: 10.1080/15592294.2019.1633864 |
[53] |
Huang CY, Chen J, Zhang T, Zhu QQ, Xiang Y, Chen CD, Jing NH. The dual histone demethylase KDM7A promotes neural induction in early chick embryos. Dev Dyn, 2010, 239(12):3350-3357.
doi: 10.1002/dvdy.v239:12 |
[54] |
Huang CY, Xiang Y, Wang YR, Li X, Xu LY, Zhu ZQ, Zhang T, Zhu QQ, Zhang KJ, Jing NH, Chen CD. Dual-specificity histone demethylase KIAA1718 (KDM7A) regulates neural differentiation through FGF4. Cell Res, 2010, 20(2):154-165.
doi: 10.1038/cr.2010.5 |
[55] | Smith SMC, Kimyon RS, Watters J J. Cell-type-specific Jumonji histone demethylase gene expression in the healthy rat CNS: detection by a novel flow cytometry method. ASN Neuro, 2014, 6(3):193-207. |
[56] |
McMichael G, Bainbridge MN, Haan E, Corbett M, Gardner A, Thompson S, van Bon BWM, van Eyk CL, Broadbent J, Reynolds C, O'Callaghan ME, Nguyen LS, Adelson DL, Russo R, Jhangiani S, Doddapaneni H, Muzny DM, Gibbs RA, Gecz J, MacLennan AH. Whole-exome sequencing points to considerable genetic heterogeneity of cerebral palsy. Mol Psychiatry, 2015, 20(2):176-182.
doi: 10.1038/mp.2014.189 |
[57] |
Higashijima Y, Nagai N, Yamamoto M, Kitazawa T, Kawamura YK, Taguchi A, Nakada N, Nangaku M, Furukawa T, Aburatani H, Kurihara H, Wada Y, Kanki Y. Lysine demethylase 7a regulates murine anterior-posterior development by modulating the transcription of Hox gene cluster. Commun Biol, 2020, 3(1):725.
doi: 10.1038/s42003-020-01456-5 pmid: 33257809 |
[58] |
Yue WW, Hozjan V, Ge W, Loenarz C, Cooper CDO, Schofield CJ, Kavanagh KL, Oppermann U, McDonough MA. Crystal structure of the PHF8 jumonji domain, an nepsilon-methyl lysine demethylase. FEBS Lett, 2010, 584(4):825-830.
doi: 10.1016/j.febslet.2009.12.055 |
[59] |
Laumonnier F, Holbert S, Ronce N, Faravelli F, Lenzner S, Schwartz CE, Lespinasse J, Van Esch H, Lacombe D, Goizet C, Phan-Dinh Tuy F, van Bokhoven H, Fryns JP, Chelly J, Ropers HH, Moraine C, Hamel BCJ, Briault S. Mutations in PHF8 are associated with X linked mental retardation and cleft lip/cleft palate. J Med Genet, 2005, 42(10):780-786.
pmid: 16199551 |
[60] |
Koivisto AM, Ala-Mello S, Lemmelä S, Komu HA, Rautio J, Järvelä I. Screening of mutations in the PHF8 gene and identification of a novel mutation in a Finnish family with XLMR and cleft lip/cleft palate. Clin Genet, 2007, 72(2):145-149.
pmid: 17661819 |
[61] |
Abidi FE, Miano MG, Murray JC, Schwartz CE. A novel mutation in the PHF8 gene is associated with X-linked mental retardation with cleft lip/cleft palate. Clin Genet, 2007, 72(1):19-22.
pmid: 17594395 |
[62] |
Loenarz C, Ge W, Coleman ML, Rose NR, Cooper CDO, Klose RJ, Ratcliffe PJ, Schofield CJ. PHF8, a gene associated with cleft lip/palate and mental retardation, encodes for an Nepsilon-dimethyl lysine demethylase. Hum Mol Genet, 2010, 19(2):217-222.
doi: 10.1093/hmg/ddp480 |
[63] |
Walsh RM, Shen EY, Bagot RC, Anselmo A, Jiang Y, Javidfar B, Wojtkiewicz GJ, Cloutier J, Chen JW, Sadreyev R, Nestler EJ, Akbarian S, Hochedlinger K. Phf8 loss confers resistance to depression-like and anxiety-like behaviors in mice. Nat Commun, 2017, 8:15142.
doi: 10.1038/ncomms15142 pmid: 28485378 |
[64] |
Qiu JH, Shi G, Jia YH, Li J, Wu M, Li JW, Dong S, Wong JM. The X-linked mental retardation gene PHF8 is a histone demethylase involved in neuronal differentiation. Cell Res, 2010, 20(8):908-918.
doi: 10.1038/cr.2010.81 |
[65] |
Chen XM, Wang S, Zhou Y, Han YF, Li ST, Xu Q, Xu LY, Zhu ZQ, Deng YM, Yu L, Song LL, Chen AP, Song J, Takahashi E, He G, He L, Li WD, Chen CD. Phf8 histone demethylase deficiency causes cognitive impairments through the mTOR pathway. Nat Commun, 2018, 9(1):114.
doi: 10.1038/s41467-017-02531-y |
[66] |
Horton JR, Upadhyay AK, Hashimoto H, Zhang X, Cheng XD. Structural basis for human PHF2 Jumonji domain interaction with metal ions. J Mol Biol, 2011, 406(1):1-8.
doi: 10.1016/j.jmb.2010.12.013 pmid: 21167174 |
[67] |
Meng ZZ, Liu Y, Wang J, Fan HJ, Fang H, Li S, Yuan L, Liu CC, Peng Y, Zhao WW, Wang LL, Li J, Feng J. Histone demethylase KDM7A is required for stem cell maintenance and apoptosis inhibition in breast cancer. J Cell Physiol, 2020, 235(2):932-943.
doi: 10.1002/jcp.v235.2 |
[68] |
Lee KH, Park JW, Sung HS, Choi YJ, Kim WH, Lee HS, Chung HJ, Shin HW, Cho CH, Kim TY, Li SH, Youn HD, Kim SJ, Chun YS. PHF2 histone demethylase acts as a tumor suppressor in association with p53 in cancer. Oncogene, 2015, 34(22):2897-2909.
doi: 10.1038/onc.2014.219 pmid: 25043306 |
[69] |
Park SY, Seo J, Chun YS. Targeted downregulation of kdm4a ameliorates tau-engendered defects in Drosophila melanogaster. J Korean Med Sci, 2019, 34(33):e225.
doi: 10.3346/jkms.2019.34.e225 |
[1] | 邵根宝,黄晓佳,龚爱华,张志坚,陆荣柱,桑建荣. 组蛋白去甲基化酶LSD1及其生物学功能[J]. 遗传, 2010, 32(4): 331-338. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: