遗传 ›› 2023, Vol. 45 ›› Issue (3): 221-228.doi: 10.16288/j.yczz.22-399
收稿日期:
2022-12-05
修回日期:
2023-01-11
出版日期:
2023-03-20
发布日期:
2023-02-14
通讯作者:
容益康,崔敏
E-mail:1224033987@qq.com;zdqr@hotmail.com;cmly3579@163.com
作者简介:
王承贤,在读硕士研究生,专业方向:病理学。E-mail: 基金资助:
Chengxian Wang(), Yikang S. Rong(), Min Cui()
Received:
2022-12-05
Revised:
2023-01-11
Online:
2023-03-20
Published:
2023-02-14
Contact:
S. Rong Yikang,Cui Min
E-mail:1224033987@qq.com;zdqr@hotmail.com;cmly3579@163.com
Supported by:
摘要:
端粒是保护线性染色体末端的核酸-蛋白复合物。与常见的真核生物短重复序列组成的端粒不同,黑腹果蝇(Drosophila melanogaster)端粒DNA由反转座子组成,其转座行为被果蝇宿主严格限制在端粒,既实现延长端粒的功能,也减少转座子跳跃对基因组的损伤。但果蝇宿主是如何完成如此精确调控的机制尚不明确。目前已知的全基因组范围抑制转座子表达包括H3K9me3参与的异染色质形成途径和piRNA路径,而近期研究发现果蝇端粒保护蛋白参与端粒反转座子的特异调控。本文主要综述了端粒保护蛋白在调控端粒转座子中的具体功能。对果蝇端粒转座子调控的研究有利于更好地理解宿主与转座子协同进化的分子机制。
王承贤, 容益康, 崔敏. 果蝇限制端粒转座子的分子机制[J]. 遗传, 2023, 45(3): 221-228.
Chengxian Wang, Yikang S. Rong, Min Cui. The molecular mechanism of Drosophila restricting telomeric transposons[J]. Hereditas(Beijing), 2023, 45(3): 221-228.
[1] | Muller HJ. The remaking of chromosomes. Collect Net, 1938, (8): 181-198. |
[2] |
Jain D, Cooper JP. Telomeric strategies: means to an end. Annu Rev Genet, 2010, 44: 243-269.
doi: 10.1146/annurev-genet-102108-134841 pmid: 21047259 |
[3] |
Blackburn EH, Gall JG. A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J Mol Biol, 1978, 120(1): 33-53.
doi: 10.1016/0022-2836(78)90294-2 pmid: 642006 |
[4] |
Palm W, de Lange T. How shelterin protects mammalian telomeres. Annu Rev Genet, 2008, 42: 301-334.
doi: 10.1146/annurev.genet.41.110306.130350 pmid: 18680434 |
[5] |
Savage SA, Giri N, Baerlocher GM, Orr N, Lansdorp PM, Alter BP. TINF2, a component of the shelterin telomere protection complex, is mutated in dyskeratosis congenita. Am J Hum Genet, 2008, 82(2): 501-509.
doi: 10.1016/j.ajhg.2007.10.004 pmid: 18252230 |
[6] |
Moser BA, Nakamura TM. Protection and replication of telomeres in fission yeast. Biochem Cell Biol, 2009, 87(5): 747-758.
doi: 10.1139/O09-037 pmid: 19898524 |
[7] |
Wellinger RJ. The CST complex and telomere maintenance: the exception becomes the rule. Mol cell, 2009, 36(2): 168-169.
doi: 10.1016/j.molcel.2009.10.001 pmid: 19854124 |
[8] |
Liu D, O'Connor MS, Qin J, Zhou SY. Telosome, a mammalian telomere-associated complex formed by multiple telomeric proteins. J Biol Chem, 2004, 279(49): 51338-51342.
doi: 10.1074/jbc.M409293200 pmid: 15383534 |
[9] |
de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev, 2005, 19(18): 2100-2110.
doi: 10.1101/gad.1346005 |
[10] |
Surovtseva YV, Churikov D, Boltz KA, Song XY, Lamb JC, Warrington R, Leehy K, Heacock M, Price CM, Shippen DE. Conserved telomere maintenance component 1 interacts with STN1 and maintains chromosome ends in higher eukaryotes. Mol Cell, 2009, 36(2): 207-218.
doi: 10.1016/j.molcel.2009.09.017 pmid: 19854131 |
[11] |
Cenci G, Siriaco G, Raffa GD, Kellum R, Gatti M. The Drosophila HOAP protein is required for telomere capping. Nat Cell Biol, 2003, 5(1): 82-84.
doi: 10.1038/ncb902 |
[12] |
Gao GJ, Walser JC, Beaucher ML, Morciano P, Wesolowska N, Chen J, Rong YS. HipHop interacts with HOAP and HP1 to protect Drosophila telomeres in a sequence-independent manner. EMBO J, 2010, 29(4): 819-829.
doi: 10.1038/emboj.2009.394 |
[13] |
Raffa GD, Siriaco G, Cugusi S, Ciapponi L, Cenci G, Wojcik E, Gatti M. The Drosophila modigliani (moi) gene encodes a HOAP-interacting protein required for telomere protection. Proc Natl Acad Sci USA, 2009, 106(7): 2271-2276.
doi: 10.1073/pnas.0812702106 |
[14] |
Raffa GD, Raimondo D, Sorino C, Cugusi S, Cenci G, Cacchione S, Gatti M, Ciapponi L. Verrocchio, a Drosophila OB fold-containing protein, is a component of the terminin telomere-capping complex. Genes Dev, 2010, 24(15): 1596-1601.
doi: 10.1101/gad.574810 |
[15] |
Cicconi A, Micheli E, Vernì F, Jackson A, Gradilla AC, Cipressa F, Raimondo D, Bosso G, Wakefield JG, Ciapponi L, Cenci G, Gatti M, Cacchione S, Raffa GD. The Drosophila telomere-capping protein Verrocchio binds single-stranded DNA and protects telomeres from DNA damage response. Nucleic Acids Res, 2017, 45(6): 3068-3085.
doi: 10.1093/nar/gkw1244 |
[16] |
Zhang Y, Zhang L, Tang XN, Bhardwaj SR, Ji JY, Rong YS. MTV, an ssDNA protecting complex essential for transposon-based telomere maintenance in Drosophila. PLoS Genet, 2016, 12(11): e1006435.
doi: 10.1371/journal.pgen.1006435 |
[17] |
Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH. A unified classification system for eukaryotic transposable elements. Nat Rev Genet, 2007, 8(12): 973-982.
doi: 10.1038/nrg2165 pmid: 17984973 |
[18] |
George JA, DeBaryshe PG, Traverse KL, Celniker SE, Pardue ML. Genomic organization of the Drosophila telomere retrotransposable elements. Genome Res, 2006, 16(10): 1231-1240.
pmid: 16963706 |
[19] |
Zhang L, Beaucher M, Cheng Y, Rong YS. Coordination of transposon expression with DNA replication in the targeting of telomeric retrotransposons in Drosophila. EMBO J, 2014, 33(10): 1148-1158.
doi: 10.1002/embj.201386940 pmid: 24733842 |
[20] |
Rashkova S, Karam SE, Kellum R, Pardue ML. Gag proteins of the two Drosophila telomeric retrotransposons are targeted to chromosome ends. J Cell Biol, 2002, 159(3): 397-402.
doi: 10.1083/jcb.200205039 |
[21] |
Abad JP, De Pablos B, Osoegawa K, De Jong PJ, Martín-Gallardo A, Villasante A. TAHRE, a novel telomeric retrotransposon from Drosophila melanogaster, reveals the origin of Drosophila telomeres. Mol Biol Evol, 2004, 21(9): 1620-1624.
doi: 10.1093/molbev/msh180 |
[22] |
Shpiz S, Kwon D, Uneva A, Kim M, Klenov M, Rozovsky Y, Georgiev P, Savitsky M, Kalmykova A. Characterization of Drosophila telomeric retroelement TAHRE: transcription, transpositions, and RNAi-based regulation of expression. Mol Biol Evol, 2007, 24(11): 2535-2545.
doi: 10.1093/molbev/msm205 |
[23] |
Casacuberta E, Pardue ML. HeT-A and TART, two Drosophila retrotransposons with a bona fide role in chromosome structure for more than 60 million years. Cytogenet Genome Res, 2005, 110(1-4): 152-159.
pmid: 16093667 |
[24] |
Villasante A, Abad JP, Planelló R, Méndez-Lago M, Celniker SE, de Pablos B. Drosophila telomeric retrotransposons derived from an ancestral element that was recruited to replace telomerase. Genome Res, 2007, 17(12): 1909-1918.
doi: 10.1101/gr.6365107 pmid: 17989257 |
[25] |
Danilevskaya ON, Lowenhaupt K, Pardue ML. Conserved subfamilies of the Drosophila HeT-A telomere-specific retrotransposon. Genetics, 1998, 148(1): 233-242.
doi: 10.1093/genetics/148.1.233 pmid: 9475735 |
[26] |
Abad JP, Villasante A. The 3' non-coding region of the Drosophila melanogaster HeT-A telomeric retrotransposon contains sequences with propensity to form G-quadruplex DNA. FEBS Lett, 1999, 453(1-2): 59-62.
pmid: 10403375 |
[27] |
Varshney D, Spiegel J, Zyner K, Tannahill D, Balasubramanian S. The regulation and functions of DNA and RNA G-quadruplexes. Nat Rev Mol Cell Biol, 2020, 21(8): 459-474.
doi: 10.1038/s41580-020-0236-x |
[28] |
Sheen FM, Levis RW. Transposition of the LINE-like retrotransposon TART to Drosophila chromosome termini. Proc Natl Acad Sci USA, 1994, 91(26): 12510-12514.
pmid: 7809068 |
[29] |
George JA, Traverse KL, DeBaryshe PG, Kelley KJ, Pardue ML. Evolution of diverse mechanisms for protecting chromosome ends by Drosophila TART telomere retrotransposons. Proc Natl Acad Sci USA, 2010, 107(49): 21052-21057.
doi: 10.1073/pnas.1015926107 pmid: 21088221 |
[30] |
Maxwell PH, Belote JM, Levis RW. Identification of multiple transcription initiation, polyadenylation, and splice sites in the Drosophila melanogaster TART family of telomeric retrotransposons. Nucleic Acids Res, 2006, 34(19): 5498-5507.
doi: 10.1093/nar/gkl709 |
[31] |
Mizrokhi LJ, Georgieva SG, Ilyin YV. jockey, a mobile Drosophila element similar to mammalian LINEs, is transcribed from the internal promoter by RNA polymerase II. Cell, 1988, 54(5): 685-691.
pmid: 2842063 |
[32] | Pardue ML, DeBaryshe PG. Drosophila telomeres: a variation on the telomerase theme. Fly (Austin)Fly, 2008, 2(3): 101-110. |
[33] | Zhang L, Rong YS. Retrotransposons at Drosophila telomeres: host domestication of a selfish element for the maintenance of genome integrity. Biochim Biophys Acta, 2012, 1819(7): 771-775. |
[34] |
Akkouche A, Mugat B, Barckmann B, Varela-Chavez C, Li B, Raffel R, Pélisson A, Chambeyron S. Piwi is required during Drosophila embryogenesis to license dual-strand piRNA clusters for transposon repression in adult ovaries. Mol Cell, 2017, 66(3): 411-419.e4.
doi: S1097-2765(17)30207-1 pmid: 28457744 |
[35] |
Perrini B, Piacentini L, Fanti L, Altieri F, Chichiarelli S, Berloco M, Turano C, Ferraro A, Pimpinelli S. HP1 controls telomere capping, telomere elongation, and telomere silencing by two different mechanisms in Drosophila. Mol Cell, 2004, 15(3): 467-476.
pmid: 15304225 |
[36] |
Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ. Discrete small RNA- generating loci as master regulators of transposon activity in Drosophila. Cell, 2007, 128(6): 1089-1103.
doi: 10.1016/j.cell.2007.01.043 pmid: 17346786 |
[37] |
Sato K, Siomi MC. Two distinct transcriptional controls triggered by nuclear Piwi-piRISCs in the Drosophila piRNA pathway. Curr Opin Struct Biol, 2018, 53: 69-76.
doi: 10.1016/j.sbi.2018.06.005 |
[38] |
Khurana JS, Theurkauf W. piRNAs, transposon silencing, and Drosophila germline development. J Cell Biol, 2010, 191(5): 905-913.
doi: 10.1083/jcb.201006034 |
[39] |
Shareef MM, King C, Damaj M, Badagu R, Huang DW, Kellum R. Drosophila heterochromatin protein 1 (HP1)/ origin recognition complex (ORC) protein is associated with HP1 and ORC and functions in heterochromatin- induced silencing. Mol Biol Cell, 2001, 12(6): 1671-1685.
doi: 10.1091/mbc.12.6.1671 pmid: 11408576 |
[40] |
Berloco M, Fanti L, Sheen F, Levis RW, Pimpinelli S. Heterochromatic distribution of HeT-A- and TART-like sequences in several Drosophila species. Cytogenet Genome Res, 2005, 110(1-4): 124-133.
pmid: 16093664 |
[41] |
Raffa GD, Ciapponi L, Cenci G, Gatti M. Terminin: a protein complex that mediates epigenetic maintenance of Drosophila telomeres. Nucleus, 2011, 2(5): 383-391.
doi: 10.4161/nucl.2.5.17873 |
[42] |
Chen T, Wei XL, Courret C, Cui M, Cheng L, Wu J, Ahmad K, Larracuente AM, Rong YS. The nanoCUT&RUN technique visualizes telomeric chromatin in Drosophila. PLoS Genet, 2022, 18(9): e1010351.
doi: 10.1371/journal.pgen.1010351 |
[43] |
Henikoff S, Ahmad K, Malik HS. The centromere paradox: stable inheritance with rapidly evolving DNA. Science, 2001, 293(5532): 1098-1102.
pmid: 11498581 |
[44] |
Cosby RL, Chang NC, Feschotte C. Host-transposon interactions: conflict, cooperation, and cooption. Genes Dev, 2019, 33(17-18): 1098-1116.
doi: 10.1101/gad.327312.119 |
[45] |
Chen LY, Lingner J. CST for the grand finale of telomere replication. Nucleus, 2013, 4(4): 277-282.
doi: 10.4161/nucl.25701 |
[46] |
Feng XY, Hsu SJ, Bhattacharjee A, Wang YY, Diao JJ, Price CM. CTC1-STN1 terminates telomerase while STN1- TEN1 enables C-strand synthesis during telomere replication in colon cancer cells. Nat Commun, 2018, 9(1): 2827.
doi: 10.1038/s41467-018-05154-z |
[47] |
Gu PL, Jia ST, Takasugi T, Smith E, Nandakumar J, Hendrickson E, Chang S. CTC1-STN1 coordinates G- and C-strand synthesis to regulate telomere length. Aging Cell, 2018, 17(4): e12783.
doi: 10.1111/acel.2018.17.issue-4 |
[48] |
Puglisi A, Bianchi A, Lemmens L, Damay P, Shore D. Distinct roles for yeast Stn1 in telomere capping and telomerase inhibition. EMBO J, 2008, 27(17): 2328-2339.
doi: 10.1038/emboj.2008.158 pmid: 19172739 |
[49] |
Matmati S, Vaurs M, Escandell JM, Maestroni L, Nakamura TM, Ferreira MG, Géli V, Coulon S. The fission yeast Stn1-Ten1 complex limits telomerase activity via its SUMO-interacting motif and promotes telomeres replication. Sci Adv, 2018, 4(5): eaar2740.
doi: 10.1126/sciadv.aar2740 |
[50] |
Chen LY, Redon S, Lingner J. The human CST complex is a terminator of telomerase activity. Nature, 2012, 488(7412): 540-544.
doi: 10.1038/nature11269 |
[51] |
Renfrew KB, Song XY, Lee JR, Arora A, Shippen DE.POT1a and components of CST engage telomerase and regulate its activity in Arabidopsis. PLoS Genet, 2014, 10(10): e1004738.
doi: 10.1371/journal.pgen.1004738 |
[52] |
Saint-Leandre B, Christopher C, Levine MT. Adaptive evolution of an essential telomere protein restricts telomeric retrotransposons. eLife, 2020, 9: e60987.
doi: 10.7554/eLife.60987 |
[53] |
Cui M, Bai YF, Li KL, Rong YS. Taming active transposons at Drosophila telomeres: the interconnecttion between HipHop's roles in capping and transcriptional silencing. PLoS Genet, 2021, 17(11): e1009925.
doi: 10.1371/journal.pgen.1009925 |
[54] |
Klattenhoff C, Xi HL, Li CJ, Lee S, Xu J, Khurana JS, Zhang F, Schultz N, Koppetsch BS, Nowosielska A, Seitz H, Zamore PD, Weng ZP, Theurkauf WE. The Drosophila HP1 homolog Rhino is required for transposon silencing and piRNA production by dual-strand clusters. Cell, 2009, 138(6): 1137-1149.
doi: 10.1016/j.cell.2009.07.014 pmid: 19732946 |
[1] | 魏勇, 何玉兰, 郑学礼. RNAi在抗蚊媒病毒感染中的研究进展[J]. 遗传, 2020, 42(2): 153-160. |
[2] | 刘启鹏, 安妮, 岑山, 李晓宇. piRNA抑制基因转座的分子机制[J]. 遗传, 2018, 40(6): 445-450. |
[3] | 李恩惠,赵欣,张策,刘威. 脆性X智力低下蛋白参与非编码RNA通路的研究进展[J]. 遗传, 2018, 40(2): 87-94. |
[4] | 袁志恒,赵艳梅. piRNA/PIWI功能调控与精子发生[J]. 遗传, 2017, 39(8): 683-691. |
[5] | 营孙阳, 熊加秀, 麦洪旭, 林佳佳, 姜丽娜, 程龙, 叶棋浓. 端粒酶调控研究进展[J]. 遗传, 2016, 38(4): 289-299. |
[6] | 刘静 杜建厂. 植物LTR-反转座子中Orf1基因的分子进化[J]. 遗传, 2013, 35(9): 1117-1124. |
[7] | 王伟,王珊珊,李辉,王宁. 鸡的端粒生物学研究[J]. 遗传, 2012, 34(1): 19-26. |
[8] | 张秀峰,唐文如,罗瑛. 衰老或肿瘤: 端粒酶和p53的相互作用[J]. 遗传, 2009, 31(5): 451-456. |
[9] | 郭艳合,刘立,蔡荣,钱程. 小RNA家族的新成员—piRNA[J]. 遗传, 2008, 30(1): 28-34. |
[10] | 王渭霞,刘小川,朱廷恒. 高等植物端粒和端粒酶的研究进展[J]. 遗传, 2003, 25(1): 113-118. |
[11] | 程希远,庞建新,吴曙光,兰和魁,任大明,. 端粒酶反转录功能区基因的表达和纯化 [J]. 遗传, 2002, 24(6): 675-678. |
[12] | 张红梅,张丽珊,杨德同,周家华,洪泽辉. 反义hTR抑制人胰腺癌P3细胞系端粒酶活性和增殖的研究[J]. 遗传, 2002, 24(3): 237-241. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: