[1] |
Chen DF, Lu DR, Zhang FX, Zhang GF. The development of genetics teaching in China in the last four decades and its future prospect. Hereditas(Beijing), 2018, 40(10): 916-923.
doi: 10.16288/j.yczz.18-171
pmid: 30369473
|
|
陈德富, 卢大儒, 张飞雄, 张根发. 中国遗传学教学40年发展及展望. 遗传, 2018, 40(10): 916-923.
doi: 10.16288/j.yczz.18-171
pmid: 30369473
|
[2] |
乔守怡, 江绍慧. 遗传学实验—果蝇实验. 遗传, 1981, 3(2): 40-44.
|
[3] |
Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z.Rethinking the inception architecture for computer vision. In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016, 2818-2826.
|
[4] |
Chollet F. Xception: deep learning with depthwise separable convolutions. In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017, 1251-1258.
|
[5] |
He KM, Zhang XY, Ren SQ, Sun J.Deep residual learning for image recognition. In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016, 770-778.
|
[6] |
He KM, Zhang XY, Ren SQ, Sun J. Identity mappings in deep residual networks. In: European Conference on Computer Vision. 2016, 630-645. Springer, Cham.
|
[7] |
Duan KW, Bai S, Xie LX, Qi HG, Huang QM, Tian Q. Centernet: Keypoint triplets for object detection. In:Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019, 6569-6578.
|
[8] |
Law H, Deng J. Cornernet: detecting objects as paired keypoints. In:Proceedings of the European Conference on Computer Vision (ECCV). 2018, 734-750.
|
[9] |
Newell A, Yang KY, Deng J. Stacked hourglass networks for human pose estimation. In: European Conference on Computer Vision. 2016, 483-499. Springer, Cham.
|
[10] |
Xiao B, Wu HP, Wei YC.Simple baselines for human pose estimation and tracking. In:Proceedings of the European Conference on Computer Vision (ECCV). 2018, 466-481.
|
[11] |
Yu F, Wang DQ, Shelhamer E, Darrell T.Deep layer aggregation. In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018, 2403-2412.
|
[12] |
Toshev A, Szegedy C.Deeppose: human pose estimation via deep neural networks. In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014, 1653-1660.
|
[13] |
Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-cam: visual explanations from deep networks via gradient-based localization. In:Proceedings of the IEEE International Conference on Computer Vision. 2017, 618-626.
|
[14] |
Tan MX, Pang RM, Le QV. Efficientdet: scalable and efficient object detection. In:Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020, 10781-10790.
|
[15] |
Howard AG, Zhu ML, Chen B, Kalenichenko D, Wang WJ, Weyand T, Andreetto M, Adam H.Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861.2017.
|
[16] |
Sandler M, Howard A, Zhu ML, Zhmoginov A, Chen LC.Mobilenetv2:inverted residuals and linear bottlenecks. In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018, 4510-4520.
|
[17] |
Howard A, Sandler M, Chu G, Chen LC, Chen B, Tan MX, Wang WJ, Zhu YK, Pang RM, Vasudevan V, Le QV, Adam H.Searching for mobilenetv3. In:Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019, 1314-1324.
|
[18] |
Lee DH. Pseudo-label:The simple and efficient semi- supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning, ICML. 2013, 3(2): 896-896.
|
[19] |
Cubuk ED, Zoph B, Shlens J, Le QV. Randaugment: practical automated data augmentation with a reduced search space. In:Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. 2020, 702-703.
|
[20] |
Tan MX, Le QV. Efficientnetv2:smaller models and faster training. In:International Conference on Machine Learning. 2021, 10096-10106.PMLR.
|
[21] |
Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Commun ACM, 2017, 60(6): 84-90.
doi: 10.1145/3065386
|
[22] |
Guo YH.A survey on methods and theories of quantized neural networks. arXiv preprint arXiv:1808.04752. 2018.
|
[23] |
Gholami A, Kim S, Dong Z, Yao ZW, Mahoney MW, Keutzer K. A survey of quantization methods for efficient neural network inference. arXiv preprint arXiv:2103.13630.2021.
|
[24] |
Deng L, Li GQ, Han S, Shi LP, Xie Y. Model compression and hardware acceleration for neural networks: a comprehensive survey. Proc IEEE, 2020, 108(4): 485-532.
doi: 10.1109/PROC.5
|
[25] |
Abadi M, Barham P, Chen JM, Chen ZF, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M. TensorFlow: a system for large-scale machine learning. In:12th USENIX Symposium on Operating Systems Design and Implementation(OSDI 16). 2016, 265-283.
|