[1] | Dodson MV, Jiang ZH, Chen J, Hausman GJ, Guan LL, Novakofski J, Thompson DP, Lorenzen CL, Fernyhough ME, Mir PS, Reecy JM. Allied industry approaches to alter intramuscular fat content and composition in beef animals. J Food Sci, 2010, 75(1): R1-R8. | [2] | Listrat A, Lebret B, Louveau I, Astruc T, Bonnet M, Lefaucheur L, Picard B, Bugeon J. How muscle structure and composition influence meat and flesh quality. Sci World J, 2016, 2016: 3182746. | [3] | Kl?ting N, Blüher M. Adipocyte dysfunction, inflammation and metabolic syndrome. Rev Endocr Metab Disord, 2014, 15(4): 277-287. | [4] | Suzuki K, Irie M, Kadowaki H, Shibata T, Kumagai M, Nishida A. Genetic parameter estimates of meat quality traits in Duroc pigs selected for average daily gain, longissimus muscle area, backfat thickness, and intramuscular fat content. J Anim Sci, 2005, 83(9): 2058-2065. | [5] | Wood JD. Meat quality and the designer pig//Lyons TP, Coles DJA. Concepts of Meat Science. Nottingham, England: Nottingham Nutrition International, 2001. | [6] | Gao QX, Li J, Liu HL, Wang LY, Xu YX. Comparative study on lipogenic and lipolytic gene expression in intramuscular fat tissue between growing Erhualian and large white pigs. Acta Genet Sinica, 2004, 31(11): 1218-1225. | [6] | 高勤学, 李俊, 刘红林, 王林云, 徐银学. 二花脸猪与大约克猪生长期肌内脂肪合成与水解基因表达特征的比较研究. 遗传学报, 2004, 31(11): 1218-1225. | [7] | Qian Y, Zeng YQ, Du JF, Cui JX, Li H, Chen QM, Song YP, Chen W. CDS cloning and relationship between intramuscular fat content and mRNA expression of PID1 gene in pig. Hereditas (Beijing), 2010, 32(11): 1153-1158. | [7] | 钱源, 曾勇庆, 杜金芳, 崔景香, 李华, 陈其美, 宋一萍, 陈伟. 猪PID1基因CDS区的克隆及其mRNA表达与肌内脂肪沉积关系. 遗传, 2010, 32(11): 1153-1158. | [8] | Zhou GX, Wang SB, Wang ZG, Zhu XT, Shu G, Liao WY, Yu KF, Gao P, Xi QY, Wang XQ, Zhang YL, Yuan L, Jiang QY. Global comparison of gene expression profiles between intramuscular and subcutaneous adipocytes of neonatal landrace pig using microarray. Meat Sci, 2010, 86(2): 440-450. | [9] | Sun WX, Wang HH, Jiang BC, Zhao YY, Xie ZR, Xiong K, Chen J. Global comparison of gene expression between subcutaneous and intramuscular adipose tissue of mature Erhualian pig. Genet Mol Res, 2013, 12(4): 5085-5101. | [10] | Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods, 2008, 5(7): 621-628. | [11] | Qi YX, Liu YB, Rong WH. RNA-Seq and its applications: a new technology for transcriptomics. Hereditas (Beijing), 2011, 33(11): 1191-1202. | [11] | 祁云霞, 刘永斌, 荣威恒. 转录组研究新技术: RNA-Seq及其应用. 遗传, 2011, 33(11): 1191-1202. | [12] | Miao XY, Luo QM, Qin XY. Genome-wide transcriptome analysis of mRNAs and microRNAs in Dorset and Small Tail Han sheep to explore the regulation of fecundity. Mol Cell Endocrinol, 2015, 402: 32-42. | [13] | Sodhi SS, Park WC, Ghosh M, Kim JN, Sharma N, Shin KY, Cho IC, Ryu YC, Oh SJ, Kim SH, Song KD, Hong SP, Cho SA, Kim HB, Jeong DK. Comparative transcriptomic analysis to identify differentially expressed genes in fat tissue of adult Berkshire and Jeju Native Pig using RNA-seq. Mol Biol Rep, 2014, 41(9): 6305-6315. | [14] | Xu T, Gu LH, Schachtschneider KM, Liu XL, Huang W, Xie M, Hou SS. Identification of differentially expressed genes in breast muscle and skin fat of postnatal Pekin duck. PLoS One, 2014, 9(9): e107574. | [15] | Wang XL, Zhou GX, Xu XC, Geng RQ, Zhou JP, Yang YX, Yang ZX, Chen YL. Transcriptome profile analysis of adipose tissues from fat and short-tailed sheep. Gene, 2014, 549(2): 252-257. | [16] | Miao XY, Luo QM, Qin XY, Guo YT, Zhao HJ. Genome-wide mRNA-seq profiling reveals predominant down-regulation of lipid metabolic processes in adipose tissues of Small Tail Han than Dorset sheep. Biochem Biophys Res Commun, 2015, 467(2): 413-420. | [17] | Miao XY, Luo QM, Qin XY, Guo YT. Genome-wide analysis of microRNAs identifies the lipid metabolism pathway to be a defining factor in adipose tissue from different sheep. Sci Rep, 2015, 5: 18470. | [18] | Jin W, Olson EN, Moore SS, Basarab JA, Basu U, Guan LL. Transcriptome analysis of subcutaneous adipose tissues in beef cattle using 3' digital gene expression-tag profiling. J Anim Sci, 2012, 90(1): 171-183. | [19] | Lee HJ, Jang M, Kim H, Kwak W, Park W, Hwang JY, Lee CK, Jang GW, Park MN, Kim HC, Jeong JY, Seo KS, Kim H, Cho S, Lee BY. Comparative transcriptome analysis of adipose tissues reveals that ECM-receptor interaction is involved in the depot-specific adipogenesis in cattle. PLoS One, 2013, 8(6): e66267. | [20] | Sheng XH, Ni HM, Liu YH, Li JY, Zhang LP, Guo Y. RNA-seq analysis of bovine intramuscular, subcutaneous and perirenal adipose tissues. Mol Biol Rep, 2014, 41(3): 1631-1637. | [21] | Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 2009, 25(9): 1105-1111. | [22] | Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics, 2015, 31(2): 166-169. | [23] | Zhou L, Chen JH, Li ZZ, Li XX, Hu XD, Huang Y, Zhao XK, Liang CZ, Wang Y, Sun L, Shi M, Xu XH, Shen F, Chen MS, Han ZJ, Peng ZY, Zhai QN, Chen J, Zhang ZF, Yang RL, Ye JX, Guan ZC, Yang H, Gui YT, Wang J, Cai ZM, Zhang XM. Integrated profiling of microRNAs and mRNAs: microRNAs located on Xq27.3 associate with clear cell renal cell carcinoma. PLoS One, 2010, 5(12): e15224. | [24] | Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol, 2010, 11(10): R106. | [25] | Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman WH, Pagès F, Trajanoski Z, Galon J. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics, 2009, 25(8): 1091-1093. | [26] | Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y. KEGG for linking genomes to life and the environment. Nucleic Acids Res, 2008, 36(S1): D480-D484. | [27] | Lim D, Kim NK, Park HS, Lee SH, Cho YM, Oh SJ, Kim TH, Kim H. Identification of candidate genes related to bovine marbling using protein-protein interaction networks. Int J Biol Sci, 2011, 7(7): 992-1002. | [28] | Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ. Nuclear receptors and lipid physiology: opening the X-files. Science, 2001, 294(5548): 1866-1870. | [29] | Pearen MA, Myers SA, Raichur S, Ryall JG, Lynch GS, Muscat GEO. The orphan nuclear receptor, NOR-1, a target of β-adrenergic signaling, regulates gene expression that controls oxidative metabolism in skeletal muscle. Endocrinology, 2008, 149(6): 2853-2865. | [30] | Pearen MA, Ryall JG, Maxwell MA, Ohkura N, Lynch GS, Muscat GEO. The orphan nuclear receptor, NOR-1, is a target of β-adrenergic signaling in skeletal muscle. Endocrinology, 2006, 147(11): 5217-5227. | [31] | Pearen MA, Goode JM, Fitzsimmons RL, Eriksson NA, Thomas GP, Cowin GJ, Wang SCM, Tuong ZK, Muscat GEO. Transgenic muscle-specific Nor-1 expression regulates multiple pathways that effect adiposity, metabolism, and endurance. Mol Endocrinol, 2013, 27(11): 1897-1917. | [32] | Jensen JH, Conley LN, Hedegaard J, Nielsen M, Young JF, Oksbjerg N, Hornsh?j H, Bendixen C, Thomsen B. Gene expression profiling of porcine skeletal muscle in the early recovery phase following acute physical activity. Exp Physiol, 2012, 97(7): 833-848. | [33] | Kido T, Kurata H, Kondo K, Itakura H, Okazaki M, Urata T, Yokoyama S. Bioinformatic analysis of plasma apolipoproteins A-I and A-II revealed unique features of A-I/A-II HDL particles in human plasma. Sci Rep, 2016, 6: 31532. | [34] | Hausman GJ, Barb CR, Dean RG. Patterns of gene expression in pig adipose tissue: transforming growth factors, interferons, interleukins, and apolipoproteins. J Anim Sci, 2007, 85(10): 2445-2456. | [35] | Usui I, Imamura T, Huang J, Satoh H, Olefsky JM. Cdc42 is a Rho GTPase family member that can mediate insulin signaling to glucose transport in 3T3-L1 adipocytes. J Biol Chem, 2003, 278(16): 13765-13774. | [36] | Stewart JD, Marchan R, Lesjak MS, Lambert J, Hergenroeder R, Ellis JK, Lau CH, Keun HC, Schmitz G, Schiller J, Eibisch M, Hedberg C, Waldmann H, Lausch E, Tanner B, Sehouli J, Sagemueller J, Staude H, Steiner E, Hengstler JG. Choline-releasing glycerophosphodiesterase EDI3 drives tumor cell migration and metastasis. Proc Natl Acad Sci USA, 2012, 109(21): 8155-8160. | [37] | Corda D, Mosca MG, Ohshima N, Grauso L, Yanaka N, Mariggiò S. The emerging physiological roles of the glycerophosphodiesterase family. FEBS J, 2014, 281(4): 998-1016. | [38] | Gardan D, Gondret F, Louveau I. Lipid metabolism and secretory function of porcine intramuscular adipocytes compared with subcutaneous and perirenal adipocytes. Am J Physiol Endocrinol Metab, 2006, 291(2): E372-E380. | [39] | Bost F, Aouadi M, Caron L, Binétruy B. The role of MAPKs in adipocyte differentiation and obesity. Biochimie, 2005, 87(1): 51-56. | [40] | Aouadi M, Laurent K, Prot M, Le Marchand-Brustel Y, Binetruy B, Bost F. Inhibition of p38MAPK increases adipogenesis from embryonic to adult stages. Diabetes, 2006, 55(2): 281-289. | [41] | Bost F, Aouadi M, Caron L, Even P, Belmonte N, Prot M, Dani C, Hofman P, Pages G, Pouyssegur J, Le Marchand-Brustel Y, Binetruy B. The extracellular signal-regulated kinase isoform ERK1 is specifically required for in vitro and in vivo adipogenesis. Diabetes, 2005, 54(2): 402-411. | [42] | Ferguson BS, Nam H, Stephens JM, Morrison RF. Mitogen-dependent regulation of DUSP1 governs ERK and p38 signaling during early 3T3-L1 adipocyte differentiation. J Cell Physiol, 2016, 231(7): 1562-1574. | [43] | Sakaue H, Ogawa W, Nakamura T, Mori T, Nakamura K, Kasuga M. Role of MAPK phosphatase-1 (MKP-1) in adipocyte differentiation. J Biol Chem, 2004, 279(38): 39951-39957. | [44] | Asaki T, Konishi M, Miyake A, Kato S, Tomizawa M, Itoh N. Roles of fibroblast growth factor 10 (Fgf10) in adipogenesis in vivo. Mol Cell Endocrinol, 2004, 218(1-2): 119-128. | [45] | Ohta H, Itoh N. Roles of FGFs as adipokines in adipose tissue development, remodeling, and metabolism. Front Endocrinol, 2014, 5: 18. | [46] | Ishibashi J, Firtina Z, Rajakumari S, Wood KH, Conroe HM, Steger DJ, Seale P. An evi1-C/EBPβ complex controls peroxisome proliferator-activated receptor γ2 gene expression to initiate white fat cell differentiation. Mol Cell Biol, 2012, 32(12): 2289-2299. | [47] | Zhang HX, Zhu XT, Shu G, Zhou GX, Gao P, Gao SJ, Zhang CM, Jiang QY, Chen YS. Differential mRNA expression profiles of porcine intramuscular preadipocytes compared with subcutaneous preadipocytes during differentiation. Scientia Agric Sinica, 2008, 41(11): 3760-3768. | [47] | 张罕星, 朱晓彤, 束刚, 周桂炫, 高萍, 高淑静, 张常明, 江青艳, 陈瑶生. 猪肌内脂肪前体细胞与皮下脂肪前体细胞分化过程中基因差异表达分析. 中国农业科学, 2008, 41(11): 3760-3768. | [48] | Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li Y, Hao YL, Ooi CE, Godwin B, Vitols E, Vijayadamodar G, Pochart P, Machineni H, Welsh M, Kong Y, Zerhusen B, Malcolm R, Varrone Z, Collis A, Minto M, Burgess S, McDaniel L, Stimpson E, Spriggs F, Williams J, Neurath K, Ioime N, Agee M, Voss E, Furtak K, Renzulli R, Aanensen N, Carrolla S, Bickelhaupt E, Lazovatsky Y, DaSilva A, Zhong J, Stanyon CA, Finley RL Jr, White KP, Braverman M, Jarvie T, Gold S, Leach M, Knight J, Shimkets RA, McKenna MP, Chant J, Rothberg JM. A protein interaction map of Drosophila melanogaster. Science, 2003, 302(5651): 1727-1736. | [49] | Partridge CG, Fawcett GL, Wang B, Semenkovich CF, Cheverud JM. The effect of dietary fat intake on hepatic gene expression in LG/J AND SM/J mice. BMC Genomics, 2014, 15(1): 99. | [50] | Wu YS, Chen YT, Bao YT, Li ZM, Zhou XJ, He JN, Dai SJ, Li CY. Identification and verification of potential therapeutic target genes in berberine-treated zucker diabetic fatty rats through bioinformatics analysis. PLoS One, 2016, 11(11): e0166378. | [51] | Shimizu K, Uematsu A, Imai Y, Sawasaki T. Pctaire1/ Cdk16 promotes skeletal myogenesis by inducing myoblast migration and fusion. FEBS Lett, 2014, 588(17): 3030-3037. |
|