遗传 ›› 2022, Vol. 44 ›› Issue (7): 545-555.doi: 10.16288/j.yczz.22-105
张爽(), 郭珊珊, 王汝雯, 马仁燕, 吴显敏, 陈佩杰(), 王茹()
收稿日期:
2022-04-11
修回日期:
2022-05-13
出版日期:
2022-07-20
发布日期:
2022-06-06
通讯作者:
陈佩杰,王茹
E-mail:zhangshuang1194@126.com;chenpeijie@sus.edu.cn;wangru@sus.edu.cn
作者简介:
张爽,在读博士研究生,研究方向:运动人体科学。E-mail: 基金资助:
Shuang Zhang(), Shanshan Guo, Ruwen Wang, Renyan Ma, Xianmin Wu, Peijie Chen(), Ru Wang()
Received:
2022-04-11
Revised:
2022-05-13
Online:
2022-07-20
Published:
2022-06-06
Contact:
Chen Peijie,Wang Ru
E-mail:zhangshuang1194@126.com;chenpeijie@sus.edu.cn;wangru@sus.edu.cn
Supported by:
摘要:
PARK作为帕金森病的致病基因家族,在帕金森病的发生发展中发挥了关键作用。近年来的研究表明,这一关键基因家族在骨骼肌肌病的发生发展中也发挥着重要作用,作为运动神经元修饰剂,保护神经元的完整性,参与骨骼肌神经-肌肉接头处神经信号的传递,骨骼肌能量代谢及线粒体质量控制、同时调控肌生成因子表达,促进肌肉再生,维持肌肉含量和功能。本文主要综述了PARK基因家族在骨骼肌肌病中的研究进展,总结了骨骼肌肌病发生的分子机制及研究方向,以期为进一步研究PARK家族在骨骼肌肌病发生发展中的作用提供参考,为理解骨骼肌肌病分子病理机制及临床诊断和治疗带来新的启示。
张爽, 郭珊珊, 王汝雯, 马仁燕, 吴显敏, 陈佩杰, 王茹. PARK基因家族在骨骼肌肌病中的研究进展[J]. 遗传, 2022, 44(7): 545-555.
Shuang Zhang, Shanshan Guo, Ruwen Wang, Renyan Ma, Xianmin Wu, Peijie Chen, Ru Wang. The roles of PARK gene family in myopathy[J]. Hereditas(Beijing), 2022, 44(7): 545-555.
表1
PARK家族在骨骼肌肌病的调控作用"
PARK基因 | 肌病类型 | 生物学功能 | 对骨骼肌组织的调控 | 参考文献 |
---|---|---|---|---|
Park1 (α-syn) | 包涵体肌炎 | 促进淀粉样β前体蛋白异常聚集 | 促进肌纤维空泡变性及内涵体形成 | [ |
Park2 (parkin) | 包涵体肌炎 | 促进淀粉样β前体蛋白降解 | 抑制肌纤维空泡变性及内涵体形成 | [ |
Park2 (parkin) | 包涵体肌炎 | 增加细胞对毒性物质的耐受性 | 促进线粒体稳态平衡,改善肌细胞功能 | [ |
Park7 (DJ-1) | 包涵体肌炎 | 发挥抗氧化作用 | 保护线粒体功能,改善肌细胞功能 | [ |
Park2 (parkin) | 病毒性肌炎 | 启动线粒体自噬 | 清除功能失调线粒体,改善肌细胞功能 | [ |
Park6 (PINK1) | 病毒性肌炎 | 启动线粒体自噬 | 清除功能失调线粒体,改善肌细胞功能 | [ |
Park2 (parkin) | 肌源性肌萎缩 | 促进泛素-蛋白酶体水平 | 激活蛋白酶体介导的蛋白质降解途径 | [ |
Park2 (parkin) | 肌源性肌萎缩 | 促进泛素-蛋白酶体水平 | 过度积累线粒体自噬水平,促进骨骼肌 蛋白质降解 | [ |
Park7 (DJ-1) | 肌源性肌萎缩 | 促进泛素-蛋白酶体水平 | 抑制丝裂原蛋白激酶水平,抑制骨骼肌 蛋白质降解 | [ |
Park14 (PLA2G6) | 肌源性肌萎缩 | 调节线粒体内膜脂质代谢平衡 | 促进骨骼肌保护性激素-前列腺素的产生 | [ |
Park5 (UCHL1) | 肌源性肌萎缩 | 抑制mTORC1表达水平 | 抑制骨骼肌蛋白质合成 | [ |
Park5 (UCHL1) | 肌源性肌萎缩 | 促进肌源性因子Myod及Myogenin表达 | 促进肌卫星细胞增殖,抑制其分化 | [ |
Park2 (parkin) | 肌肉减少症 | 增加线粒体含量并抑制氧化应激水平 | 抑制骨骼肌细胞凋亡 | [ |
Park2 (parkin) | 肌肉减少症 | 通过线粒体自噬清除衰老的线粒体 | 促进骨骼肌受损线粒体的降解 | [ |
Park1 (α-syn) | 神经源性肌病 (神经-接头) | 维持神经-肌肉接头乙酰胆碱平衡 | 促进骨骼肌收缩信号的传递 | [ |
Park5 (UCHL1) | 神经源性肌病 (共济失调) | 抑制泛素-蛋白酶体水平 | 抑制肌纤维蛋白的降解 | [ |
Park9 (ATP13A2) | 神经源性肌病 (共济失调) | 抑制自噬体沉积及线粒体障碍 | 抑制骨骼肌包涵体-脂色素沉积 | [ |
Park1 (α-syn) | 神经源性肌病 (脊髓肌萎缩) | 修复受损的运动神经元 | 改善异常的神经接头及运动神经元 | [ |
Park2 (parkin) | 线粒体肌病 | 通过线粒体自噬修复受损线粒体功能 | 修复肌肉力量 | [ |
Park6 (PINK1) | 线粒体肌病 | 通过线粒体自噬修复受损线粒体功能 | 修复肌肉力量 | [ |
Park5 (UCHL1) | 线粒体肌病 | 促进线粒体氧化磷酸化相关蛋白降解 | 损伤线粒体氧化磷酸化代谢水平 | [ |
Park2 (parkin) | 线粒体肌病 | 发挥抗氧化作用,增强线粒体膜电位 | 抑制骨骼肌细胞凋亡 | [ |
Park7 (DJ-1) | 线粒体肌病 | 发挥抗氧化作用 | 促进骨骼肌钙离子稳态平衡 | [ |
Park7 (DJ-1) | 线粒体肌病 | 发挥抗氧化作用 | 抑制能量过剩机体骨骼肌能量的消耗 | [ |
Park2 (parkin) | 线粒体肌病 | 促进线粒体结构的完整性 | 缓解骨骼肌张力障碍 | [ |
Park2 (parkin) | 线粒体肌病 | 抑制缺失细胞色素C肌纤维的异常积累 | 抑制骨骼肌衰老 | [ |
Park6 (PINK1) | 线粒体肌病 | 保护线粒体结构完整性 | 抑制间接飞行肌退化 | [ |
Park14 (PLA2G6) | 杜氏肌营养不良 | 促进肌纤维钙离子过度内流 | 骨骼肌营养不良 | [ |
Park2 (parkin) | 肌损伤 | 促进线粒体自噬 | 促进肌细胞分化及融合 | [ |
[1] |
Frontera WR, Ochala J. Skeletal muscle: a brief review of structure and function. Calcif Tissue Int, 2015, 96(3):183-195.
doi: 10.1007/s00223-014-9915-y |
[2] |
Zheng T, Gan ML, Shen LY, Niu LL, Guo ZY, Wang JY, Zhang SH, Zhu L,. circRNA on animal skeletal muscle development regulation. Hereditas(Beijing), 2020, 42(12):1178-1191.
doi: 10.16288/j.yczz.20-207 pmid: 33509782 |
郑婷, 甘麦邻, 沈林園, 牛丽莉, 郭宗义, 王金勇, 张顺华, 朱砺. circRNA及其调控动物骨骼肌发育研究进展. 遗传, 2020, 42(12):1178-1191.
doi: 10.16288/j.yczz.20-207 pmid: 33509782 |
|
[3] | 姜明, 段春礼, 杨慧. PARK 基因家族与帕金森病研究进展. 生理科学进展, 2015, 46(2):133-136. |
[4] | 巴茂文, 刘振国. 帕金森病遗传学研究进展. 中华老年医学杂志, 2003, 22(11):711-712. |
[5] | 陈新新, 黄建平. 帕金森基因位点研究进展. 浙江中西医结合杂志, 2016, 26(8):776-780. |
[6] |
Liu TM, Xu Y, Yi CX, Tong QC, Cai DS. The hypothalamus for whole-body physiology: from metabolism to aging. Protein Cell, 2022, 13(6):394-421.
doi: 10.1007/s13238-021-00834-x |
[7] | 黎罗明. 帕金森病遗传基因的研究进展. 海南医学院学报, 2012, 18(9):1339-1342. |
[8] | 陈玉民, 崔桂云, 沈霞. 帕金森病的遗传学研究进展. 中国实用神经疾病杂志, 2012, 15(6):91-94. |
[9] |
Setsuie R, Wada K. The functions of UCH-L1 and its relation to neurodegenerative diseases. Neurochem Int, 2007, 51(2-4):105-111.
pmid: 17586089 |
[10] |
Huang Y, Cheung L, Rowe D, Halliday G. Genetic contributions to Parkinson's disease. Brain Res Brain Res Rev, 2004, 46(1):44-70.
doi: 10.1016/j.brainresrev.2004.04.007 |
[11] |
Petit A, Kawarai T, Paitel E, Sanjo N, Maj M, Scheid M, Chen FS, Gu YJ, Hasegawa H, Salehi-Rad S, Wang LD, Rogaeva E, Fraser P, Robinson B, St George-Hyslop P, Tandon A, . Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutations. J Biol Chem, 2005, 280(40):34025-34032.
doi: 10.1074/jbc.M505143200 |
[12] |
Canet-Avilés RM, Wilson MA, Miller DW, Ahmad R, McLendon C, Bandyopadhyay S, Baptista MJ, Ringe D, Petsko GA, Cookson MR. The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci USA, 2004, 101(24):9103-9108.
doi: 10.1073/pnas.0402959101 |
[13] |
Crosiers D, Theuns J, Cras P, Van Broeckhoven C. Parkinson disease: insights in clinical, genetic and pathological features of monogenic disease subtypes. J Chem Neuroanat, 2011, 42(2):131-141.
doi: 10.1016/j.jchemneu.2011.07.003 pmid: 21810464 |
[14] |
Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S, Kachergus J, Hulihan M, Uitti RJ, Calne DB, Stoessl AJ, Pfeiffer RF, Patenge N, Carbajal IC, Vieregge P, Asmus F, Müller-Myhsok B, Dickson DW, Meitinger T, Strom TM, Wszolek ZK, Gasser T. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron, 2004, 44(4):601-607.
doi: 10.1016/j.neuron.2004.11.005 |
[15] |
Tong YR, Yamaguchi H, Giaime E, Boyle S, Kopan R, Kelleher RJ, Shen J. Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of alpha-synuclein, and apoptotic cell death in aged mice. Proc Natl Acad Sci USA, 2010, 107(21):9879-9784.
doi: 10.1073/pnas.1004676107 |
[16] |
Lesage S, Brice A. Parkinson's disease: from monogenic forms to genetic susceptibility factors. Hum Mol Genet, 2009, 18(R1):R48-R59.
doi: 10.1093/hmg/ddp012 |
[17] | Xiromerisiou G, Dardiotis E, Tsimourtou V, Kountra PM, Paterakis KN, Kapsalaki EZ, Fountas KN, Hadjigeorgiou GM. Genetic basis of Parkinson disease. Neurosurg Focus, 2010, 28(1):E7. |
[18] | Pang GF, Qin JQ, Lv ZP, Yang Z, Hu CY. Research progress of genes related to Parkinson’s disease. Chin J Geriatr Care, 2015, 13(4):17-19. |
庞国防, 秦娇琴, 吕泽平, 杨泽, 胡才友. 帕金森病相关基因研究进展. 中国老年保健医学, 2015, 13(4):17-19. | |
[19] |
Yang H, Zhou HY, Li B, Chen SD. Neuroprotection of Parkin against apoptosis is independent of inclusion body formation. Neuroreport, 2005, 16(10):1117-1121.
pmid: 15973159 |
[20] |
Greenberg SA. Inclusion body myositis: clinical features and pathogenesis. Nat Rev Rheumatol, 2019, 15(5):257-272.
doi: 10.1038/s41584-019-0186-x pmid: 30837708 |
[21] |
Xiao H, Liang JQ, Liu SQ, Zhang QY, Xie FM, Kong XY, Guo SS, Wang RW, Fu R, Ye ZQ, Li Y, Zhang S, Zhang L, Kaudimba KK, Wang R, Kong XX, Zhao B, Zheng XQ, Liu TM. Proteomics and organoid culture reveal the underlying pathogenesis of Hashimoto's thyroiditis. Front Immunol, 2021, 12:784975.
doi: 10.3389/fimmu.2021.784975 |
[22] |
Vencovský J, Alexanderson H, Lundberg IE. Idiopathic inflammatory myopathies. Rheum Dis Clin North Am, 2019, 45(4):569-581.
doi: 10.1016/j.rdc.2019.07.006 |
[23] |
Askanas V, Engel WK, Alvarez RB, McFerrin J, Broccolini A. Novel immunolocalization of alpha-synuclein in human muscle of inclusion-body myositis, regenerating and necrotic muscle fibers, and at neuromuscular junctions. J Neuropathol Exp Neurol, 2000, 59(7):592-598.
doi: 10.1093/jnen/59.7.592 |
[24] | de Camargo LV, de Carvalho MS, Shinjo SK, de Oliveira ASB, Zanoteli E. Clinical, histological, and immunohistochemical findings in Inclusion body myositis. Biomed Res Int, 2018, 2018:5069042. |
[25] |
Paciello O, Wójcik S, Engel WK, McFerrin J, Askanas V. Parkin and its association with alpha-synuclein and AbetaPP in inclusion-body myositis and AbetaPP-overexpressing cultured human muscle fibers. Acta Myol, 2006, 25(1):13-22.
pmid: 17039976 |
[26] |
Rosen KM, Veereshwarayya V, Moussa CEH, Fu QH, Goldberg MS, Schlossmacher MG, Shen J, Querfurth HW. Parkin protects against mitochondrial toxins and beta-amyloid accumulation in skeletal muscle cells. J Biol Chem, 2006, 281(18):12809-12816.
doi: 10.1074/jbc.M512649200 |
[27] |
Terracciano C, Nogalska A, Engel WK, Wojcik S, Askanas V. In inclusion-body myositis muscle fibers Parkinson- associated DJ-1 is increased and oxidized. Free Radic Biol Med, 2008, 45(6):773-779.
doi: 10.1016/j.freeradbiomed.2008.05.030 |
[28] | Narayanappa G, Nandeesh BN. Infective myositis. Brain Pathol, 2021, 31(3):e12950. |
[29] |
Leduc-Gaudet JP, Mayaki D, Reynaud O, Broering FE, Chaffer TJ, Hussain SNA, Gouspillou G. Parkin overexpression attenuates sepsis-induced muscle wasting. Cells, 2020, 9(6):1454.
doi: 10.3390/cells9061454 |
[30] |
Furuya N, Ikeda SI, Sato S, Soma S, Ezaki J, Oliva Trejo JA, Takeda-Ezaki M, Fujimura T, Arikawa-Hirasawa E, Tada N, Komatsu M, Tanaka K, Kominami E, Hattori N, Ueno T. PARK2/Parkin-mediated mitochondrial clearance contributes to proteasome activation during slow-twitch muscle atrophy via NFE2L1 nuclear translocation. Autophagy, 2014, 10(4):631-641.
doi: 10.4161/auto.27785 |
[31] |
Kong XX, Yao T, Zhou P, Kazak L, Tenen D, Lyubetskaya A, Dawes BA, Tsai L, Kahn BB, Spiegelman BM, Liu TM, Rosen ED. Brown adipose tissue controls skeletal muscle function via the secretion of myostatin. Cell Metab, 2018, 28(4): 631-643.e3.
doi: 10.1016/j.cmet.2018.07.004 |
[32] |
Peker N, Donipadi V, Sharma M, McFarlane C, Kambadur R. Loss of Parkin impairs mitochondrial function and leads to muscle atrophy. Am J Physiol Cell Physiol, 2018, 315(2):C164-C185.
doi: 10.1152/ajpcell.00064.2017 |
[33] |
Kim J, Won KJ, Jung SH, Lee KP, Shim SB, Kim MY, Kim JH, Lee JU, Kim B. DJ-1 protects against undernutrition-induced atrophy through inhibition of the MAPK-ubiquitin ligase pathway in myoblasts. Life Sci, 2015, 143:50-57.
doi: 10.1016/j.lfs.2015.09.016 |
[34] | Zhu XP, Yao T, Wang R, Guo SS, Wang X, Zhou ZQ, Zhang Y, Zhuo XZ, Wang RT, Li JZ, Liu TM, Kong XX. IRF4 in skeletal muscle regulates exercise capacity via PTG/Glycogen pathway. Adv Sci (Weinh), 2020, 7(19):2001502. |
[35] |
Yoda E, Hachisu K, Taketomi Y, Yoshida K, Nakamura M, Ikeda K, Taguchi R, Nakatani Y, Kuwata H, Murakami M, Kudo I, Hara S. Mitochondrial dysfunction and reduced prostaglandin synthesis in skeletal muscle of Group VIB Ca2+-independent phospholipase A2γ-deficient mice. J Lipid Res, 2010, 51(10):3003-3015.
doi: 10.1194/jlr.M008060 |
[36] |
Yamazaki K, Wakasugi N, Tomita T, Kikuchi T, Mukoyama M, Ando K. Gracile axonal dystrophy (GAD), a new neurological mutant in the mouse. Proc Soc Exp Biol Med, 1988, 187(2):209-215.
doi: 10.3181/00379727-187-42656 pmid: 3340629 |
[37] |
Gao HB, Freeling J, Wu PL, Liang AP, Wang XJ, Li YF. UCHL1 regulates muscle fibers and mTORC1 activity in skeletal muscle. Life Sci, 2019, 233:116699.
doi: 10.1016/j.lfs.2019.116699 |
[38] |
Gao HB, Hartnett S, Li YF. Ubiquitin C-Terminal Hydrolase L1 regulates myoblast proliferation and differentiation. Biochem Biophys Res Commun, 2017, 492(1):96-102.
doi: 10.1016/j.bbrc.2017.08.027 |
[39] |
Luan X, Tian XY, Zhang HX, Huang R, Li N, Chen PJ, Wang R. Exercise as a prescription for patients with various diseases. J Sport Health Sci, 2019, 8(5):422-441.
doi: 10.1016/j.jshs.2019.04.002 pmid: 31534817 |
[40] |
Leduc-Gaudet JP, Reynaud O, Hussain SN, Gouspillou G. Parkin overexpression protects from ageing-related loss of muscle mass and strength. J Physiol, 2019, 597(7):1975-1991.
doi: 10.1113/JP277157 |
[41] |
Si HB, Ma P, Liang QY, Yin YJ, Wang P, Zhang Q, Wang SF, Deng HS. Overexpression of pink1 or parkin in indirect flight muscles promotes mitochondrial proteostasis and extends lifespan inDrosophila melanogaster. PLoS One, 2019, 14(11):e0225214.
doi: 10.1371/journal.pone.0225214 |
[42] |
Chen CCW, Erlich AT, Crilly MJ, Hood DA. Parkin is required for exercise-induced mitophagy in muscle: impact of aging. Am J Physiol Endocrinol Metab, 2018, 315(3):E404-E415.
doi: 10.1152/ajpendo.00391.2017 |
[43] |
Chen Y, Dorn GW. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science, 2013, 340(6131):471-475.
doi: 10.1126/science.1231031 pmid: 23620051 |
[44] |
Gegg ME, Cooper JM, Chau KY, Rojo M, Schapira AHV, Taanman JW. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum Mol Genet, 2010, 19(24):4861-4870.
doi: 10.1093/hmg/ddq419 |
[45] |
Geisler S, Holmström KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol, 2010, 12(2):119-131.
doi: 10.1038/ncb2012 pmid: 20098416 |
[46] |
Maroteaux L, Campanelli JT, Scheller RH. Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci, 1988, 8(8):2804-2815.
pmid: 3411354 |
[47] |
Abeliovich A, Schmitz Y, Fariñas I, Choi-Lundberg D, Ho WH, Castillo PE, Shinsky N, Verdugo JM, Armanini M, Ryan A, Hynes M, Phillips H, Sulzer D, Rosenthal A. Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron, 2000, 25(1):239-252.
pmid: 10707987 |
[48] |
Yavich L, Tanila H, Vepsäläinen S, Jäkälä P. Role of alpha-synuclein in presynaptic dopamine recruitment. J Neurosci, 2004, 24(49):11165-11170.
doi: 10.1523/JNEUROSCI.2559-04.2004 |
[49] |
Yavich L, Jäkälä P, Tanila H. Abnormal compartmentalization of norepinephrine in mouse dentate gyrus in alpha- synuclein knockout and A30P transgenic mice. J Neurochem, 2006, 99(3):724-732.
doi: 10.1111/j.1471-4159.2006.04098.x |
[50] |
Pelkonen A, Yavich L. Neuromuscular pathology in mice lacking alpha-synuclein. Neurosci Lett, 2011, 487(3):350-353.
doi: 10.1016/j.neulet.2010.10.054 pmid: 21029764 |
[51] |
Vasu VT, Ott S, Hobson B, Rashidi V, Oommen S, Cross CE, Gohil K. Sarcolipin and ubiquitin carboxy-terminal hydrolase 1 mRNAs are over-expressed in skeletal muscles of alpha-tocopherol deficient mice. Free Radic Res, 2009, 43(2):106-116.
doi: 10.1080/10715760802616676 |
[52] |
Pietrzak A, Badura-Stronka M, Kangas-Kontio T, Felczak P, Kozubski W, Latos-Bielenska A, Wierzba-Bobrowicz T, Florczak-Wyspianska J. Clinical and ultrastructural findings in an ataxic variant of Kufor-Rakeb syndrome. Folia Neuropathol, 2019, 57(3):285-294.
doi: 37906 pmid: 31588715 |
[53] |
Kline RA, Kaifer KA, Osman EY, Carella F, Tiberi A, Ross J, Pennetta G, Lorson CL, Murray LM. Comparison of independent screens on differentially vulnerable motor neurons reveals alpha-synuclein as a common modifier in motor neuron diseases. PLoS Genet, 2017, 13(3):e1006680.
doi: 10.1371/journal.pgen.1006680 |
[54] |
Gouspillou G, Godin R, Piquereau J, Picard M, Mofarrahi M, Mathew J, Purves-Smith FM, Sgarioto N, Hepple RT, Burelle Y, Hussain SNA. Protective role of Parkin in skeletal muscle contractile and mitochondrial function. J Physiol, 2018, 596(13):2565-2579.
doi: 10.1113/JP275604 |
[55] |
Yang YF, Ouyang YS, Yang LC, Beal MF, McQuibban A, Vogel H, Lu BW. Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc Natl Acad Sci USA, 2008, 105(19):7070-7075.
doi: 10.1073/pnas.0711845105 |
[56] |
Muoio DM. Metabolic inflexibility: when mitochondrial indecision leads to metabolic gridlock. Cell, 2014, 159(6):1253-1262.
doi: 10.1016/j.cell.2014.11.034 |
[57] |
Gao HB, Antony R, Srinivasan R, Wu PL, Wang XJ, Li YF. UCHL1 regulates oxidative activity in skeletal muscle. PLoS One, 2020, 15(11):e0241716.
doi: 10.1371/journal.pone.0241716 |
[58] |
Kuroda Y, Mitsui T, Kunishige M, Matsumoto T. Parkin affects mitochondrial function and apoptosis in neuronal and myogenic cells. Biochem Biophys Res Commun, 2006, 348(3):787-793.
doi: 10.1016/j.bbrc.2006.06.201 |
[59] |
Shtifman A, Zhong N, Lopez JR, Shen J, Xu J. Altered Ca2+ homeostasis in the skeletal muscle of DJ-1 null mice. Neurobiol Aging, 2011, 32(1):125-132.
doi: 10.1016/j.neurobiolaging.2009.07.010 |
[60] |
Shi SY, Lu SY, Sivasubramaniyam T, Revelo XS, Cai EP, Luk CT, Schroer SA, Patel P, Kim RH, Bombardier E, Quadrilatero J, Tupling AR, Mak TW, Winer DA, Woo M. DJ-1 links muscle ROS production with metabolic reprogramming and systemic energy homeostasis in mice. Nat Commun, 2015, 6:7415.
doi: 10.1038/ncomms8415 |
[61] |
Greene JC, Whitworth AJ, Kuo I, Andrews LA, Feany MB, Pallanck LJ. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci USA, 2003, 100(7):4078-4083.
doi: 10.1073/pnas.0737556100 |
[62] |
Hanagasi HA, Serdaroglu P, Ozansoy M, Basak N, Tasli H, Emre M. Mitochondrial pathology in muscle of a patient with a novel parkin mutation. Int J Neurosci, 2009, 119(10):1572-1583.
pmid: 19922375 |
[63] |
Park J, Lee SB, Lee S, Kim Y, Song S, Kim S, Bae E, Kim J, Shong M, Kim JM, Chung J. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature, 2006, 441(7097):1157-1161.
doi: 10.1038/nature04788 |
[64] |
Oláhová M, Thompson K, Hardy SA, Barbosa IA, Besse A, Anagnostou ME, White K, Davey T, Simpson MA, Champion M, Enns G, Schelley S, Lightowlers RN, Chrzanowska-Lightowlers ZMA, McFarland R, Deshpande C, Bonnen PE, Taylor RW. Pathogenic variants in HTRA2 cause an early-onset mitochondrial syndrome associated with 3-methylglutaconic aciduria. J Inherit Metab Dis, 2017, 40(1):121-130.
doi: 10.1007/s10545-016-9977-2 pmid: 27696117 |
[65] |
Verhaart IEC, Aartsma-Rus A. Therapeutic developments for Duchenne muscular dystrophy. Nat Rev Neurol, 2019, 15(7):373-386.
doi: 10.1038/s41582-019-0203-3 pmid: 31147635 |
[66] |
Jones D. Duchenne muscular dystrophy awaits gene therapy. Nat Biotechnol, 2019, 37(4):335-337.
doi: 10.1038/s41587-019-0103-5 pmid: 30940951 |
[67] |
Boittin FX, Petermann O, Hirn C, Mittaud P, Dorchies OM, Roulet E, Ruegg UT. Ca2+-independent phospholipase A2 enhances store-operated Ca2+ entry in dystrophic skeletal muscle fibers. J Cell Sci, 2006, 119(Pt 18):3733-3742.
doi: 10.1242/jcs.03184 |
[68] |
Ismail HM, Dorchies OM, Perozzo R, Strosova MK, Scapozza L, Ruegg UT. Inhibition of iPLA2 β and of stretch-activated channels by doxorubicin alters dystrophic muscle function. Br J Pharmacol, 2013, 169(7):1537-1550.
doi: 10.1111/bph.12188 |
[69] |
Baechler BL, Bloemberg D, Quadrilatero J. Mitophagy regulates mitochondrial network signaling, oxidative stress, and apoptosis during myoblast differentiation. Autophagy, 2019, 15(9):1606-1619.
doi: 10.1080/15548627.2019.1591672 |
[70] |
Esteca MV, Severino MB, Silvestre JG, Dos Santos GP, Tamborlin L, Luchessi AD, Moriscot AS, Gustafsson ÅB, Baptista IL. Loss of parkin results in altered muscle stem cell differentiation during regeneration. Int J Mol Sci, 2020, 21(21):8007.
doi: 10.3390/ijms21218007 |
[1] | 李烨荣, 吕娟, 王玉国, 谭建新, 邵彬彬, 张菁菁. 应用多重竞争性PCR联合毛细管电泳技术进行脊髓性肌萎缩症携带者筛查[J]. 遗传, 2022, 44(7): 618-628. |
[2] | 曹延延, 程苗苗, 宋昉, 瞿宇晋, 白晋丽, 金煜炜, 王红. 脊髓性肌萎缩症SMN1基因 2+0基因型携带者的家系研究[J]. 遗传, 2021, 43(2): 160-168. |
[3] | 许烨, 张嘉莹, 杨博宇, 何志宏, 张慕晨, 于珍, 顾鸣敏. 腓骨肌萎缩症4型遗传学研究进展[J]. 遗传, 2015, 37(6): 501-509. |
[4] | 陈万金, 张奇杰, 何瑾, 林翔, 王柠. 脊髓性肌萎缩症患者尿液细胞模型的建立[J]. 遗传, 2014, 36(11): 1168-1172. |
[5] | 于珍, 栾春杰, 顾鸣敏. 腓骨肌萎缩症2型(CMT2)小鼠模型的研究进展[J]. 遗传, 2014, 36(1): 21-29. |
[6] | 牛艳芳,熊慧玲,邬剑军,陈嬿,乔凯,吴志英. 肌萎缩侧索硬化患者SOD1基因突变检测及突变与临床表型的关系[J]. 遗传, 2011, 33(7): 720-724. |
[7] | 李少英,孙筱放,黎青,张慧敏,王晓蔓. 中国人群中抗肌萎缩蛋白基因突变类型和分布特点及其与临床症状的相关性[J]. 遗传, 2011, 33(3): 251-254. |
[8] | 张如旭,郭鹏,任志军,赵国华,刘三妹,刘婷,资晓宏,胡正茂,夏昆,唐北沙. LITAF、RAB7、LMNA和MTMR2基因在中国人腓骨肌萎缩症患者的突变分析[J]. 遗传, 2010, 32(8): 817-823. |
[9] | 宋书娟,闫明,王小竹,章远志,邹俊华,钟南. 在两个X连锁显性腓骨肌萎缩症家系中发现同一GJB1基因突变Glu208Lys[J]. 遗传, 2007, 29(7): 800-804. |
[10] | 邱维勤,戴蔼善,章秀珍. Charcot-Marie-Tooth病与遗传性男子女性型乳房的自由组合 |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: