遗传 ›› 2022, Vol. 44 ›› Issue (12): 1128-1140.doi: 10.16288/j.yczz.22-149
收稿日期:
2022-05-07
修回日期:
2022-08-11
出版日期:
2022-12-20
发布日期:
2022-09-02
通讯作者:
高少培
E-mail:2424002912@qq.com;spgao@cau.edu.cn
作者简介:
赵浩强,在读博士研究生,专业方向:作物遗传育种。E-mail:基金资助:
Haoqiang Zhao1(), Xiaofei Wang2, Shaopei Gao1()
Received:
2022-05-07
Revised:
2022-08-11
Online:
2022-12-20
Published:
2022-09-02
Contact:
Gao Shaopei
E-mail:2424002912@qq.com;spgao@cau.edu.cn
Supported by:
摘要:
油体也称脂滴或油滴,是植物细胞中一种重要的储藏油脂的细胞器。油体由单层磷脂膜包裹中性脂肪酸组成,膜上镶嵌有多种膜蛋白,包括油体蛋白、油体钙蛋白和油体固醇蛋白,其中油体蛋白占80%~90%。油体蛋白在影响油体大小与稳定性、油体形成和降解、脂质代谢、种子成熟及萌发等多种生命活动中都发挥着重要的生物学作用。本文结合近些年国内外关于植物油体蛋白基因家族的研究进展系统总结了油体蛋白序列与结构特征及在植物生长发育中所扮演的重要角色,讨论了油体蛋白作为一种新型植物蛋白在实际生产中的应用场景和油体蛋白研究及应用过程中仍存在的一些问题,以期为人们后期更加深入研究植物油体蛋白相关分子功能及在生产实践中应用提供有益的参考。
赵浩强, 王小斐, 高少培. 植物油体蛋白基因家族研究进展[J]. 遗传, 2022, 44(12): 1128-1140.
Haoqiang Zhao, Xiaofei Wang, Shaopei Gao. Progress on the functional role of oleosin gene family in plants[J]. Hereditas(Beijing), 2022, 44(12): 1128-1140.
表1
不同植物中油体蛋白功能"
基因号 | 注释 | 功能 | 参考文献 |
---|---|---|---|
At4g25140 | OLE1、OLEO1、OLEOSIN1 | 在种子中大量存在,参与调控种子脂质积累和种子抗冻性 | [ |
At5g40420 | OLE2、OLEO2、OLEOSIN2 | 在种子中大量存在,参与调控种子脂质积累和种子抗冻性 | [ |
At3g27660 | OLEO3、OLEOSIN3 | 种子油体蛋白,参与调控种子脂质积累和油体降解 | [ |
At3g01570 | Oleosin4、OLE4 | 在种子中大量存在,参与调控种子脂质积累和种子抗冻性 | [ |
At5g51210 | Oleosin5、OLE5 | 存在于种子中,可能在控制油体大小及稳定性方面发挥作用 | [ |
LOC_Os01g45624.1 | OsOLE1 | 油体蛋白家族 | [ |
LOC_Os05g50110.1 | OsOLE2 | 油体蛋白家族 | [ |
LOC_Os04g46200.1 | OsOLE3 | 种子油体蛋白L-型异构体,大小为16 kDa | [ |
LOC_Os09g15520.1 | OsOLE4 | 油体蛋白家族 | [ |
LOC_Os03g49190.1 | OsOLE5 | 种子油体蛋白H-型异构体,大小为18 kDa | [ |
LOC_Os06g27910.1 | OsOLE6 | 油体蛋白家族 | [ |
Glyma.20G196600 | GmOLE1 | 在种子中大量存在,参与调控脂质积累和抗冻性,在成熟种子中 特异表达 | [ |
Glyma.17G122000 | GmOLE2 | 种子油体蛋白,参与调节脂肪酸构成,增强抗冻性 | [ |
BnaA08g14540D | BnaOLE1 | 油体蛋白家族,参与提高种子中脂肪酸含量及千粒重 | [ |
BnaA02g29000D | BnaOLE3 | 油体蛋白家族,参与降低种子耐寒性,抑制种子萌发 | [ |
BnaC08g03140D | BnaOLE5 | 油体蛋白家族 | [ |
GR218754 | VfOLE1 | 油桐种子油体蛋白H-型异构体 | [ |
GR218943 | VfOLE2 | 油桐种子油体蛋白H-型异构体 | [ |
GR219005 | VfOLE3 | 油桐种子油体蛋白L-型异构体 | [ |
GR219158 | VfOLE4 | 油桐种子油体蛋白L-型异构体 | [ |
GR218198 | VfOLE5 | 油桐种子油体蛋白L-型异构体 | [ |
KP109927 | AhOLE22a | 花生种子中表达量较高,参与响应非生物胁迫相关过程 | [ |
KP109928 | AhOLE22b | 花生种子中表达量较高,参与响应非生物胁迫相关过程 | [ |
KP109929 | AhOLE22c | 花生种子中表达量较高,参与响应非生物胁迫相关过程 | [ |
[1] | Meier MAR, Metzger JO, Schubert US. Plant oil renewable resources as green alternatives in polymer science. Chem Soc Rev, 2007, 36(11): 1788-1802. |
[2] |
Huang AH. Oleosins and oil bodies in seeds and other organs. Plant Physiol, 1996, 110(4): 1055-1061.
pmid: 8934621 |
[3] |
Tzen JT, Peng CC, Cheng DJ, Chen EC, Chiu JM. A new method for seed oil body purification and examination of oil body integrity following germination. J Biochem, 1997, 121(4): 762-768.
pmid: 9163529 |
[4] |
Tzen JT, Huang AH. Surface structure and properties of plant seed oil bodies. J Cell Biol, 1992, 117(2): 327-335.
pmid: 1560029 |
[5] |
Shao Q, Liu XF, Su T, Ma CL, Wang PP. New insights into the role of seed oil body proteins in metabolism and plant development. Front Plant Sci, 2019, 10: 1568.
doi: 10.3389/fpls.2019.01568 pmid: 31921234 |
[6] |
Chapman KD, Dyer JM, Mullen RT. Biogenesis and functions of lipid droplets in plants: thematic review series: lipid droplet synthesis and metabolism: from yeast to man. J Lipid Res, 2012, 53(2): 215-226.
doi: 10.1194/jlr.R021436 pmid: 22045929 |
[7] |
Shimada TL, Hayashi M, Hara-Nishimura I. Membrane dynamics and multiple functions of oil bodies in seeds and leaves. Plant Physiol, 2018, 176(1): 199-207.
doi: 10.1104/pp.17.01522 pmid: 29203559 |
[8] |
Huang AH. Plant lipid droplets and their associated proteins: potential for rapid advances. Plant Physiol, 2018, 176(3): 1894-1918.
doi: 10.1104/pp.17.01677 pmid: 29269574 |
[9] |
Shimada TL, Shimada T, Takahashi H, Fukao Y, Hara- Nishimura I. A novel role for oleosins in freezing tolerance of oilseeds in Arabidopsis thaliana. Plant J, 2008, 55(5): 798-809.
doi: 10.1111/j.1365-313X.2008.03553.x |
[10] |
Chen EC, Tai SS, Peng CC, Tzen JT. Identification of three novel unique proteins in seed oil bodies of sesame. Plant Cell Physiol, 1998, 39(9): 935-941.
pmid: 9816677 |
[11] |
D'Andréa S, Canonge M, Beopoulos A, Jolivet P, Hartmann MA, Miquel M, Lepiniec L, Chardot T. At5g50600 encodes a member of the short-chain dehydrogenase reductase superfamily with 11β- and 17β-hydroxysteroid dehydrogenase activities associated with Arabidopsis thaliana seed oil bodies. Biochimie, 2007, 89(2): 222-229.
doi: 10.1016/j.biochi.2006.09.013 |
[12] |
Tzen JT, Lai YK, Chan KL, Huang AH. Oleosin isoforms of high and low molecular weights are present in the oil bodies of diverse seed species. Plant Physiol, 1990, 94(3): 1282-1289.
doi: 10.1104/pp.94.3.1282 pmid: 16667830 |
[13] |
Jolivet P, Roux E, D'Andrea S, Davanture M, Negroni L, Zivy M, Chardot T. Protein composition of oil bodies in Arabidopsis thaliana ecotype WS. Plant Physiol Biochem, 2004, 42(6): 501-509.
doi: 10.1016/j.plaphy.2004.04.006 |
[14] |
Fang Y, Zhu RL, Mishler BD. Evolution of oleosin in land plants. PLoS One, 2014, 9(8): e103806.
doi: 10.1371/journal.pone.0103806 |
[15] |
Huang MD, Huang AH. Bioinformatics reveal five lineages of oleosins and the mechanism of lineage evolution related to structure/function from green algae to seed plants. Plant Physiol, 2015, 169(1): 453-470.
doi: 10.1104/pp.15.00634 |
[16] |
Kim S, Lee SB, Han CS, Lim MN, Lee SE, Yoon IS, Hwang YS. Dissection of cis-regulatory element architecture of the rice oleosin gene promoters to assess abscisic acid responsiveness in suspension-cultured rice cells. J Plant Physiol, 2017, 215: 20-29.
doi: 10.1016/j.jplph.2017.04.015 |
[17] | Guo XY, Zhang WH, Lin F. Functional analysis of soybean oleosin gene GmOLE2. J Nanjing Agric Univ, 2021, 44(3): 477-486. |
郭新亚, 章文华, 林峰. 大豆油体蛋白基因GmOLE2的功能分析. 南京农业大学学报, 2021, 44(3): 477-486. | |
[18] |
Zhang D, Zhang HY, Hu ZB, Chu SS, Yu KY, Lv LL, Yang YM, Zhang XQ, Chen X, Kan GZ, Tang Y, Charles An YQ, Yu DY. Artificial selection on GmOLEO1 contributes to the increase in seed oil during soybean domestication. PLoS Genet, 2019, 15(7): e1008267.
doi: 10.1371/journal.pgen.1008267 |
[19] |
Chen K, Yin YT, Liu S, Guo ZY, Zhang K, Liang Y, Zhang LN, Zhao WG, Chao HB, Li MT. Genome-wide identification and functional analysis of oleosin genes in Brassica napus L. BMC Plant Biol, 2019, 19(294): 294.
doi: 10.1186/s12870-019-1891-y |
[20] | Wang WQ, Li JS, Zhu XQ, Qiu ZH, Shi LX, Zhang Z. Cloning, analysing and transient expressing oleosin gene promoter in Brassica napus. J Anhui Agri Sci, 2020, 48(22): 115-119. |
王伟权, 李树俊, 朱欣琪, 丘志慧, 施力汛, 张哲. 油菜Oleosin基因启动子的克隆、分析及瞬时表达. 安徽农业科学, 2020, 48(22): 115-119. | |
[21] | Wu QK, Yang SS, Wang YD, Gao M, Chen YC. Isolation and expression analysis on Vernicia fordii oleosin gene of five VfOLE isoforms. For Res, 2014, 27(2): 233-239. |
吴庆珂, 杨素素, 汪阳东, 高暝, 陈益存. 油桐油质蛋白Oleosin编码基因5个VfOLE转录本的克隆与表达分析. 林业科学研究, 2014, 27(2): 233-239. | |
[22] | Long HX, Tan XF, Chen H, Zhang L, Hu J. Cloning and sequence analysis of full-length cDNAs encoding oleosins from Vernicia fordii. J Central South Univ For Technol, 2010, 30(4): 31-38. |
龙洪旭, 谭晓风, 陈洪, 张琳, 胡姣. 油桐油体蛋白基因的克隆及序列分析. 中南林业科技大学学报, 2010, 30(4): 31-38. | |
[23] | Zhou G, Wang YD, Chen YC, Li P, Zhang SS, Zhang XP. Construction of kernel cDNA library and bioinformation analysis on oleosins gene of Vernicia fordii. For Res, 2009, 22(2): 177-181. |
周冠, 汪阳东, 陈益存, 李鹏, 张姗姗, 张小平. 油桐种仁cDNA文库的构建及其油体蛋白oleosin基因的生物信息学分析. 林业科学研究, 2009, 22(2): 177-181. | |
[24] | Xu H, Pan LJ, Chen MN, Chen N, Wang T, Wang M, Yu SL, Liang CW, Chi XY. Cloning and expression analysis of oleosin genes in peanut. J Peanut Sci, 2019, 48(3): 9-14. |
徐赫, 潘丽娟, 陈明娜, 陈娜, 王通, 王冕, 禹山林, 梁成伟, 迟晓元. 花生油质蛋白基因的克隆与表达分析. 花生学报, 2019, 48(3): 9-14. | |
[25] |
Van Rooijen GJ, Terning LI, Moloney MM. Nucleotide sequence of an Arabidopsis thaliana oleosin gene. Plant Mol Biol, 1992, 18(6): 1177-1179.
pmid: 1600152 |
[26] |
Siloto RMP, Findlay K, Lopez-Villalobos A, Yeung EC, Nykiforuk CL, Moloney MM. The accumulation of oleosins determines the size of seed oilbodies in Arabidopsis. Plant Cell, 2006, 18(8): 1961-1974.
pmid: 16877495 |
[27] |
Zou JT Abrams GD, Barton DL, Taylor DC, Pomeroy MK, Abrams SR. Induction of lipid and oleosin biosynthesis by (+)-abscisic acid and its metabolites in microspore-derived embryos of Brassica napus L.cv Reston. Plant Physiol, 1995, 108(2): 563-571.
pmid: 12228493 |
[28] |
Deruyffelaere C, Bouchez I, Morin H, Guillot A, Miquel M, Froissard M, Chardot T, D'Andrea S. Ubiquitin- mediated proteasomal degradation of oleosins is involved in oil body mobilization during post-germinative seedling growth in Arabidopsis. Plant Cell Physiol, 2015, 56(7): 1374-1387.
doi: 10.1093/pcp/pcv056 pmid: 25907570 |
[29] |
Kirik V, Kölle K, Balzer HJ, Bäeumlein H. Two new oleosin isoforms with altered expression patterns in seeds of the Arabidopsis mutant fus3. Plant Mol Biol, 1996, 31(2): 413-417.
pmid: 8756606 |
[30] |
Kim HU, Hsieh K, Ratnayake C, Huang AH. A novel group of oleosins is present inside the pollen of Arabidopsis. J Biol Chem, 2002, 277(25): 22677-22684.
doi: 10.1074/jbc.M109298200 pmid: 11929861 |
[31] |
Huang CY, Chung CI, Lin YC, Hsing YI, Huang AH. Oil bodies and oleosins in Physcomitrella possess characteristics representative of early trends in evolution. Plant Physiol, 2009, 150(3): 1192-1203.
doi: 10.1104/pp.109.138123 |
[32] |
Wu LS, Wang LD, Chen PW, Chen LJ, Tzen JT. Genomic cloning of 18 kDa oleosin and detection of triacylglycerols and oleosin isoforms in maturing rice and postgerminative seedlings. J Biochem, 1998, 123(3): 386-391.
pmid: 9538219 |
[33] |
Lin LJ, Tai SS, Peng CC, Tzen JT. Steroleosin, a sterol-binding dehydrogenase in seed oil bodies. Plant Physiol, 2002, 128(4): 1200-1211.
pmid: 11950969 |
[34] |
Shen Y, Xie J, Liu RD, Ni XF, Wang XH, Li ZX, Zhang M. Genomic analysis and expression investigation of caleosin gene family in Arabidopsis. Biochem Biophys Res Commun, 2014, 448(4): 365-371.
doi: 10.1016/j.bbrc.2014.04.115 |
[35] |
Naested H, Frandsen GI, Jauh GY, Hernandez-Pinzon I, Nielsen HB, Murphy DJ, Roger JC, Mundy J. Caleosins: Ca2+-binding proteins associated with lipid bodies. Plant Mol Biol, 2000, 44(4): 463-476.
pmid: 11197322 |
[36] |
Poxleitner M, Rogers SW, Lacey Samuels A, Browse J, Roger JC. A role for caleosin in degradation of oil-body storage lipid during seed germination. Plant J, 2006, 47(6): 917-933.
pmid: 16961733 |
[37] |
Froissard M, D'Andréa S, Boulard C, Chardot T. Heterologous expression of AtCLO1, a plant oil body protein, induces lipid accumulation in yeast. FEMS Yeast Res, 2009, 9(3): 428-438.
doi: 10.1111/j.1567-1364.2009.00483.x pmid: 19220478 |
[38] |
Li FL, Asami T, Wu XZ, Tsang EW, Cutler AJ. A putative hydroxysteroid dehydrogenase involved in regulating plant growth and development. Plant Physiol, 2007, 145(1): 87-97.
pmid: 17616511 |
[39] |
Braybrook SA, Stone SL, Park S, Bui AQ, Le BH, Fischer RL, Goldberg RB, Harada JJ. Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis. Proc Natl Acad Sci USA, 2006, 103(9): 3468-3473.
doi: 10.1073/pnas.0511331103 |
[40] |
Kroj T, Savino G, Valon C, Giraudat J, Parcy F. Regulation of storage protein gene expression in Arabidopsis. Development, 2003, 130(24): 6065-6073.
pmid: 14597573 |
[41] |
Zhang Z, Cheng ZJ, Gan L, Zhang H, Wu FQ, Lin QB, Wang JL, Wang J, Guo XP, Zhang X, Zhang ZC, Lei CL, Zhu SS, Wang CM, Wan JM. OsHSD1, a hydroxysteroid dehydrogenase, is involved in cuticle formation and lipid homeostasis in rice. Plant Sci, 2016, 249: 35-45.
doi: S0168-9452(16)30074-7 pmid: 27297988 |
[42] |
Hanano A, Burcklen M, Flenet M, Ivancich A, Louwagie M, Garin J, Blée E. Plant seed peroxygenase is an original heme-oxygenase with an EF-hand calcium binding motif. J Biol Chem, 2006, 281(44): 33140-33151.
doi: 10.1074/jbc.M605395200 pmid: 16956885 |
[43] |
Blée E, Boachon B, Burcklen M, Guédard ML, Hanano A, Heintz D, Ehlting J, Herrfurth C, Feussner I, Bessoule JJ. The reductase activity of the Arabidopsis caleosin responsive to dessication20 mediates gibberellin-dependent flowering time, abscisic acid sensitivity, and tolerance to oxidative stress. Plant Physiol, 2014, 166(1): 109-124.
doi: 10.1104/pp.114.245316 |
[44] |
Charuchinda P, Waditee-Sirisattha R, Kageyama H, Yamada D, Sirisattha S, Tanaka Y, Mahakhant A, Takabe T. Caleosin from Chlorella vulgaris TISTR 8580 is salt- induced and heme-containing protein. Biosci Biotechnol Biochem, 2015, 79(7): 1119-1124.
doi: 10.1080/09168451.2015.1010480 |
[45] |
Lindemann P. Steroidogenesis in plants-biosynthesis and conversions of progesterone and other pregnane derivatives. Steroids, 2015, 103: 145-52.
doi: 10.1016/j.steroids.2015.08.007 pmid: 26282543 |
[46] |
Vance VB, Huang AH. The major protein from lipid bodies of maize characterization and structure based on cDNA cloning. J Biol Chem, 1987, 262(23): 11275-11279.
pmid: 2440887 |
[47] |
Lee WS, Tzen JT, Kridl JC, Radke SE, Huang AH. Maize oleosin is correctly targeted to seed oil bodies in Brassica napus transformed with the maize oleosin gene. Proc Natl Acad Sci USA, 1991, 88(14): 6181-6185.
doi: 10.1073/pnas.88.14.6181 |
[48] |
Alexander LG, Sessions RB, Clarke AR, Tatham AS, Shewry PR, Napier JA. Characterization and modelling of the hydrophobic domain of a sunflower oleosin. Planta, 2002, 214(4): 546-551.
pmid: 11925038 |
[49] |
Chen YM, Chen YJ, Zhao LP, Kong XZ, Yang ZQ, Hua YF. A two-chain aspartic protease present in seeds with high affinity for peanut oil bodies. Food Chem, 2018, 241: 443-451.
doi: S0308-8146(17)31483-8 pmid: 28958552 |
[50] |
Lu YB, Chi MH, Li LX, Li HY, Noman M, Yang Y, Ji K, Lan XX, Qiang WD, Du LN, Li HY, Yang J. Genome-wide identification, expression profiling, and functional validation of oleosin gene family in Carthamus tinctorius L. Front Plant Sci, 2018, 9: 1393.
doi: 10.3389/fpls.2018.01393 |
[51] | Lu YB, Chi MH, Sun XY, Wen SX, Wang QM, Chen X, Qiang WD, Yang J. Cloning and expression of CtOleosin in Carthamus tinctorius L. J Northeast A&F Univ (Nat Sci Ed), 2018, 46(11): 121-128. |
卢玉彬, 迟孟涵, 孙晓玉, 温世雄, 王清曼, 陈希, 强卫东, 杨晶. 红花油体蛋白基因CtOleosin的克隆及表达. 西北农林科技大学学报 (自然科学版), 2018, 46(11): 121-128. | |
[52] | Jiang MS, Yuan XM, Liu XD, Hou R, Su YB, Guo Z, Yu SH, Li HY. Analysis of oleosin gene family and its response to drought in foxtail millet. J Shanxi Agric Univ (Nat Sci Ed), 2018, 38(1): 16-20. |
蒋茂双, 元香梅, 刘晓东, 候蕊, 苏彦冰, 郭展, 于世慧, 李红英. 谷子Oleosin基因家族及其对干旱响应的分析. 山西农业大学学报 (自然科学版), 2018, 38(1): 16-20. | |
[53] | Hu Q, Guo SW, Lv Y, Shi XD, Guo ST. Review of research on components, structure and proteins of oil body. Food Sci, 2015, 36(11): 230-235. |
胡琪, 郭诗文, 吕莹, 施小迪, 郭顺堂. 油脂体组成、结构及油脂体蛋白研究进展. 食品科学, 2015, 36(11): 230-235. | |
[54] |
Cao HP. Genome-wide analysis of oleosin gene family in 22 tree species: an accelerator for metabolic engineering of biofuel crops and agrigenomics industrial applications. OMICS, 2015, 19(9): 521-541.
doi: 10.1089/omi.2015.0073 |
[55] | Liu YH, Jia SR. Progress in the establishment of plant seed oil body expression system. J Agri Biotechnol, 2003 (5): 531-537. |
刘昱辉, 贾士荣. 植物油体表达体系的研究进展. 农业生物技术学报, 2003(5): 531-537. | |
[56] |
Miquel M, Trigui G, D'Andréa S, Kelemen Z, Baud S, Berger A, Deruyffelaere C, Trubuil A, Lepiniec L, Dubreucq B. Specialization of oleosins in oil body dynamics during seed development in Arabidopsis seeds. Plant Physiol, 2014, 164(4): 1866-1878.
doi: 10.1104/pp.113.233262 |
[57] |
Wu YY, Chou YR, Wang CS, Tseng TH, Chen LJ, Tzen JT. Different effects on triacylglycerol packaging to oil bodies in transgenic rice seeds by specifically eliminating one of their two oleosin isoforms. Plant Physiol Biochem, 2010, 48(2-3): 81-89.
doi: 10.1016/j.plaphy.2009.12.004 |
[58] |
D'Andrea S. Lipid droplet mobilization: The different ways to loosen the purse strings. Biochimie, 2016, 120: 17-27.
doi: 10.1016/j.biochi.2015.07.010 pmid: 26187474 |
[59] |
Liu WX, Liu HL, Qu LQ. Embryo-specific expression of soybean oleosin altered oil body morphogenesis and increased lipid content in transgenic rice seeds. Theor Appl Genet, 2013, 126(9): 2289-2297.
doi: 10.1007/s00122-013-2135-4 pmid: 23748707 |
[60] |
Lee K, Ratnayake C, Huang AH. Genetic dissection of the co-expression of genes encoding the two isoforms of oleosins in the oil bodies of maize kernel. Plant J, 1995, 7(4): 603-611.
pmid: 7742857 |
[61] | Kang LH, Li YY, Tang ZL. On empirical analysis of China's major edible oil import and export. J Southwest China Norm Univ (Nat Sci Ed), 2016, 41(10): 68-74. |
康历姮, 李阳阳, 唐章林. 中国主要食用油进出口实证分析. 西南师范大学学报 (自然科学版), 2016, 41(10): 68-74. | |
[62] |
Parthibane V, Rajakumari S, Venkateshwari V, Iyappan R, Rajasekharan R. Oleosin is bifunctional enzyme that has both monoacylglycerol acyltransferase and phospholipase activities. J Biol Chem, 2012, 287(3): 1946-1954.
doi: 10.1074/jbc.M111.309955 pmid: 22128159 |
[63] | Jacquier N, Mishra S, Choudhary V, Schneiter R. Expression of oleosin and perilipins in yeast promotes formation of lipid droplets from the endoplasmic reticulum. J Cell Sci, 2013, 126(22): 5198-5209. |
[64] |
Ting JT, Balsamo RA, Ratnayake C, Huang AH. Oleosin of plant seed oil bodies is correctly targeted to the lipid bodies in transformed yeast. J Biol Chem, 1997, 272(6): 3699-3706.
doi: 10.1074/jbc.272.6.3699 pmid: 9013626 |
[65] |
Schmidt MA, Herman EM. Suppression of soybean oleosin produces micro-oil bodies that aggregate into oil body/ER complexes. Mol Plant, 2008, 1(6): 910-924.
doi: 10.1093/mp/ssn049 pmid: 19825592 |
[66] |
Peng JM, Schwartz D, Elias JE, Thoreen CC, Cheng DM, Marsischky G, Roelofs J, Finley D, Gygi SP. A proteomics approach to understanding protein ubiquitination. Nat Biotechnol, 2003, 21(8): 921-926.
pmid: 12872131 |
[67] |
Vierstra RD. The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol, 2009, 10(6): 385-397.
doi: 10.1038/nrm2688 |
[68] |
Hsiao ES, Tzen JT. Ubiquitination of oleosin-H and caleosin in sesame oil bodies after seed germination. Plant Physiol Biochem, 2011, 49(1): 77-81.
doi: 10.1016/j.plaphy.2010.10.001 |
[69] |
Kretzschmar FK, Mengel LA, Müller AO, Schmitt K, Blersch KF, Valerius O, Braus GH, Ischebeck T. PUX10 is a lipid droplet-localized scaffold protein that interacts with cell division cycle48 and is involved in the degradation of lipid droplet proteins. Plant Cell, 2018, 30(9): 2137-2160.
doi: 10.1105/tpc.18.00276 |
[70] | Deruyffelaere C, Purkrtova Z, Bouchez I, Collet B, Cacas JL, Chardot T, Gallois JL, D'Andrea S.PUX10 is a CDC48A adaptor protein that regulates the extraction of ubiquitinated oleosins from seed lipid droplets in Arabidopsis. Plant Cell, 2018, 30(9): 2116-2136. |
[71] |
Ohlrogge J, Browse J. Lipid biosynthesis. Plant Cell, 1995, 7(7): 957-970.
pmid: 7640528 |
[72] |
Roughan PG, Slack CR. Cellular organization of glycerolipid metabolism. Ann Rev Plant Physiol, 1982, 33(1): 97-132.
doi: 10.1146/annurev.pp.33.060182.000525 |
[73] |
Fan JL, Yan CS, Zhang XB, Xu CC. Dual role for phospholipid: diacylglycerol acyltransferase: enhancing fatty acid synthesis and diverting fatty acids from membrane lipids to triacylglycerol in Arabidopsis leaves. Plant Cell, 2013, 25(9): 3506-3518.
doi: 10.1105/tpc.113.117358 |
[74] |
Bates PD, Ohlrogge JB, Pollard M. Incorporation of newly synthesized fatty acids into cytosolic glycerolipids in pea leaves occurs via acyl editing. J Biol Chem, 2007, 282(43): 31206-31216.
doi: 10.1074/jbc.M705447200 pmid: 17728247 |
[75] |
Bates PD, Durrett TP, Ohlrogge JB, Pollard M. Analysis of acyl fluxes through multiple pathways of triacylglycerol synthesis in developing soybean embryos. Plant Physiol. 2009, 150(1): 55-72.
doi: 10.1104/pp.109.137737 pmid: 19329563 |
[76] |
Chapman KD, Ohlrogge JB. Compartmentation of triacylglycerol accumulation in plants. J Biol Chem, 2012, 287(4): 2288-2294.
doi: 10.1074/jbc.R111.290072 pmid: 22090025 |
[77] |
Winichayakul S, Scott RW, Roldan M, Hatier JHB, Livingston S, Cookson R, Curran AC, Roberts NJ. In vivo packaging of triacylglycerols enhances Arabidopsis leaf biomass and energy density. Plant Physiol, 2013, 162(2): 626-639.
doi: 10.1104/pp.113.216820 pmid: 23616604 |
[78] | Qi JX, Liao RY, Li HL, Wang S, Chen ZY, Cui XY. Bioinformatics analysis of glycine max oleosin in soybean. J Jilin Agric Univ, 2021, 43(1): 51-58. |
齐家兴, 廖芮莹, 李红丽, 王爽, 陈展宇, 崔喜艳. 大豆油体蛋白基因家族的生物信息学分析. 吉林农业大学学报, 2021, 43(1): 51-58. | |
[79] | Qi HY, Qiang WD, Wang QM, Zou DY, Lu Z, Guo YX, Guan LL, Du LN, Yang J. Comparison of properties of five plant oil bodies. J Northwest A&F Univ, 2015, 43(2): 223-227. |
齐玉红, 强卫东, 王清曼, 邹德毅, 卢震, 郭咏昕, 官丽莉, 杜林娜, 杨晶.5种植物油体性质的比较. 西北农林科技大学学报 (自然科学版), 2015, 43(2): 223-227. | |
[80] | Tan XF, Jiang GX, Tan FY, Zhou WG, Luo KM, Sun HZ, Wang CN, Ma JL, He JL, Liang WH, Huang Y. Research report on industrialization development strategy of Vernicia fordii in Chinese. Econ For Res, 2011, 29(3): 1-7. |
谭晓风, 蒋桂雄, 谭方友, 周伟国, 吕平会, 罗克明, 孙汉洲, 王承南, 马锦林, 何佳林, 梁文汇, 黄艳. 我国油桐产业化发展战略调查研究报告. 经济林研究, 2011, 29(3): 1-7. | |
[81] | He F, Tan XF, Wang CN. A classification of Veraicia fordii’s cultivated regions in China. Econ For Res, 1987, 5(1): 1-9. |
何方, 谭晓风, 王承男. 中国油桐栽培区划. 经济林研究, 1987, 5(1): 1-9. | |
[82] | Sui SZ, Zhu QL, Zheng L. Guo YL, Li MY, Pei Y. Plant oleosin and their application on plant gene engineerings. China Biotechnol, 2003, 23(6): 17-21. |
眭顺照, 祝钦泷, 郑丽, 郭余龙, 李名扬, 裴炎. 植物蛋白oleosin及其在植物基因工程中的应用. 中国生物工程杂志, 2003, 23(6): 17-21. | |
[83] |
Vargo KB, Sood N, Moeller TD, Heiney PA, Hammer DA. Spherical micelles assembled from variants of recombinant oleosin. Langmuir, 2014, 30(38): 11292-11300.
doi: 10.1021/la502664e pmid: 25145981 |
[84] |
Vargo KB, Zaki AA, Warden-Rothman R, Tsourkas A, Hammer DA. Superparamagnetic iron oxide nanoparticle micelles stabilized by recombinant oleosin for targeted magnetic resonance imaging. Small, 2015, 11(12): 1409-1413.
doi: 10.1002/smll.201402017 pmid: 25418741 |
[85] |
Giddings G, Allison G, Brooks D, Carter A. Transgenic plants as factories for biopharmaceuticals. Nat Biotechnol, 2000, 18(11): 1151-1155.
pmid: 11062432 |
[86] |
Twyman RM, Stoger E, Schillberg S, Christou P, Fischer R. Molecular farming in plants: host systems and expression technology. Trends Biotechnol, 2003, 21(12): 570-578.
pmid: 14624867 |
[87] |
Bhatla SC, Kaushik V, Yadav MK. Use of oil bodies and oleosins in recombinant protein production and other biotechnological applications. Biotechnol Adv, 2010, 28(3): 293-300.
doi: 10.1016/j.biotechadv.2010.01.001 pmid: 20067829 |
[88] |
Nykiforuk CL, Shen Y, Murray EW, Boothe JG, Busseuil D, Rhéaume E, Tardif JC, Reid A, Moloney MM. Expression and recovery of biologically active recombinant Apolipoprotein AIMilano from transgenic safflower (Carthamus tinctorius) seeds. Plant Biotechnol J, 2011, 9(2): 250-263.
doi: 10.1111/j.1467-7652.2010.00546.x pmid: 20618764 |
[89] |
Huang J, Yang J, Guan LL, Yi SY, Du LN, Tian HS, Guo YX, Zhai F, Lu Z, Li HY, Li XK, Jiang C. Expression of bioactive recombinant human fibroblast growth factor 10 in Carthamus tinctorius L. seeds. Protein Expr Purif, 2017, 138: 7-12.
doi: 10.1016/j.pep.2015.09.016 |
[90] | Sun J, Jiang Y, Tao J. Structure, function and application of plant oleosin. Plant Physiol J, 2018, 54(3): 363-369. |
孙静, 姜宇, 陶俊. 植物油质蛋白的结构、功能及应用. 植物生理学报, 2018, 54(3): 363-369. | |
[91] | Zhang S, Guo SS, Wang RW, Ma RY, Wu XM, Chen PJ, Wang R. The roles of PARK gene family in myopathy. Hereditas (Beijing), 2022, 44(7): 545-555. |
张爽, 郭珊珊, 王汝雯, 马仁燕, 吴显敏, 陈佩杰, 王茹. PARK基因家族在骨骼肌肌病中的研究进展. 遗传, 2022, 44(7): 545-555. | |
[92] | Guo YX, Yan SP, Wang YX.Recent advances in functional conservation and divergence of recombinase RAD51 and DMC1. Hereditas (Beijing), 2022, 44(5): 398-413. |
郭雨萱, 严顺平, 王应祥. 重组酶RAD51和DMC1功能保守和分化研究进展. 遗传, 2022, 44(5): 398-413. |
[1] | 黄万龙,张秀秀,李嫒,苗向阳. 利用RNA-seq技术筛选大白猪皮下和肌内脂肪 组织差异表达基因[J]. 遗传, 2017, 39(6): 501-511. |
[2] | 陈昊 蒋桂雄 龙洪旭 谭晓风. 基于油桐种子3个不同发育时期转录组的油脂合成代谢途径分析[J]. 遗传, 2013, 35(12): 1403-1414. |
[3] | 许瑛杰,王绿娅. 脂质代谢相关基因变异在早发冠心病中作用的研究进展[J]. 遗传, 2008, 30(6): 671-676. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: