遗传 ›› 2020, Vol. 42 ›› Issue (2): 153-160.doi: 10.16288/j.yczz.19-262
收稿日期:
2019-10-15
修回日期:
2019-12-14
出版日期:
2020-01-02
发布日期:
2020-01-07
基金资助:
Yong Wei(), Yulan He, Xueli Zheng()
Received:
2019-10-15
Revised:
2019-12-14
Online:
2020-01-02
Published:
2020-01-07
Supported by:
摘要:
蚊媒病因具有较高的发病率和传播率使其成为全球关注的重要公共卫生问题。蚊虫作为蚊媒病的传播媒介,研究其与蚊媒病毒两者之间的相互作用机制将有助于蚊媒病的防控。蚊虫抵御蚊媒病毒的先天免疫降低和病毒成功逃避蚊虫免疫屏障为病毒在蚊虫体内的持续感染和蚊媒病的暴发流行造成了潜在风险。RNA干扰(RNA interference, RNAi)途径作为蚊虫体内强大的抗病毒防御屏障,通过产生多种小RNA降解病毒RNA,从而达到抑制病毒复制和传播的目的。本文对小干扰RNA (small interfering RNA, siRNA)、微小RNA (microRNA, miRNA)、Piwi蛋白相作用RNA (Piwi-interacting RNA, piRNA)等3种小分子RNA在蚊虫体内发挥抗蚊媒病毒感染的先天免疫机制的相关研究进行了综述,以期为蚊媒病的防控提供理论参考。
魏勇, 何玉兰, 郑学礼. RNAi在抗蚊媒病毒感染中的研究进展[J]. 遗传, 2020, 42(2): 153-160.
Yong Wei, Yulan He, Xueli Zheng. Research progress in RNA interference against the infection of mosquito-borne viruses[J]. Hereditas(Beijing), 2020, 42(2): 153-160.
[1] |
Gubler DJ . Human arbovirus infections worldwide. Ann N Y Acad Sci, 2001,951:13-24.
doi: 10.1111/j.1749-6632.2001.tb02681.x pmid: 11797771 |
[2] |
Beckham JD, Tyler KL . Arbovirus infections. Continuum (Minneap Minn), 2015,21:1599-1611.
doi: 10.1212/CON.0000000000000240 pmid: 26633778 |
[3] |
Laureti M, Narayanan D, Rodriguez-Andres J, Fazakerley JK, Kedzierski L . Flavivirus receptors: diversity, identity, and cell entry. Front Immunol, 2018,9:2180.
doi: 10.3389/fimmu.2018.02180 pmid: 30319635 |
[4] |
Lim EXY, Lee WS, Madzokere ET, Herrero LJ . Mosquitoes as suitable vectors for alphaviruses. Viruses, 2018,10(2):E84.
doi: 10.3390/v10020084 pmid: 29443908 |
[5] | Wuerth JD, Weber F . Phleboviruses and the type I interferon response. Viruses, 2016,8(6):174. |
[6] |
Dash AP, Bhatia R, Sunyoto T, Mourya DT . Emerging and re-emerging arboviral diseases in Southeast Asia. J Vector Borne Dis, 2013,50(2):77-84.
pmid: 23995308 |
[7] |
Lowe R, Barcellos C, Brasil P, Cruz OG, Honório NA, Kuper H, Carvalho MS . The Zika virus epidemic in Brazil: From discovery to future implications. Int J Environ Res Public Health, 2018,15(1):96.
doi: 10.3390/ijerph15010096 pmid: 29315224 |
[8] |
Weaver SC, Costa F, Garcia-Blanco MA, Ko AI, Ribeiro GS, Saade G, Shi PY, Vasilakis N . Zika virus: History, emergence, biology, and prospects for control. Antiviral Res, 2016,130:69-80.
doi: 10.1016/j.antiviral.2016.03.010 pmid: 26996139 |
[9] |
Pang T, Mak TK, Gubler DJ . Prevention and control of dengue-the light at the end of the tunnel. Lancet Infect Dis, 2017,17(3):e79-e87.
doi: 10.1016/S1473-3099(16)30471-6 pmid: 28185870 |
[10] |
Xi ZY, Ramirez JL, Dimopoulos G . The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathog, 2008,4(7):e1000098.
doi: 10.1371/journal.ppat.1000098 pmid: 18604274 |
[11] |
Souza-Neto JA, Sim S, Dimopoulos G . An evolutionary conserved function of the JAK-STAT pathway in anti- dengue defense. Proc Natl Acad Sci USA, 2009,106(42):17841-17846.
doi: 10.1073/pnas.0905006106 pmid: 19805194 |
[12] | Liu XM, Yuan ML . Progress in innate immunity-related genes in insects. Hereditas(Beijing), 2018,40(6):451-466. |
刘小民, 袁明龙 . 昆虫天然免疫相关基因研究进展. 遗传, 2018,40(6):451-466. | |
[13] |
Ding SW, Voinnet O . Antiviral immunity directed by small RNAs. Cell, 2007,130(3):413-426.
doi: 10.1016/j.cell.2007.07.039 pmid: 17693253 |
[14] |
Nandety RS, Kuo YW, Nouri S, Falk BW . Emerging strategies for RNA interference (RNAi) applications in insects. Bioengineered, 2015,6(1):8-19.
doi: 10.4161/21655979.2014.979701 pmid: 25424593 |
[15] |
Lee WS, Webster JA, Madzokere ET, Stephenson EB, Herrero LJ . Mosquito antiviral defense mechanisms: a delicate balance between innate immunity and persistent viral infection. Parasit Vectors, 2019,12(1):165.
doi: 10.1186/s13071-019-3433-8 pmid: 30975197 |
[16] |
Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC . Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998,391(6669):806-811.
doi: 10.1038/35888 pmid: 9486653 |
[17] |
Saleh MC , Tassetto M, van Rij RP, Goic B, Gausson V, Berry B, Jacquier C, Antoniewski C, Andino R. Antiviral immunity in Drosophila requires systemic RNA interference spread. Nature, 2009,458(7236):346-350.
doi: 10.1038/nature07712 pmid: 19204732 |
[18] |
Puglise JM, Estep AS, Becnel JJ . Expression profiles and RNAi silencing of inhibitor of apoptosis transcripts in Aedes, Anopheles, and Culex Mosquitoes (Diptera: Culicidae). J Med Entomol, 2016,53(2):304-314.
doi: 10.1093/jme/tjv191 pmid: 26659858 |
[19] |
Kang S, Hong YS . RNA interference in infectious tropical diseases. Korean J Parasitol, 2008,46(1):1-15.
doi: 10.3347/kjp.2008.46.1.1 pmid: 18344671 |
[20] |
Gandhi NS, Tekade RK, Chougule MB . Nanocarrier mediated delivery of siRNA/miRNA in combination with chemotherapeutic agents for cancer therapy: current progress and advances. J Control Release, 2014,194:238-256.
doi: 10.1016/j.jconrel.2014.09.001 pmid: 25204288 |
[21] | Zheng WH, Lin ZQ, Zhuo M, Du HL, Wang XN . Research progress on influenza antiviral small RNAs. Hereditas (Beijing), 2012,34(5):526-532. |
郑维豪, 林志强, 卓敏, 杜红丽, 王小宁 . 抗流感病毒小RNAs研究进展. 遗传, 2012,34(5):526-532. | |
[22] |
Galiana-Arnoux D, Dostert C, Schneemann A, Hoffmann JA, Imler JL . Essential function in vivo for Dicer-2 in host defense against RNA viruses in drosophila. Nat Immunol, 2006,7(6):590-597.
doi: 10.1038/ni1335 pmid: 16554838 |
[23] |
Wang XH, Aliyari R, Li WX, Li HW, Kim K, Carthew R, Atkinson P, Ding SW . RNA interference directs innate immunity against viruses in adult Drosophila. Science, 2006,312(5772):452-454.
doi: 10.1126/science.1125694 pmid: 16556799 |
[24] |
Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD . Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell, 2005,123(4):607-620.
doi: 10.1016/j.cell.2005.08.044 pmid: 16271386 |
[25] |
Miyoshi K, Tsukumo H, Nagami T, Siomi H, Siomi MC . Slicer function of Drosophila argonautes and its involvement in RISC formation. Genes Dev, 2005,19(23):2837-2848.
doi: 10.1101/gad.1370605 pmid: 16287716 |
[26] |
Li WX, Li H, Lu R, Li F, Dus M, Atkinson P, Brydon EW, Johnson KL, García-Sastre A, Ball LA, Palese P, Ding SW . Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing. Proc Natl Acad Sci USA, 2004,101(5):1350-1355.
doi: 10.1073/pnas.0308308100 pmid: 14745017 |
[27] |
Sánchez-Vargas I, Scott JC, Poole-Smith BK, Franz AW, Barbosa-Solomieu V, Wilusz J, Olson KE, Blair CD . Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito's RNA interference pathway. PLoS Pathog, 2009,5(2):e1000299.
doi: 10.1371/journal.ppat.1000299 pmid: 19214215 |
[28] |
Khoo CC, Piper J, Sanchez-Vargas I, Olson KE, Franz AW . The RNA interference pathway affects midgut infection- and escape barriers for Sindbis virus in Aedes aegypti. BMC Microbiol, 2010,10:130.
doi: 10.1186/1471-2180-10-130 pmid: 20426860 |
[29] |
Basu S, Aryan A, Overcash JM, Samuel GH, Anderson MA, Dahlem TJ, Myles KM, Adelman ZN . Silencing of end-joining repair for efficient site-specific gene insertion after TALEN/CRISPR mutagenesis in Aedes aegypti. Proc Natl Acad Sci USA, 2015,112(13):4038-4043.
doi: 10.1073/pnas.1502370112 pmid: 25775608 |
[30] |
Samuel GH, Wiley MR, Badawi A, Adelman ZN, Myles KM . Yellow fever virus capsid protein is a potent suppressor of RNA silencing that binds double-stranded RNA. Proc Natl Acad Sci USA, 2016,113(48):13863-13868.
doi: 10.1073/pnas.1600544113 pmid: 27849599 |
[31] |
Keene KM, Foy BD, Sanchez-Vargas I, Beaty BJ, Blair CD, Olson KE . RNA interference acts as a natural antiviral response to O'nyong-nyong virus (Alphavirus; Togaviridae) infection of Anopheles gambiae. Proc Natl Acad Sci USA, 2004,101(49):17240-17245.
doi: 10.1073/pnas.0406983101 pmid: 15583140 |
[32] |
Brackney DE, Beane JE, Ebel GD . RNAi targeting of West Nile virus in mosquito midguts promotes virus diversification. PLoS Pathog, 2009,5(7):e1000502.
doi: 10.1371/journal.ppat.1000502 pmid: 19578437 |
[33] |
Myles KM, Morazzani EM, Adelman ZN . Origins of alphavirus-derived small RNAs in mosquitoes. RNA Biol, 2009,6(4):387-391.
doi: 10.4161/rna.6.4.8946 pmid: 19535909 |
[34] |
Myles KM, Wiley MR, Morazzani EM, Adelman ZN . Alphavirus-derived small RNAs modulate pathogenesis in disease vector mosquitoes. Proc Natl Acad Sci USA, 2008,105(50):19938-19943.
doi: 10.1073/pnas.0803408105 pmid: 19047642 |
[35] |
Schuster S, Zirkel F , Kurth A, van Cleef KWR, Drosten C, van Rij RP, Junglen S. A unique nodavirus with novel features: mosinovirus expresses two subgenomic RNAs, a capsid gene of unknown origin, and a suppressor of the antiviral RNA interference pathway. J Virol, 2014,88(22):13447-13459.
doi: 10.1128/JVI.02144-14 |
[36] |
Szemiel AM, Failloux AB, Elliott RM . Role of Bunyamwera Orthobunyavirus NSs protein in infection of mosquito cells. PLoS Negl Trop Dis, 2012,6(9):e1823.
doi: 10.1371/journal.pntd.0001823 pmid: 23029584 |
[37] |
Kakumani PK, Ponia SS , S RK, Sood V, Chinnappan M, Banerjea AC, Medigeshi GR, Malhotra P, Mukherjee SK, Bhatnagar RK. Role of RNA interference (RNAi) in dengue virus replication and identification of NS4B as an RNAi suppressor. J Virol, 2013,87(16):8870-8883.
doi: 10.1128/JVI.02774-12 pmid: 23741001 |
[38] |
Samuel GH, Wiley MR, Badawi A, Adelman ZN, Myles KM . Yellow fever virus capsid protein is a potent suppressor of RNA silencing that binds double-stranded RNA. Proc Natl Acad Sci USA, 2016,113(48):13863-13868.
doi: 10.1073/pnas.1600544113 pmid: 27849599 |
[39] |
Jonas S, Izaurralde E . Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet, 2015,16(7):421-433.
doi: 10.1038/nrg3965 pmid: 26077373 |
[40] |
Pedersen IM, Cheng GF, Wieland S, Volinia S, Croce CM, Chisari FV, David M . Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature, 2007,449(7164):919-922.
doi: 10.1038/nature06205 pmid: 17943132 |
[41] |
Lee YS, Nakahara K, Pham JW, Kim K, He Z, Sontheimer EJ, Carthew RW . Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell, 2004,117(1):69-81.
doi: 10.1016/s0092-8674(04)00261-2 pmid: 15066283 |
[42] |
Xia MM, Shen XY, Niu CM, Xia J, Sun HY, Zheng Y . MicroRNA regulates Sertoli cell proliferation and adhesion. Hereditas(Beijing), 2018,40(9):724-732.
pmid: 369476 |
夏蒙蒙, 申雪沂, 牛长敏, 夏静, 孙红亚, 郑英 . MicroRNA参与调控睾丸支持细胞的增殖与粘附功能. 遗传, 2018,40(9):724-732.
pmid: 369476 |
|
[43] |
Trobaugh DW, Klimstra WB . MicroRNA regulation of RNA virus replication and pathogenesis. Trends Mol Med, 2017,23(1):80-93.
doi: 10.1016/j.molmed.2016.11.003 pmid: 27989642 |
[44] |
Hussain M, Torres S, Schnettler E, Funk A, Grundhoff A, Pijlman GP, Khromykh AA, Asgari S . West Nile virus encodes a microRNA-like small RNA in the 3' untranslated region which up-regulates GATA4 mRNA and facilitates virus replication in mosquito cells. Nucleic Acids Res, 2012,40(5):2210-2223.
doi: 10.1093/nar/gkr848 pmid: 22080551 |
[45] |
Hussain M, Asgari S . MicroRNA-like viral small RNA from Dengue virus 2 autoregulates its replication in mosquito cells. Proc Natl Acad Sci USA, 2014,111(7):2746-2751.
doi: 10.1073/pnas.1320123111 pmid: 24550303 |
[46] |
Campbell CL, Harrison T, Hess AM, Ebel GD . MicroRNA levels are modulated in Aedes aegypti after exposure to Dengue-2. Insect Mol Biol, 2014,23(1):132-139.
doi: 10.1111/imb.12070 |
[47] |
Slonchak A, Hussain M, Torres S, Asgari S, Khromykh AA . Expression of mosquito microRNA Aae-miR-2940-5p is downregulated in response to West Nile virus infection to restrict viral replication. J Virol, 2014,88(15):8457-8467.
doi: 10.1128/JVI.00317-14 |
[48] |
Su JX, Li CX, Zhang YM, Yan T, Zhu XJ, Zhao MH, Xing D, Dong YD, Guo XX, Zhao TY . Identification of microRNAs expressed in the midgut of Aedes albopictus during dengue infection. Parasit Vectors, 2017,10(1):63.
doi: 10.1186/s13071-017-1966-2 pmid: 28159012 |
[49] |
Su JX, Wang G, Li CX, Xing D, Yan T, Zhu XJ, Liu QM, Wu Q, Guo XX, Zhao TY . Screening for differentially expressed miRNAs in Aedes albopictus(Diptera: Culicidae) exposed to DENV-2 and their effect on replication of DENV-2 in C6/36 cells. Parasit Vectors, 2019,12(1):44.
doi: 10.1186/s13071-018-3261-2 pmid: 30658692 |
[50] |
Varjak M, Maringer K, Watson M, Sreenu VB, Fredericks AC, Pondeville E, Donald CL, Sterk J, Kean J, Vazeille M, Failloux AB, Kohl A, Schnettler E . Aedes aegypti Piwi4 is a noncanonical PIWI protein involved in antiviral responses. mSphere, 2017,2(3):e00144-17.
doi: 10.1128/mSphere.00144-17 pmid: 28497119 |
[51] |
Yin H, Lin HF . An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster. Nature, 2007,450(7167):304-308.
doi: 10.1038/nature06263 pmid: 17952056 |
[52] |
Kirino Y, Mourelatos Z . Mouse Piwi-interacting RNAs are 2'-O-methylated at their 3' termini. Nat Struct Mol Biol, 2007,14(4):347-348.
doi: 10.1038/nsmb1218 pmid: 17384647 |
[53] |
Liu QP, An N, Cen S, Li XY . Molecular mechanisms of genetic transposition inhibition by piRNA. Hereditas (Beijing), 2018,40(6):445-450.
doi: 10.16288/j.yczz.18-072 pmid: 29959117 |
刘启鹏, 安妮, 岑山, 李晓宇 . piRNA抑制基因转座的分子机制. 遗传, 2018,40(6):445-450.
doi: 10.16288/j.yczz.18-072 pmid: 29959117 |
|
[54] |
Siomi MC, Sato K, Pezic D, Aravin AA . PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol, 2011,12(4):246-258.
doi: 10.1038/nrm3089 pmid: 21427766 |
[55] |
Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ . Discrete small RNA- generating loci as master regulators of transposon activity in Drosophila. Cell, 2007,128(6):1089-1103.
doi: 10.1016/j.cell.2007.01.043 pmid: 17346786 |
[56] |
Hayashi R, Schnabl J, Handler D, Mohn F, Ameres SL, Brennecke J . Genetic and mechanistic diversity of piRNA 3'-end formation. Nature, 2016,539(7630):588-592.
doi: 10.1038/nature20162 pmid: 27851737 |
[57] |
Morazzani EM, Wiley MR, Murreddu MG, Adelman ZN, Myles KM . Production of virus-derived ping-pong-dependent piRNA-like small RNAs in the mosquito soma. PLoS Pathog, 2012,8(1):e1002470.
doi: 10.1371/journal.ppat.1002470 pmid: 22241995 |
[58] |
Miesen P , Joosten J, van Rij RP. PIWIs go viral: arbovirus-derived piRNAs in vector mosquitoes. PLoS Pathog, 2016,12(12):e1006017.
doi: 10.1371/journal.ppat.1006017 pmid: 28033427 |
[59] |
Miesen P , Girardi E, van Rij RP. Distinct sets of PIWI proteins produce arbovirus and transposon-derived piRNAs in Aedes aegypti mosquito cells. Nucleic Acids Res, 2015,43(13):6545-6556.
doi: 10.1093/nar/gkv590 pmid: 26068474 |
[60] |
Schnettler E, Donald CL, Human S, Watson M, Siu RW , McFarlane M, Fazakerley JK, Kohl A, Fragkoudis R. Knockdown of piRNA pathway proteins results in enhanced Semliki Forest virus production in mosquito cells. J Gen Virol, 2013,94(Pt 7):1680-1689.
doi: 10.1099/vir.0.053850-0 pmid: 23559478 |
[1] | 王承贤, 容益康, 崔敏. 果蝇限制端粒转座子的分子机制[J]. 遗传, 2023, 45(3): 221-228. |
[2] | 朱艳, 魏明, 周晓, 邓林华, 仇剑, 李果, 周世强, 谢浩, 李德生, 王承东. 大熊猫(Ailuropoda melanoleuca) miRNA研究进展[J]. 遗传, 2021, 43(9): 849-857. |
[3] | 饶琳, 孟飞龙, 房冉, 蔡晨依, 赵小立. MicroRNA调控耳蜗毛细胞发育的分子机制[J]. 遗传, 2019, 41(11): 994-1008. |
[4] | 夏蒙蒙,申雪沂,牛长敏,夏静,孙红亚,郑英. MicroRNA参与调控睾丸支持细胞的增殖与粘附功能[J]. 遗传, 2018, 40(9): 724-732. |
[5] | 刘海龙, 谌阳, 高杨, 周玲, 韩晓松, 赵长志, 杨高娟, 陈毅龙, 杨慧, 谢胜松. 靶向miRNA前体不同类型sgRNA的丰度及特异性评估[J]. 遗传, 2018, 40(7): 561-571. |
[6] | 刘启鹏, 安妮, 岑山, 李晓宇. piRNA抑制基因转座的分子机制[J]. 遗传, 2018, 40(6): 445-450. |
[7] | 肖娟, 王讯, 罗毅, 李晓开, 李学伟. 附睾小体功能蛋白及sRNA研究进展[J]. 遗传, 2018, 40(3): 197-206. |
[8] | 李恩惠,赵欣,张策,刘威. 脆性X智力低下蛋白参与非编码RNA通路的研究进展[J]. 遗传, 2018, 40(2): 87-94. |
[9] | 袁志恒,赵艳梅. piRNA/PIWI功能调控与精子发生[J]. 遗传, 2017, 39(8): 683-691. |
[10] | 李新云, 付亮亮, 程会军, 赵书红. MicroRNA调控哺乳动物骨骼肌发育[J]. 遗传, 2017, 39(11): 1046-1053. |
[11] | 刘辰东, 杨露, 蒲红州, 杨琼, 黄文耀, 赵雪, 朱砺, 张顺华. 运动对骨骼肌基因表达的表观遗传调控作用[J]. 遗传, 2017, 39(10): 888-896. |
[12] | 魏俊,陆秀君,张晓林,梅梅,黄晓丽. MicroRNA在种子发育、休眠与萌发过程中的作用[J]. 遗传, 2017, 39(1): 14-21. |
[13] | 王伟, 王玉霜, 黄兰兰, 简子健, 王新华, 刘守仁, 皮文辉. siRNA干扰绵羊胚胎成纤维细胞Lig4基因增加同源重组载体重连修复效率[J]. 遗传, 2016, 38(9): 831-839. |
[14] | 张轲, 冯光德, 张宝云, 向伟, 陈龙, 杨芳, 储明星, 王凭青. 表观遗传标记在猪分子育种中的研究与应用前景[J]. 遗传, 2016, 38(7): 634-643. |
[15] | 符梅, 徐克惠, 许文明. Dicer调节生殖功能的研究进展[J]. 遗传, 2016, 38(7): 612-622. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: