遗传 ›› 2023, Vol. 45 ›› Issue (8): 684-699.doi: 10.16288/j.yczz.23-077
孙清玙(), 周阳(), 杜丽娟, 张梦珂, 王家乐, 任媛媛, 刘芳()
收稿日期:
2023-03-28
修回日期:
2023-05-21
出版日期:
2023-08-20
发布日期:
2023-05-29
通讯作者:
刘芳
E-mail:sun18790538507@163.com;664192792@qq.com;fangliu@hrbmu.edu.cn
作者简介:
孙清玙,在读硕士研究生,专业方向:肿瘤学。E-mail: 基金资助:
Qingyu Sun(), Yang Zhou(), Lijuan Du, Mengke Zhang, Jiale Wang, Yuanyuan Ren, Fang Liu()
Received:
2023-03-28
Revised:
2023-05-21
Published:
2023-08-20
Online:
2023-05-29
Contact:
Fang Liu
E-mail:sun18790538507@163.com;664192792@qq.com;fangliu@hrbmu.edu.cn
Supported by:
摘要:
非小细胞肺癌(non-small cell lung cancer,NSCLC)是一种高发病率和高死亡率的疾病,其预后和药物治疗效果存在个体化差异。因此,了解肺癌发生和发展的分子机制可以有效提高早期诊断和治疗,改善患者预后。巨噬细胞具有高度可塑性和异质性,是肿瘤微环境(tumor microenvironment, TME)中发挥抗肿瘤作用的关键细胞之一,在肿瘤发生发展过程中起着复杂的作用。为了阐明NSCLC中肿瘤相关巨噬细胞(tumor-associated macrophages, TAMs)相关基因在肺癌中的发生机制,本研究采用转录组测序、单因素COX回归、LASSO回归、多因素COX回归分析方法,筛选出与预后最相关的11个基因(FCRLA、LDHA、LMOD3、MAP3K8、NT5E、PDGFB、S100P、SFXN1、TDRD1、TFAP2A、TUBB6)。计算风险评分(risk score,RS),根据RS中位数将所有样本分为高风险组和低风险组,并采用CIBERSORT反卷积算法验证RS及11个基因与巨噬细胞的相关性。上述结果表明,本研究所建立的风险评分可用于非小细胞肺癌患者预后预测,还可评估患者的免疫浸润状态,为后续肿瘤免疫治疗及基因靶向治疗提供参考。
孙清玙, 周阳, 杜丽娟, 张梦珂, 王家乐, 任媛媛, 刘芳. 巨噬细胞相关基因与非小细胞肺癌预后和肿瘤微环境的分析[J]. 遗传, 2023, 45(8): 684-699.
Qingyu Sun, Yang Zhou, Lijuan Du, Mengke Zhang, Jiale Wang, Yuanyuan Ren, Fang Liu. Analysis between macrophage-related genes with prognosis and tumor microenvironment in non-small cell lung cancer[J]. Hereditas(Beijing), 2023, 45(8): 684-699.
表1
多因素COX回归分析结果显示11个基因的系数值"
基因 | 风险比(95%CI) | 显著性 | 系数值 | 基因 | 风险比(95%CI) | 显著性 | 系数值 |
---|---|---|---|---|---|---|---|
FCRLA | 0.90(0.83~0.97) | 0.007 | -0.109236 | S100P | 1.09(1.04~1.15) | 0.001 | 0.0881211 |
LDHA | 1.25(0.98~1.59) | 0.073 | 0.2212343 | SFXN1 | 1.26(0.93~1.71) | 0.144 | 0.2285379 |
LMOD3 | 0.80(0.65~0.97) | 0.025 | -0.226136 | TDRD1 | 0.95(0.90~1.01) | 0.092 | -0.050309 |
MAP3K8 | 0.76(0.62~0.93) | 0.007 | -0.279034 | TFAP2A | 1.08(1.00~1.17) | 0.054 | 0.0776191 |
NT5E | 1.10(1.00~1.21) | 0.053 | 0.0965542 | TUBB6 | 1.13(0.96~1.33) | 0.142 | 0.1235577 |
PDGFB | 1.31(1.10~1.56) | 0.002 | 0.2690441 |
图2
风险评分与临床病理变量的相关性 A:11种基因在肿瘤组织和正常组织中的表达情况。B:单因素回归分析结果显示与OS的相关因素。C:多因素回归分析结果显示OS的独立预后因素。D:风险评分和其他临床特征的AUC。E:ROC曲线评估风险评分1年、3年、5年的预测效能;F:Kaplan-Meier曲线分析TCGA-LUAD队列中高低风险组的总生存期差异。G:Kaplan-Meier曲线分析TCGA-LUAD队列中不同分期下高低风险组的总生存期差异。H和I:Kaplan-Meier曲线分析TCGA-LUAD队列中高低风险组PFS(H)和DSS差异(I)。PFS(progression-free survival):无进展生存期;DSS(disease-specific survival):疾病特异性生存期;OS(overall survival):总生存期;ROC(receiver operating characteristic):受试者工作特征曲线;AUC(area under curve):受试者工作特征曲线下面积。"
[1] |
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018, 68(6): 394-424.
doi: 10.3322/caac.v68.6 |
[2] |
Siegel RL, Miller KD, Fuchs HE, Jemal A.Cancer statistics, 2022. CA Cancer J Clin, 2022, 72(1): 7-33.
doi: 10.3322/caac.v72.1 |
[3] |
Duma N, Santana-Davila R, Molina JR. Non-Small cell lung cancer:epidemiology, screening, diagnosis, and treatment. Mayo Clin Proc, 2019, 94(8): 1623-1640.
doi: 10.1016/j.mayocp.2019.01.013 |
[4] |
Zhao C, Liu J, Zhou HM, Qian X, Sun H, Chen XW, Zheng MS, Bian TT, Liu L, Liu YF, Zhang JG. NEIL3 may act as a potential prognostic biomarker for lung adenocarcinoma. Cancer Cell Int, 2021, 21(1): 228
doi: 10.1186/s12935-021-01938-4 pmid: 33879165 |
[5] | Cao MM, Li H, Sun DQ, Chen WQ. Cancer burden of major cancers in china: a need for sustainable actions. Cancer Commun (Lond), 2020, 40(5): 205-210. |
[6] |
Ferlay J, Colombet M, Soerjomataram I, Dyba T, Randi G, Bettio M, Gavin A, Visser O, Bray F. Cancer incidence and mortality patterns in europe: estimates for 40 countries and 25 major cancers in 2018. Eur J Cancer, 2018, 103: 356-387.
doi: S0959-8049(18)30955-9 pmid: 30100160 |
[7] |
Pollard JW. Trophic macrophages in development and Disease. Nat Rev Immunol, 2009, 9(4): 259-270.
doi: 10.1038/nri2528 pmid: 19282852 |
[8] |
Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran Jr WJ, Wu YL, Paz-Ares L. Lung cancer: current therapies and new targeted treatments. Lancet, 2017, 389(10066): 299-311.
doi: S0140-6736(16)30958-8 pmid: 27574741 |
[9] |
Yang PY, Markowitz GJ, Wang XF. The hepatitis B virus-associated tumor microenvironment in hepatocellular carcinoma. Natl Sci Rev, 2014, 1(3): 396-412.
pmid: 25741453 |
[10] |
Sedighzadeh SS, Khoshbin AP, Razi S, Keshavarz-Fathi M, Rezaei N. A narrative review of tumor-associated macrophages in lung cancer: regulation of macrophage polarization and therapeutic implications. Transl Lung Cancer Res, 2021, 10(4): 1889-1916.
doi: 10.21037/tlcr |
[11] |
Domagala-Kulawik J. The relevance of bronchoalveolar lavage fluid analysis for lung cancer patients. Expert Rev Respir Med, 2020, 14(3): 329-337.
doi: 10.1080/17476348.2020.1708720 |
[12] |
Pouniotis DS, Plebanski M, Apostolopoulos V, McDonald CF. Alveolar macrophage function is altered in patients with lung cancer. Clin Exp Immunol, 2006, 143(2): 363-372.
doi: 10.1111/j.1365-2249.2006.02998.x pmid: 16412062 |
[13] |
Dabrowska M, Grubek-Jaworska H, Hoser G, Domagała- Kulawik J, Krenke R, Chazan R. Effect of IFN-gamma stimulation on expression of intercellular adhesion molecule-1 (ICAM-1) on alveolar macrophages in patients with non-small cell lung cancer. J Interferon Cytokine Res, 2006, 26(3): 190-195.
doi: 10.1089/jir.2006.26.190 |
[14] |
Sumitomo R, Hirai T, Fujita M, Murakami H, Otake Y, Huang CL. M2 tumor-associated macrophages promote tumor progression in non-small-cell lung cancer. Exp Ther Med, 2019, 18(6): 4490-4498.
doi: 10.3892/etm.2019.8068 pmid: 31777551 |
[15] |
Hu JM, Liu K, Liu JH, Jiang XL, Wang XL, Yang L, Chen YZ, Liu CX, Li SG, Cui XB, Zou H, Pang LJ, Zhao J, Qi Y, Liang WH, Yuan XL, Li F. The increased number of tumor-associated macrophage is associated with overexpression of VEGF-C, plays an important role in Kazakh ESCC invasion and metastasis. Exp Mol Pathol, 2017, 102(1): 15-21.
doi: S0014-4800(16)30414-2 pmid: 27939650 |
[16] |
Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol, 2009, 86(5): 1065-1073.
doi: 10.1189/jlb.0609385 |
[17] | Ma B, Yang Y, Li ZT, Zhao DL, Zhang WH, Jiang YF, Xue DB. Modular bioinformatics analysis demonstrates that a Toll-like receptor signaling pathway is involved in the regulation of macrophage polarization. Mol Med Rep, 2018, 18(5): 4313-4320. |
[18] |
Goodman AM, Kato S, Bazhenova L, Patel SP, Frampton GM, Miller V, Stephens PJ, Daniels GA, Kurzrock R. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther, 2017, 16(11): 2598-2608.
doi: 10.1158/1535-7163.MCT-17-0386 pmid: 28835386 |
[19] |
Hellmann MD, Ciuleanu TE, Pluzanski A, Lee JS, Otterson GA, Audigier-Valette C, Minenza E, Linardou H, Burgers S, Salman P, Borghaei H, Ramalingam SS, Brahmer J, Reck M, O'Byrne KJ, Geese WJ, Green G, Chang H, Szustakowski J, Bhagavatheeswaran P, Healey D, Fu YL, Nathan F, Paz-Ares L. Nivolumab plus Ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med, 2018, 378(22): 2093-2104.
doi: 10.1056/NEJMoa1801946 |
[20] | Samstein RM, Lee CH, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY, Barron DA, Zehir A, Jordan EJ, Omuro A, Kaley TJ, Kendall SM, Motzer RJ, Hakimi AA, Voss MH, Russo P, Rosenberg J, Iyer G, Bochner BH, Bajorin DF, Al-Ahmadie HA, Chaft JE, Rudin CM, Riely GJ, Baxi S, Ho AL, Wong RJ, Pfister DG, Wolchok JD, Barker CA, Gutin PH, Brennan CW, Tabar V, Mellinghoff IK, DeAngelis LM, Ariyan CE, Lee N, Tap WD, Gounder MM, D'Angelo SP, Saltz L, Stadler ZK, Scher HI, Baselga J, Razavi P, Klebanoff CA, Yaeger R, Segal NH, Ku GY, DeMatteo RP, Ladanyi M, Rizvi NA, Berger MF, Riaz N, Solit DB, Chan TA, Morris LGT. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet, 2019, 51(2): 202-206. |
[21] |
Yan JY, Wu XW, Yu JY, Zhu YY, Cang SD. Prognostic role of tumor mutation burden combined with immune infiltrates in skin cutaneous melanoma based on multi- omics analysis. Front Oncol, 2020, 10: 570654.
doi: 10.3389/fonc.2020.570654 |
[22] | Wang J, Zhang XL, Li J, Ma XR, Feng FB, Liu LJ, Wu JB, Sun CG. ADRB1 was identified as a potential biomarker for breast cancer by the co-analysis of tumor mutational burden and immune infiltration. Aging (Albany NY), 2020, 13(1): 351-363. |
[23] |
Li L, Bai L, Lin H, Dong L, Zhang RM, Cheng X, Liu ZX, Ouyang Y, Ding KS. Multiomics analysis of tumor mutational burden across cancer types. Comput Struct Biotechnol J, 2021, 19: 5637-5646.
doi: 10.1016/j.csbj.2021.10.013 |
[24] |
Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, Lu S, Kemberling H, Wilt C, Luber BS, Wong F, Azad NS, Rucki AA, Laheru D, Donehower R, Zaheer A, Fisher GA, Crocenzi TS, Lee JJ, Greten TF, Duffy AG, Ciombor KK, Eyring AD, Lam BH, Joe A, Kang SP, Holdhoff M, Danilova L, Cope L, Meyer C, Zhou SB, Goldberg RM, Armstrong DK, Bever KM, Fader AN, Taube J, Housseau F, Spetzler D, Xiao NQ, Pardoll DM, Papadopoulos N, Kinzler KW, Eshleman JR, Vogelstein B, Anders RA, Diaz LA Jr. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science, 2017, 357(6349): 409-413.
doi: 10.1126/science.aan6733 pmid: 28596308 |
[25] | Middha S, Zhang LY, Nafa K, Jayakumaran G, Wong DN, Kim HR, Sadowska J, Berger MF, Delair DF, Shia J, Stadler Z, Klimstra DS, Ladanyi M, Zehir A, Hechtman JF. Reliable pan-cancer microsatellite instability assessment by using targeted next-generation sequencing data. JCO Precis Oncol, 2017, 2017: PO.17.00084. |
[26] |
Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen LP, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu HY, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med, 2012, 366(26): 2443-2454.
doi: 10.1056/NEJMoa1200690 |
[27] |
Pan YY, Yu YD, Wang XJ, Zhang T. Tumor-associated macrophages in tumor immunity. Front Immunol, 2020, 11: 583084.
doi: 10.3389/fimmu.2020.583084 |
[28] |
DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, Gallagher WM, Wadhwani N, Keil SD, Junaid SA, Rugo HS, Hwang ES, Jirström K, West BL, Coussens LM. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov, 2011, 1(1): 54-67.
doi: 10.1158/2159-8274.CD-10-0028 pmid: 22039576 |
[29] |
Dijkgraaf EM, Heusinkveld M, Tummers B, Vogelpoel LTC, Goedemans R, Jha V, Nortier JWR, Welters MJP, Kroep JR, van der Burg SH. Chemotherapy alters monocyte differentiation to favor generation of cancer- supporting M2 macrophages in the tumor microenvironment. Cancer Res, 2013, 73(8): 2480-2492.
doi: 10.1158/0008-5472.CAN-12-3542 pmid: 23436796 |
[30] |
Bruchard M, Mignot G, Derangère V, Chalmin F, Chevriaux A, Végran F, Boireau W, Simon B, Ryffel B, Connat JL, Kanellopoulos J, Martin F, Rébé C, Apetoh L, Ghiringhelli F. Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat Med, 2013, 19(1): 57-64.
doi: 10.1038/nm.2999 pmid: 23202296 |
[31] |
Jinushi M, Chiba S, Yoshiyama H, Masutomi K, Kinoshita I, Dosaka-Akita H, Yagita H, Takaoka A, Tahara H. Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells. Proc Natl Acad Sci USA, 2011, 108(30): 12425-12430.
doi: 10.1073/pnas.1106645108 pmid: 21746895 |
[32] |
Mitchem JB, Brennan DJ, Knolhoff BL, Belt BA, Zhu Y, Sanford DE, Belaygorod L, Carpenter D, Collins L, Piwnica-Worms D, Hewitt S, Udupi GM, Gallagher WM, Wegner C, West BL, Wang-Gillam A, Goedegebuure P, Linehan DC, DeNardo DG. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res, 2013, 73(3): 1128-1141.
doi: 10.1158/0008-5472.CAN-12-2731 pmid: 23221383 |
[33] |
He JB, Hu Y, Hu MM, Li BL. Development of PD-1/PD-L1 pathway in tumor immune microenvironment and treatment for non-small cell lung cancer. Sci Rep, 2015, 5: 13110.
doi: 10.1038/srep13110 pmid: 26279307 |
[34] |
Cassetta L, Kitamura T. Targeting tumor-associated macrophages as a potential strategy to enhance the response to immune checkpoint inhibitors. Front Cell Dev Biol, 2018, 6: 38.
doi: 10.3389/fcell.2018.00038 pmid: 29670880 |
[35] |
Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, Gupta R, Tsai JM, Sinha R, Corey D, Ring AM, Connolly AJ, Weissman IL. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature, 2017, 545(7655): 495-499.
doi: 10.1038/nature22396 |
[36] | Xiang XN, Wang JG, Lu D, Xu X. Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduct Target Ther, 2021, 6(1): 75. |
[37] |
Wu K, Li JC, Qi Y, Zhang CY, Zhu DY, Liu DL, Zhao S. SNHG14 confers gefitinib resistance in non-small cell lung cancer by Up-regulating ABCB1 via sponging miR-206-3p. Biomed Pharmacother, 2019, 116: 108995.
doi: 10.1016/j.biopha.2019.108995 |
[38] | Gu YC, Zhu X, Cao BS, Wu X, Tong XL, Shao YW, Liang L. Transformation to small cell lung cancer and activation of KRAS during long-term erlotinib maintenance in a patient with non-small cell lung cancer: a case report. Oncol Lett, 17(6): 5219-5223. |
[39] |
Saito H, Fukuhara T, Furuya N, Watanabe K, Sugawara S, Iwasawa S, Tsunezuka Y, Yamaguchi O, Okada M, Yoshimori K, Nakachi I, Gemma A, Azuma K, Kurimoto F, Tsubata Y, Fujita Y, Nagashima H, Asai G, Watanabe S, Miyazaki M, Hagiwara K, Nukiwa T, Morita S, Kobayashi K, Maemondo M.Erlotinib plus bevacizumab versus erlotinib alone in patients with EGFR-positive advanced non-squamous non-small-cell lung cancer (NEJ026): interim analysis of an open-label, randomised, multicentre, phase 3 trial. Lancet Oncol, 2019, 20(5): 625-635.
doi: S1470-2045(19)30035-X pmid: 30975627 |
[40] |
Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, Banerjee A, Luo YH, Rogers D, Brooks AN, Zhu JC, Haussler D. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol, 2020, 38(6): 675-678.
doi: 10.1038/s41587-020-0546-8 pmid: 32444850 |
[41] |
Kim IJ, Quigley D, To MD, Pham P, Lin K, Jo B, Jen KY, Raz D, Kim J, Mao JH, Jablons D, Balmain A. Rewiring of human lung cell lineage and mitotic networks in lung adenocarcinomas. Nat Commun, 2013, 4: 1701.
doi: 10.1038/ncomms2660 |
[42] |
Tang H, Xiao GH, Behrens C, Schiller J, Allen J, Chow CW, Suraokar M, Corvalan A, Mao JH, White MA, Wistuba II, Minna JD, Xie Y. A 12-gene set predicts survival benefits from adjuvant chemotherapy in non-small cell lung cancer patients. Clin Cancer Res, 2013, 19(6): 1577-1586.
doi: 10.1158/1078-0432.CCR-12-2321 pmid: 23357979 |
[43] |
Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, De Nardo D, Gohel TD, Emde M, Schmidleithner L, Ganesan H, Nino-Castro A, Mallmann MR, Labzin L, Theis H, Kraut M, Beyer M, Latz E, Freeman TC, Ulas T, Schultze JL. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity, 2014, 40(2): 274-288.
doi: 10.1016/j.immuni.2014.01.006 pmid: 24530056 |
[44] |
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA, 2005, 102(43): 15545-15550.
doi: 10.1073/pnas.0506580102 pmid: 16199517 |
[45] |
D'Agostino RB Sr, Grundy S, Sullivan LM, Wilson P, CHD Risk Prediction Group. Validation of the Framingham coronary heart disease prediction scores: results of a multiple ethnic groups investigation. JAMA, 2001, 286(2): 180-187.
doi: 10.1001/jama.286.2.180 |
[46] |
Chen BB, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA. Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol Biol, 2018, 1711: 243-259.
doi: 10.1007/978-1-4939-7493-1_12 pmid: 29344893 |
[47] | Li B, Li TW, Liu JS, Liu XS. Computational deconvolution of tumor-iInfiltrating immune components with bulk tumor gene expression data. Methods Mol Biol, 2020, 2120: 249-262. |
[48] |
Liu CC, Steen CB, Newman AJ. Computational approaches for characterizing the tumor immune microenvironment. Immunology, 2019, 158(2): 70-84.
doi: 10.1111/imm.13101 pmid: 31347163 |
[49] |
Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell, 2010, 141(1): 39-51.
doi: 10.1016/j.cell.2010.03.014 |
[50] |
Mechetina LV, Najakshin AM, Volkova OY, Guselnikov SV, Faizulin RZ, Alabyev BY, Chikaev NA, Vinogradova MS, Taranin AV. FCRL, a novel member of the leukocyte Fc receptor family possesses unique structural features. Eur J Immunol, 2002, 32(1): 87-96.
doi: 10.1002/1521-4141(200201)32:1<87::AID-IMMU87>3.0.CO;2-# pmid: 11754007 |
[51] |
Inozume T, Matsuzaki Y, Kurihara S, Fujita T, Yamamoto A, Aburatani H, Shimada S, Kawakami Y. Novel melanoma antigen, FCRL/FREB, identified by cDNA profile comparison using DNA chip are immunogenic in multiple melanoma patients. Int J Cancer, 2005, 114(2): 283-290.
doi: 10.1002/ijc.20735 pmid: 15551350 |
[52] |
Feng YB, Xiong YL, Qiao TY, Li XF, Jia LT, Han Y. Lactate dehydrogenase A: a key player in carcinogenesis and potential target in cancer therapy. Cancer Med, 2018, 7(12): 6124-6136.
doi: 10.1002/cam4.2018.7.issue-12 |
[53] |
Chen YJ, Wu GK, Li MS, Hesse M, Ma YS, Chen W, Huang HX, Liu Y, Xu WL, Tang YT, Zheng H, Li CL, Lin ZQ, Chen GJ, Liao WJ, Liao YL, Bin JP, Chen YM. LDHA-mediated metabolic reprogramming promoted cardiomyocyte proliferation by alleviating ROS and inducing M2 macrophage polarization. Redox Biol, 2022, 56: 102446.
doi: 10.1016/j.redox.2022.102446 |
[54] |
You Y, Wen DG, Zeng L, Lu J, Xiao X, Chen YC, Song H, Liu ZJ. ALKBH5/MAP3K8 axis regulates PD-L1+ macrophage infiltration and promotes hepatocellular carcinoma progression. Int J Biol Sci, 2022, 18(13): 5001-5018.
doi: 10.7150/ijbs.70149 pmid: 35982895 |
[55] |
Hölzel M, Bovier A, Tüting T. Plasticity of tumour and immune cells: A source of heterogeneity and a cause for therapy resistance? Nat Rev Cancer, 2013, 13(5): 365-376.
doi: 10.1038/nrc3498 pmid: 23535846 |
[56] |
Yang HT, Yao F, Davis PF, Tan ST, Hall SRR. CD73, tumor plasticity and immune evasion in solid cancers. Cancers, 2021, 13(2): 177.
doi: 10.3390/cancers13020177 |
[57] | Shi Y, Xu ZZ, Lu H, Ci WM. Correlation studies of distinct mutational signatures with common cancer pathological subtyping. Hereditas(Beijing), 2018, 40(11): 1033-1038. |
史悦, 许争争, 鲁欢, 慈维敏. 肿瘤突变特征与病理分型的关联研究. 遗传, 2018, 40(11): 1033-1038. |
[1] | 张强, 顾明亮. 单细胞测序技术及其在乳腺癌研究中的应用[J]. 遗传, 2020, 42(3): 250-268. |
[2] | 王诗铭, 宋晓, 赵雪莹, 陈红岩, 王久存, 吴俊杰, 高志强, 钱吉, 白春学, 李强, 韩宝惠, 卢大儒. 自噬通路基因多态性与晚期非小细胞肺癌含铂化疗疗效的相关性分析[J]. 遗传, 2017, 39(3): 250-262. |
[3] | 黄昀,杨焕杰,金焰,李慧敏,傅松滨. 13q14断裂重排与非小细胞肺癌转移潜能关系的研究[J]. 遗传, 2005, 27(4): 531-534. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: