[1] Kornberg RD, Lorch Y. Twenty-five years of the nu-cleosome, fundamental particle of the eukaryote chromo-some. Cell, 1999, 98(3): 285−294.
[2] Kouzarides T. Chromatin modifications and their function. Cell, 2007, 128(4): 693−705.
[3] Shahbazian MD, Grunstein M. Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem, 2007, 76(2): 75−100.
[4] Marmorstein R, Trievel RC. Histone modifying enzymes: structures, mechanisms, and specificities. Biochim Biophys Acta, 2009, 1789(1): 58−68.
[5] Zhang Y. Transcriptional regulation by histone ubiquitination and deubiquitination. Genes Dev, 2003, 17(22): 2733−2740.
[6] Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell, 2004, 119(7): 941−953.
[7] Chen Y, Yang Y, Wang F, Wan K, Yamane K, Zhang Y, Lei M. Crystal structure of human histone lysine-specific de-methylase 1 (LSD1). Proc Natl Acad Sci USA, 2006, 103(38): 13956−13961.
[8] Anand R, Marmorstein R. Structure and mechanism of ly-sine-specific demethylase enzymes. J Biol Chem, 2007, 282(49): 35425−35429.
[9] 阮建彬, 臧建业. 组蛋白去甲基化酶LSD1 的结构和功能研究进展. 中国科学技术大学学报, 2008, 38(8): 930−940.
[10] Lee MG, Wynder C, Bochar DA, Hakimi MA, Cooch N, Shiekhattar R. Functional interplay between histone de-methylase and deacetylase enzymes. Mol Cell Biol, 2006, 26(17): 6395−6402.
[11] Yang M, Gocke CB, Luo X, Borek D, Tomchick DR, Machius M, Otwinowski Z, Yu H. Structural basis for CoREST dependent demethylation of nucleosomes by the human LSD1 histone demethylase. Mol Cell, 2006, 23(3): 377−387.
[12] Lan F, Nottke AC, Shi Y. Mechanisms involved in the regulation of histone lysine demethylases. Curr Opin Cell Biol, 2008, 20(3): 316−325.
[13] Nottke A, Colaiacovo MP, Shi Y. Developmental roles of the histone lysine demethylases. Development, 2009, 136(6): 879−889.
[14] 高文龙, 刘红林. DOT1—— 一类新的组蛋白赖氨酸甲基转移酶. 遗传, 2007, 29(12): 1449−1454.
[15] Karytinos A, Forneris F, Profumo A, Ciossani G, Battaglioli E, Binda C, Mattevi A. A novel mammalian flavin-dependent histone demethylase. J Biol Chem, 2009, 284(26): 17775−17782.
[16] Rudolph T, Yonezawa M, Lein S, Heidrich K, Kubicek S, Schafer C, Phalke S, Walther M, Schmidt A, Jenuwein T, Reuter G. Heterochromatin formation in Drosophila is ini-tiated through active removal of H3K4 methylation by the LSD1 homolog SU(VAR)3-3. Mol Cell, 2007, 26(1): 103−115.
[17] Eimer S, Lakowski B, Donhauser R, Baumeister R. Loss of spr-5 bypasses the requirement for the C. elegans pre-senilin sel-12 by derepressing hop-1. EMBO J, 2002, 21(21): 5787−5796.
[18] Huang J, Sengupta R, Espejo AB, Lee MG, Dorsey JA, Richter M, Opravil S, Shiekhattar R, Bedford MT, Jenuwein T, Berger SL. p53 is regulated by the lysine de-methylase LSD1. Nature, 2007, 449(7158): 105−108.
[19] Nicholson TB, Chen T. LSD1 demethylates histone and non-histone proteins. Epigenetics, 2009, 4(3): 129−132.
[20] Jiang D, Yang W, He Y, Amasino RM. Arabidopsis rela-tives of the human lysine-specific Demethylase1 repress the expression of FWA and FLOWERING LOCUS C and thus promote the floral transition. Plant Cell, 2007, 19(10): 2975−2987.
[21] Wang L, Pei Z, Tian Y, He C. OsLSD1, a rice zinc finger protein, regulates programmed cell death and callus dif-ferentiation. Mol Plant Microbe Interact, 2005, 18(5): 375−384.
[22] Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH,Tempst P, Zhang Y. Histone demethylation by a family of JmjC domain-containing proteins. Nature, 2006, 439(7078): 811−816.
[23] Yamane K, Toumazou C, Tsukada Y, Erdjument-Bromage H, Tempst P, Wong J, Zhang Y. JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcrip-tion activation by androgen receptor. Cell, 2006, 125(3): 483−495.
[24] Whetstine JR, Nottke A, Lan F, Huarte M, Smolikov S, Chen Z, Spooner E, Li E, Zhang G, Colaiacovo M, Shi Y. Reversal of histone lysine trimethylation by the JMJD2 family of his-tone demethylases. Cell, 2006, 125(3): 467−481.
[25] Christensen J, Agger K, Cloos PA, Pasini D, Rose S, Sennels L, Rappsilber J, Hansen KH, Salcini AE, Helin K. RBP2 belongs to a family of demethylases, specific for tri-and dimethylated lysine 4 on histone 3. Cell, 2007, 128(6): 1063−1076.
[26] Iwase S, Lan F, Bayliss P, de la Torre-Ubieta L, Huarte M, Qi HH, Whetstine JR, Bonni A, Roberts TM, Shi Y. The X-linked mental retardation gene SMCX/JARID1C de-fines a family of histone H3 lysine 4 demethylases. Cell, 2007, 128(6): 1077−1088.
[27] Klose RJ, Yan Q, Tothova Z, Yamane K, Erdjument- Bromage H, Tempst P, Gilliland DG, Zhang Y, Kaelin WG Jr. The retinoblastoma binding protein RBP2 is an H3K4 demethylase. Cell, 2007, 128(5): 889−900.
[28] Liang G, Klose RJ, Gardner KE, Zhang Y. Yeast Jhd2p is a histone H3 Lys4 trimethyl demethylase. Nat Struct Mol Biol, 2007, 14(3): 243−245.
[29] Agger K, Cloos PA, Christensen J, Pasini D, Rose S, Rappsilber J, Issaeva I, Canaani E, Salcini AE, Helin K. UTX and JMJD3 are histone H3K27 demethylases in-volved in HOX gene regulation and development. Nature, 2007, 449(7163): 731−734.
[30] Lan F, Bayliss PE, Rinn JL, Whetstine JR, Wang JK, Chen S, Iwase S, Alpatov R, Issaeva I, Canaani E, Roberts TM, Chang HY, Shi Y. A histone H3 lysine 27 demethylase regulates animal posterior development. Nature, 2007, 449(7163): 689−694.
[31] Huang Y, Greene E, Murray Stewart T, Goodwin AC, Baylin SB, Woster PM, Casero RA Jr. Inhibition of ly-sine-specific demethylase 1 by polyamine analogues re-sults in reexpression of aberrantly silenced genes. Proc Natl Acad Sci USA, 2007, 104(19): 8023−8028.
[32] Metzger E, Wissmann M, Yin N, Muller JM, Schneider R, Peters AH, Gunther T, Buettner R, Schule R. LSD1 de-methylates repressive histone marks to promote androgen receptor-dependent transcription. Nature, 2005, 437(7057): 436−439.
[33] Garcia-Bassets I, Kwon YS, Telese F, Prefontaine GG, Hutt KR, Cheng CS, Ju BG, Ohgi KA, Wang J, Escoubet- Lozach L, Rose DW, Glass CK, Fu XD, Rosenfeld MG. Histone methylation-dependent mechanisms impose ligand dependency for gene activation by nuclear recep-tors. Cell, 2007, 128(3): 505−518.
[34] Ooi SK, Qiu C, Bernstein E, Li K, Jia D, Yang Z, Erdjument-Bromage H, Tempst P, Lin SP, Allis CD, Cheng X, Bestor TH. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature, 2007, 448(7154): 714−717.
[35] Wang J, Hevi S, Kurash JK, Lei H, Gay F, Bajko J, Su H, Sun W, Chang H, Xu G, Gaudet F, Li E, Chen T. The ly-sine demethylase LSD1 (KDM1) is required for mainte-nance of global DNA methylation. Nat Genet, 2009, 411): 125−129.
[36] Lan F, Collins RE, De Cegli R, Alpatov R, Horton JR, Shi X, Gozani O, Cheng X, Shi Y. Recognition of unmethylated histone H3 lysine 4 links BHC80 to LSD1-mediated gene repression. Nature, 2007, 448(7154): 718−722.
[37] Shi YJ, Matson C, Lan F, Iwase S, Baba T, Shi Y. Regula-tion of LSD1 histone demethylase activity by its associ-ated factors. Mol Cell, 2005, 19(6): 857−864.
[38] Ouyang J, Shi Y, Valin A, Xuan Y, Gill G. Direct binding of CoREST1 to SUMO-2/3 contributes to gene-specific repression by the LSD1/CoREST1/HDAC complex. Mol Cell, 2009, 34(2): 145−154.
[39] Forneris F, Binda C, Vanoni MA, Battaglioli E, Mattevi A. Human histone demethylase LSD1 reads the histone code. J Biol Chem, 2005, 280(50): 41360−41365.
[40] Forneris F, Binda C, Dall’Aglio A, Fraaije MW, Battaglioli E, Mattevi A. A highly specific mechanism of histone H3-K4 recognition by histone demethylase LSD1. J Biol Chem, 2006, 281(46): 35289−35295.
[41] Forneris F, Binda C, Battaglioli E, Mattevi A. LSD1: oxida-tive chemistry for multifaceted functions in chromatin regula-tion. Trends Biochem Sci, 2008, 33(4): 181−189.
[42] Lee MG, Wynder C, Cooch N, Shiekhattar R. An essential role for CoREST in nucleosomal histone 3 lysine 4 de-methylation. Nature, 2005, 437(7057): 432−435.
[43] Ooi L, Wood IC. Chromatin crosstalk in development and disease: lessons from REST. Nat Rev Genet, 2007, 8(7): 544−554.
[44] Saleque S, Kim J, Rooke HM, Orkin SH. Epigenetic regulation of hematopoietic differentiation by Gfi-1 and Gfi-1b is mediated by the cofactors CoREST and LSD1. Mol Cell, 2007, 27(4): 562−572.
[45] Wang J, Scully K, Zhu X, Cai L, Zhang J, Prefontaine GG, Krones A, Ohgi KA, Zhu P, Garcia-Bassets I, Liu F, Taylor H, Lozach J, Jayes FL, Korach KS, Glass CK, Fu XD, Rosenfeld MG. Opposing LSD1 complexes function in developmental gene activation and repression programmes. Nature, 2007, 446(7138): 882−887.
[46] McGraw S, Vigneault C, Sirard MA. Temporal expression of factors involved in chromatin remodeling and in gene regulation during early bovine in vitro embryo development. Reproduction, 2007, 133(3): 597−608.
[47] Di Stefano L, Ji JY, Moon NS, Herr A, Dyson N. Mutation of Drosophila Lsd1 disrupts H3-K4 methylation, resulting in tissue-specific defects during development. Curr Biol, 2007, 17(9): 808−812.
[48] Shao GB, Ding HM, Gong AH. Role of histone methyla-tion in zygotic genome activation in the preimplantation mouse embryo. In Vitro Cell Dev Biol Anim, 2008, 44(3-4): 115−120.
[49] Shao GB, Ding HM, Gong AH, Xiao DS. Inheritance of histone H3 methylation in reprogramming of somatic nu-clei following nuclear transfer. J Reprod Dev, 2008, 54(3): 233−238.
[50] Loh YH, Zhang W, Chen X, George J, Ng HH. Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. Genes Dev, 2007, 21(20): 2545−2557.
[51] Katz DJ, Edwards TM, Reinke V, Kelly WG. A C. elegans LSD1 demethylase contributes to germline immortality by reprogramming epigenetic memory. Cell, 2009, 137(2): 308−320.
[52] Jie Z, Li T, Jia-Yun H, Qiu J, Ping-Yao Z, Houyan S. Trans-2-phenylcyclopropylamine induces nerve cells apoptosis in zebrafish mediated by depression of LSD1 activity. Brain Res Bull, 2009, 80(1-2): 79−84.
[53] 夏志强, 何奕昆, 鲍时来, 种康. 植物开花的组蛋白甲基化调控分子机理. 植物学通报, 2007, 24(3): 275−283.
[54] Liu F, Quesada V, Crevillen P, Baurle I, Swiezewski S, Dean C. The Arabidopsis RNA-binding protein FCA re-quires a lysine-specific demethylase 1 homolog to down-regulate FLC. Mol Cell, 2007, 28(3): 398−407.
[55] Baurle I, Dean C. Differential interactions of the autono-mous pathway RRM proteins and chromatin regulators in the silencing of Arabidopsis targets. PLoS One, 2008, 3(7): e2733.
[56] 孙昌辉, 邓晓建, 方军, 储成才. 高等植物开花诱导研究进展. 遗传, 2007, 29(10): 1182−1190.
[57] Kahl P, Gullotti L, Heukamp LC, Wolf S, Friedrichs N, Vorreuther R, Solleder G, Bastian PJ, Ellinger J, Metzger E, Schule R, Buettner R. Androgen receptor coactivators lysine-specific histone demethylase 1 and four and a half LIM domain protein 2 predict risk of prostate cancer re-currence. Cancer Res, 2006, 66(23): 11341−11347.
[58] Schulte JH, Lim S, Schramm A, Friedrichs N, Koster J, Ver-steeg R, Ora I, Pajtler K, Klein-Hitpass L, Kuhfittig-Kulle S, Metzger E, Schule R, Eggert A, Buettner R, Kirfel J. Lysine-specific demethylase 1 is strongly expressed in poorly differentiated neuroblastoma: implications for therapy. Cancer Res, 2009, 69(5): 2065−2071.
[59] Tsai WW, Nguyen TT, Shi Y, Barton MC. p53-targeted LSD1 functions in repression of chromatin structure and transcription in vivo. Mol Cell Biol, 2008, 28(17): 5139−5146.
[60] 谢萍, 田春艳, 张令强, 安利国, 贺福初. 组蛋白甲基转移酶的研究进展. 遗传, 2007, 29(9): 1035−1041.
[61] 李想, 张飞雄. 组蛋白甲基化的研究进展. 遗传, 2004, 26(2): 244−248.
[62] Zhu Q, Liu C, Ge Z, Fang X, Zhang X, Straat K, Bjorkholm M, Xu D. Lysine-specific demethylase 1 (LSD1) is required for the transcriptional repression of the telomerase reverse transcriptase (hTERT) gene. PLoS ONE, 2008, 3(1): e1446. |