遗传 ›› 2020, Vol. 42 ›› Issue (3): 250-268.doi: 10.16288/j.yczz.19-268
收稿日期:
2019-10-25
修回日期:
2020-02-03
出版日期:
2020-03-20
发布日期:
2020-02-08
通讯作者:
顾明亮
E-mail:minglianggu@hotmai.com
作者简介:
张强,硕士,实习研究员,研究方向:分子遗传学。E-mail: 基金资助:
Received:
2019-10-25
Revised:
2020-02-03
Online:
2020-03-20
Published:
2020-02-08
Contact:
Gu Mingliang
E-mail:minglianggu@hotmai.com
Supported by:
摘要:
乳腺癌是起源于乳腺各级导管和乳腺上皮细胞,由增生到不典型增生而逐步发展成原位癌、早期浸润癌至浸润性癌的一种恶性肿瘤。传统高通量测序技术对乳腺癌的研究主要是鉴定与乳腺癌发生发展相关的“驱动基因”,但是对于乳腺癌基因组结构变化以及亚克隆的鉴定等存在一定的局限性,并且忽略了乳腺癌肿瘤细胞之间的异质性。近年来兴起的单细胞测序技术是以单个细胞为研究对象,对基因拷贝和基因表达等数据进行分析,探究乳腺癌的细胞组成、细胞状态和细胞命运,绘制乳腺癌生态系统图谱,对临床患者进行精准分层,为实现个体化治疗提供支持。同时,还可以揭示乳腺癌与T细胞、巨噬细胞等免疫细胞间的相关性,为发现乳腺癌新的治疗靶点、免疫检查点等提供参考。本文对单细胞测序技术及其在乳腺癌研究中的应用和研究进展进行了综述,以期为单细胞测序技术的进一步发展提供参考,同时为理解乳腺癌的发病机制和免疫治疗提供基础支持。
张强, 顾明亮. 单细胞测序技术及其在乳腺癌研究中的应用[J]. 遗传, 2020, 42(3): 250-268.
Qiang Zhang, Mingliang Gu. Single-cell sequencing and its application in breast cancer[J]. Hereditas(Beijing), 2020, 42(3): 250-268.
表1
组织特异性酶处理制备单细胞悬浮液"
样本来源 | 酶 | 时间(min) | 温度(℃) | 浓度 | 参考文献 |
---|---|---|---|---|---|
肝脏 | 胶原蛋白酶IV | 10 | 37 | 0.16 mg/mL | [ |
胶原蛋白酶D | 20 | 37 | 10 mg/mL | [ | |
链霉蛋白酶和胰蛋白酶 | 10 | 37 | 10 mg/mL,0.05% | [ | |
肾脏 | Liberase TL | 15 | 37 | 2 mg/mL | [ |
脾脏 | 胶原蛋白酶D | 45 | 37 | 2 mg/mL | [ |
胰腺 | 胶原蛋白酶P | 30 | 37 | 8 mmol/L | [ |
细胞消化液 | 8~10 | 37 | 1× | [ | |
胶原蛋白酶CLS IV | 30 | 37 | 1 mg/mL | [ | |
胰蛋白酶 | 30 | 37 | 1× | [ | |
肺 | 分散酶和弹性蛋白酶 | 45 | 37 | 0.33 U/mL 和3 U/mL | [ |
分散酶和胶原蛋白酶 | 45 | 37 | 0.2% solution | [ | |
胰蛋白酶 | 15 | 37 | 0.125% | [ | |
皮肤 | 胰蛋白酶 | 120 | 32 | 1× | [ |
Liberase TL | 15 | 37 | 2 mg/mL | [ | |
视网膜 | 木瓜蛋白酶 | 45 | 37 | 4 U/mL | [ |
细胞消化液 | 5 | 37 | 1× | [ |
表3
单细胞转录组建库与测序方法"
方法 | RNA捕获 | cDNA覆盖 | UMI |
---|---|---|---|
基于添加ployA尾巴 | |||
Tang2009 | polyA | 3′偏倚的全长 | 无 |
Quartz-seq | polyA | 3′偏倚的全长 | 无 |
SUPeR-seq | polyA | 全长 | 无 |
MATQ-seq | polyA | 全长 | 有 |
基于5′模板置换机制 | |||
SMART-seq | polyA | 3′偏倚的全长 | 无 |
SMART-seq2 | polyA | 全长 | 无 |
STRT-seq | polyA | 5′标签 | 有 |
STRT-seq-2i | polyA | 5′标签 | 有 |
SCRB-seq | polyA | 3′标签 | 有 |
Drop-seq | polyA | 3′标签 | 有 |
体外转录扩增(IVT) | |||
CEL-seq | polyA | 3′标签 | 无 |
CEL-seq2 | polyA | 3′标签 | 有 |
MARS-seq | polyA | 3′标签 | 有 |
In Drops | polyA | 3′标签 | 有 |
[1] | Yu TL, Cai DL, Zhu GF, Ye XJ, Min TS, Chen HY, Lu DR, Chen HM . Effects of CSN4 knockdown on proliferation and apoptosis of breast cancer MDA-MB-231 cells. Hereditas(Beijing), 2019,41(4):318-326. |
余同露, 蔡栋梁, 朱根凤, 叶晓娟, 闵太善, 陈红岩, 卢大儒, 陈浩明 . CSN4基因干扰对乳腺癌MDA-MB- 231细胞增殖和凋亡的影响. 遗传, 2019,41(4):318-326. | |
[2] | Boyle P, Levin B. World Cancer Report 2008. Lyon: IARC Press, 2008. |
[3] | Yao CB, Zhou X, Chen CS, Lei QY . The regulatory mechanisms and functional roles of the Hippo signaling pathway in breast cancer. Hereditas(Beijing), 2017,39(7):617-629. |
姚传波, 周鑫, 陈策实, 雷群英 . Hippo信号通路在乳腺癌中的调控机制及作用. 遗传, 2017,39(7):617-629. | |
[4] | Hanahan D, Weinberg RA . The hallmarks of cancer. Cell, 2000,100(1):57-70. |
[5] | Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell, 2011,144(5):646-674. |
[6] | Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, Nik-Zainal S, Martin S, Varela I, Bignell GR, Yates LR, Papaemmanuil E, Beare D, Butler A, Cheverton A, Gamble J, Hinton J, Jia M, Jayakumar A, Jones D, Latimer C, Lau KW, McLaren S, McBride DJ, Menzies A, Mudie L, Raine K, Rad R, Chapman MS, Teague J, Easton D, Langerød A, Lee MT, Shen CY, Tee BT, Huimin BW, Broeks A, Vargas AC, Turashvili G, Martens J, Fatima A, Miron P, Chin SF, Thomas G, Boyault S, Mariani O, Lakhani SR, van de Vijver M, van't Veer L, Foekens J, Desmedt C, Sotiriou C, Tutt A, Caldas C, Reis-Filho JS, Aparicio SA, Salomon AV, Børresen-Dale AL, Richardson AL, Campbell PJ, Futreal PA, Stratton MR . The landscape of cancer genes and mutational processes in breast cancer. Nature, 2012,486(7403):400-404. |
[7] | Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, Turashvili G, Ding J, Tse K, Haffari G, Bashashati A, Prentice LM, Khattra J, Burleigh A, Yap D, Bernard V, McPherson A, Shumansky K, Crisan A, Giuliany R, Heravi-Moussavi A, Rosner J, Lai D, Birol I, Varhol R, Tam A, Dhalla N, Zeng T, Ma K, Chan SK, Griffith M, Moradian A, Cheng SW, Morin GB, Watson P, Gelmon K, Chia S, Chin SF, Curtis C, Rueda OM, Pharoah PD, Damaraju S, Mackey J, Hoon K, Harkins T, Tadigotla V, Sigaroudinia M, Gascard P, Tlsty T, Costello JF, Meyer IM, Eaves CJ, Wasserman WW, Jones S, Huntsman D, Hirst M, Caldas C, Marra MA, Aparicio S . The clonal and mutational evolution spectrum of primary triple- negative breast cancers. Nature, 2012,486(7403):395-399. |
[8] | Baslan T, Kendall J, Rodgers L, Cox H, Riggs M, Stepansky A, Troge J, Ravi K, Esposito D, Lakshmi B, Wigler M, Navin N, Hicks J . Genome-wide copy number analysis of single cells. Nat Protoc, 2012,7(6):1024-1041. |
[9] | Zong C, Lu S, Chapman AR, Xie XS . Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science, 2012,338(6114):1622-1626. |
[10] | Gerlinger M, Rowan AJ, Horswell S, Math M, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P, Varela I, Phillimore B, Begum S, McDonald NQ, Butler A, Jones D, Raine K, Latimer C, Santos CR, Nohadani M, Eklund AC, Spencer-Dene B, Clark G1, Pickering L, Stamp G, Gore M, Szallasi Z, Downward J, Futreal PA, Swanton C . Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med, 2012,366(10):883-892. |
[11] | Yates LR, Campbell PJ . Evolution of the cancer genome. Nat Rev Genet, 2012,13(11):795-806. |
[12] | Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW . Cancer genome landscapes. Science, 2013,339(6127):1546-1558. |
[13] | Sethi N, Kang Y . Unravelling the complexity of metastasis—molecular understanding and targeted therapies. Nat Rev Cancer, 2011,11(10):735-748. |
[14] | Lee W, Jiang Z, Liu J, Haverty PM, Guan Y, Stinson J, Yue P, Zhang Y, Pant KP, Bhatt D, Ha C, Johnson S, Kennemer MI, Mohan S, Nazarenko I, Watanabe C, Sparks AB, Shames DS, Gentleman R, de Sauvage FJ, Stern H, Pandita A, Ballinger DG, Drmanac R, Modrusan Z, Seshagiri S, Zhang Z,. The mutation spectrum revealed by paired genome sequences from a lung cancer patient. Nature, 2010,465(7297):473-477. |
[15] | Clark J, Attard G, Jhavar S, Flohr P, Reid A, De-Bono J, Eeles R, Scardino P, Cuzick J, Fisher G, Parker MD, Foster CS, Berney D, Kovacs G, Cooper CS . Complex patterns of ETS gene alteration arise during cancer development in the human prostate. Oncogene, 2008,27(14):1993-2003. |
[16] | Wang Y, Waters J, Leung ML, Unruh A, Roh W, Shi X, Chen K, Scheet P, Vattathil S, Liang H, Multani A, Zhang H, Zhao R, Michor F, Meric-Bernstam F, Navin NE . Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature, 2014,512(7513):155-160. |
[17] | Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, Cook K, Stepansky A, Levy D, Esposito D, Muthuswamy L, Krasnitz A, McCombie WR, Hicks J, Wigler M . Tumour evolution inferred by single-cell sequencing. Nature, 2011,472(7341):90-94. |
[18] | Liu W, Hou YF, Chen HH, Wei HD, Lin WR, Li JC, Zhang M, He FC, Jiang Y . Sample preparation method for isolation of single-cell types from mouse liver for proteomic studies. Proteomics, 2011,11(17):3556-3564. |
[19] | Dorrell C, Erker L, Lanxon-Cookson KM, Abraham SL, Victoroff T, Ro S, Canaday PS, Streeter PR, Grompe M . Surface markers for the murine oval cell response. Hepatology, 2008,48(4):1282-1291. |
[20] | Su XB, Shi Y, Zou X, Lu ZN, Xie GC, Yang JYH, Wu CC, Cui XF, He KY, Luo Q, Qu YL, Wang N, Wang L, Han ZG . Single-cell RNA-seq analysis reveals dynamic trajectories during mouse liver development. BMC Genomics, 2017,18(1):946. |
[21] | Der E, Ranabothu S, Suryawanshi H, Akat KM, Clancy R, Morozov P, Kustagi M, Czuppa M, Izmirly P, Belmont HM, Wang T, Jordan N, Bornkamp N, Nwaukoni J, Martinez J, Goilav B, Buyon JP, Tuschl T, Putterman C . Single cell RNA sequencing to dissect the molecular heterogeneity in lupus nephritis. JCI Insight, 2017,2(9):93009. |
[22] | Autengruber A, Gereke M, Hansen G, Hennig C, Bruder D . Impact of enzymatic tissue disintegration on the level of surface molecule expression and immune cell function. Eur J Microbiol Immunol, 2012,2(2):112-120. |
[23] | Baron M, Veres A, Wolock SL, Faust AL, Gaujoux R, Vetere A, Ryu JH, Wagner BK, Shen-Orr SS, Klein AM, Melton DA, Yanai I. A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra- cell population structure . Cell Syst, 2016, 3(4): 346-360.e4. |
[24] | Muraro MJ, Dharmadhikari G, Grün D, Groen N, Dielen T, Jansen E, van Gurp L, Engelse MA, Carlotti F, de Koning EJ, van Oudenaarden A, . A single-cell transcriptome atlas of the human pancreas. Cell Syst, 2016,3(4):385-394. |
[25] | Wollny D, Zhao S, Everlien I, Lun XK, Brunken J, Brüne D, Ziebell F, Tabansky I, Weichert W, Marciniak- Czochra A, Martin-Villalba A . Single-cell analysis uncovers clonal acinar cell heterogeneity in the adult pancreas. Dev Cell, 2016,39(3):289-301. |
[26] | Li D, Peng SY, Zhang ZW, Feng RC, Li L, Liang J, Tai S, Teng CB . Complete disassociation of adult pancreas into viable single cells through cold trypsin-EDTA digestion. J Zhejiang Univ Sci B, 2013,14(7):596-603. |
[27] | Treutlein B, Brownfield DG, Wu AR, Neff NF, Mantalas GL, Espinoza FH, Desai TJ, Krasnow MA, Quake SR . Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature, 2014,509(7500):371-375. |
[28] | Chapman HA, Li X, Alexander JP, Brumwell A, Lorizio W, Tan K, Sonnenberg A, Wei Y, Vu TH . Integrin α6β4 identifies an adult distal lung epithelial population with regenerative potential in mice. J Clin Invest, 2011,121(7):2855-2862. |
[29] | Xu Y, Mizuno T, Sridharan A, Du Y, Guo M, Tang J, Wikenheiser-Brokamp KA, Perl AT, Funari VA, Gokey JJ, Stripp BR, Whitsett JA . Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis. JCI Insight, 2016,1(20):e90558. |
[30] | Joost S, Zeisel A, Jacob T, Sun X, La Manno G, Lönnerberg P, Linnarsson S, Kasper M . Single-cell transcriptomics reveals that differentiation and spatial signatures shape epidermal and hair follicle heterogeneity. Cell Syst, 2016,3(3):221-237. |
[31] | Shekhar K, Lapan SW, Whitney IE, Tran NM, Macosko EZ, Kowalczyk M, Adiconis X, Levin JZ, Nemesh J, Goldman M, McCarroll SA, Cepko CL, Regev A, Sanes JR, . Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell, 2016,166(5):1308-1323. |
[32] | Daniszewski M, Senabouth A, Nguyen QH, Crombie DE, Lukowski SW, Kulkarni T, Sluch VM, Jabbari JS, Chamling X, Zack DJ, Pébay A, Powell JE, Hewitt AW . Single cell RNA sequencing of stem cell-derived retinal ganglion cells. Sci Data, 2018,5:180013. |
[33] | Lafzi A, Moutinho C, Picelli S, Heyn H . Tutorial: guidelines for the experimental design of single-cell RNA sequencing studies. Nat Protoc, 2018,13(12):2742-2757. |
[34] | Gross A, Schoendube J, Zimmermann S, Steeb M, Zengerle R, Koltay P . Technologies for single-cell isolation. Int J Mol Sci, 2015,16(8):16897-16919. |
[35] | Zong C, Lu S, Chapman AR, Xie XS . Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science, 2012,338(6114):1622-1626. |
[36] | Gole J, Gore A, Richards A, Chiu YJ, Fung HL, Bushman D, Chiang HI, Chun J, Lo YH, Zhang K . Massively parallel polymerase cloning and genome sequencing of single cells using nanoliter microwells. Nat Biotechnol, 2013,31(12):1126. |
[37] | Grün D, Van Oudenaarden A . Design and analysis of single-cell sequencing experiments. Cell, 2015,163(4):799-810. |
[38] | Ellsworth DL, Blackburn HL, Shriver CD, Rabizadeh S, Soon-Shiong P, Ellsworth RE . Single-cell sequencing and tumorigenesis: improved understanding of tumor evolution and metastasis. Clin Transl Med, 2017,6(1):15. |
[39] | Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M, Lönnerberg P, Linnarsson S . Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods, 2014,11(2):163-166. |
[40] | Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, Gregory MT, Shuga J, Montesclaros L, Underwood JG, Masquelier DA, Nishimura SY, Schnall-Levin M, Wyatt PW, Hindson CM, Bharadwaj R, Wong A, Ness KD, Beppu LW, Deeg HJ, McFarland C, Loeb KR, Valente WJ, Ericson NG, Stevens EA, Radich JP, Mikkelsen TS, Hindson BJ, Bielas JH . Massively parallel digital transcriptional profiling of single cells. Nat Commun, 2017,8:14049. |
[41] | Valihrach L, Androvic P, Kubista M . Platforms for single-cell collection and analysis. Int J Mol Sci, 2018,19(3):807. |
[42] | Liang JL, Cai WS, Sun ZH . Single-cell sequencing technologies: current and future. J Genet Genomics, 2014,41(10):513-528. |
[43] | Hodne K, Weltzien FA . Single-cell isolation and gene analysis: pitfalls and possibilities. Int J Mol Sci, 2015,16(11):26832-26849. |
[44] | Cheng L, Zhang S, MacLennan GT, Williamson SR, Davidson DD, Wang M, Jones TD, Lopez-Beltran A, Montironi R . Laser-assisted microdissection in translational research: theory, technical considerations, and future applications. Appl Immunohistochem Mol Morphol, 2013,21(1):31-47. |
[45] | Yao YX, La YF, Di R, Liu QY, Hu WP, Wang XY, Chu MX . Comparison of different single cell whole genome amplification methods and MALBAC applications in assisted reproduction. Hereditas(Beijing), 2018,40(8):620-631. |
姚雅馨, 喇永富, 狄冉, 刘秋月, 胡文萍, 王翔宇, 储明星 . 不同单细胞全基因组扩增方法的比较及MALBAC在辅助生殖中的应用. 遗传, 2018,40(8):620-631. | |
[46] | Cai HQ, Liu HT, Shi B, Li A, Tang WR, Luo Y . Recent Advance of Whole Genome Amplification and its Application prospect in Forensic Individual Identification. Hereditas(Beijing), 2010,32(11):1119-1125. |
蔡海强, 柳海涛, 史斌, 李安, 唐文如, 罗瑛 . 全基因组扩增技术及其在法医个体识别中的应用. 遗传, 2010,32(11):1119-1125. | |
[47] | Troutt AB, McHeyzer-Williams MG, Pulendran B, Nossal GJ, . Ligation-anchored PCR: a simple amplification technique with single-sided specificity. Proc Natl Acad Sci USA, 1992,89(20):9823-9825. |
[48] | Zhang L, Cui X, Schmitt K, Hubert R, Navidi W, Arnheim N . Whole genome amplification from a single cell: implications for genetic analysis. Proc Natl Acad Sci USA, 1992,89(13):5847-5851. |
[49] | Telenius H, Carter NP, Bebb CE, Nordenskjöld M, Ponder BA, Tunnacliffe A . Degenerate oligonucleotide- primed PCR: general amplification of target DNA by a single degenerate primer. Genomics, 1992,13(3):718-725. |
[50] | Cheung VG, Nelson SF . Whole genome amplification using a degenerate oligonucleotide primer allows hundreds of genotypes to be performed on less than one nanogram of genomic DNA. Proc Natl Acad Sci USA, 1996,93(25):14676-14679. |
[51] | Dean FB, Hosono S, Fang LH, Wu XH, Faruqi AF, Bray-Ward P, Sun ZY, Zong QL, Du YF, Du J, Driscoll M, Song WM, Kingsmore SF, Egholm M, Lasken RS . Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci USA, 2002,99(8):5261-5266. |
[52] | Dean FB, Nelson JR, Giesler TL, Lasken RS . Rapid amplification of plasmid and phage DNA using phi29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res, 2001,11(6):1095-1099. |
[53] | Lasken RS . Single-cell sequencing in its prime. Nat Biotechnol, 2013,31(3):211-212. |
[54] | Cohen AA, Geva-Zatorsky N, Eden E, Frenkel- Morgenstern M, Issaeva I, Sigal A, Milo R, Cohen- Saidon C, Liron Y, Kam Z, Cohen L, Danon T, Perzov N, Alon U . Dynamic proteomics of individual cancer cells in response to a drug. Science, 2008,322(5907):1511-1516. |
[55] | Raj A, van Oudenaarden A . Single-molecule approaches to stochastic gene expression. Annu Rev Biophys, 2009,38:255-270. |
[56] | Tang FC, Barbacioru C, Nordman E, Li B, Xu NL, Bashkirov VI, Lao KQ, Surani MA . RNA-Seq analysis to capture the transcriptome landscape of a single cell. Nat Protoc, 2010,5(3):516-535. |
[57] | Tang FC, Barbacioru C, Wang YZ, Nordman E, Lee C, Xu NL, Wang XH, Bodeau J, Tuch BB, Siddiqui A, Lao KQ , Surani MA. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods, 2009,6(5):377-382. |
[58] | Sasagawa Y, Nikaido I, Hayashi T, Danno H, Uno KD, Imai T, Ueda HR . Quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity. Genome Biol, 2013,14(4):R31. |
[59] | Fan XY, Zhang XN, Wu XL, Guo HS, Hu YQ, Tang FC, Huang YY . Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos. Genome Biol, 2015,16(1):14. |
[60] | Sheng KW, Cao WJ, Niu YC, Deng Q, Zong CH . Effective detection of variation in single-cell transcriptomes using MATQ-seq. Nat Methods, 2017,14(3):267-270. |
[61] | Islam S, Kjällquist U, Moliner A, Zajac P, Fan JB, Lönnerberg P, Linnarsson S . Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res, 2011,21(7):1160. |
[62] | Islam S, Kjällquist U, Moliner A, Zajac P, Fan JB, Lönnerberg P, Linnarsson S . Highly multiplexed and strand-specific single-cell RNA 5' end sequencing. Nat Protoc, 2012,7(5):813-828. |
[63] | Picelli S, Faridani OR, Björklund AK, Winberg G, Sagasser S, Sandberg R . Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc, 2014,9(1):171-181. |
[64] | Petersen M, Wengel J . LNA: a versatile tool for therapeutics and genomics. Trends Biotechnol, 2003,21(2):74-81. |
[65] | Vester B, Wengel J . LNA (Locked nucleic acid): high-affinity targeting of complementary RNA and DNA. Biochemistry, 2004,43(42):13233-13241. |
[66] | Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, Trombetta JJ, Weitz DA, Sanes JR, Shalek AK, Regev A, McCarroll SA. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell, 2015,161(5):1202-1214. |
[67] | Islam S, Kjällquist U, Moliner A, Zajac P, Fan JB, Lönnerberg P, Linnarsson S . Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res, 2011,21(7):1160-1167. |
[68] | Hochgerner H, Lönnerberg P, Hodge R, Mikes J, Heskol A, Hubschle H, Lin P, Picelli S, La Manno G, Ratz M, Dunne J, Husain S, Lein E, Srinivasan M, Zeisel A, Linnarsson S . STRT-seq-2i: dual-index 5′ single cell and nucleus RNA-seq on an addressable microwell array. Sci Rep, 2017,7(1):16327. |
[69] | Soumillon M, Cacchiarelli D, Semrau S, van Oudenaarden A ,Mikkelsen TS. Characterization of directed differentiation by high-throughput single-cell RNA-Seq. BioRxiv, 2014, https://doi.org/10.1101/003236. |
[70] | Hashimshony T, Wagner F, Sher N, Yanai I . CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep, 2012,2(3):666-673. |
[71] | Shapiro E, Biezuner T, Linnarsson S . Single-cell sequencing-based technologies will revolutionize whole- organism science. Nat Rev Genet, 2013,14(9):618-630. |
[72] | Hashimshony T, Senderovich N, Avital G, Klochendler A, de Leeuw Y, Anavy L, Gennert D, Li SQ, Livak KJ, Rozenblatt-Rosen O, Dor Y, Regev A, Yanai I . CEL- Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome Biol, 2016,17:77. |
[73] | Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner MW . Droplet barcoding for single-cell Transcriptomics applied to embryonic stem cells. Cell, 2015,161(5):1187-1201. |
[74] | Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, Mildner A, Cohen N, Jung S, Tanay A, Amit I . Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science, 2014,343(6172):776-779. |
[75] | Guo HS, Zhu P, Wu XL, Li XL, Wen L, Tang FC . Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res, 2013,23(12):2126-2135. |
[76] | Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H, Peat J, Andrews SR, Stegle O, Reik W, Kelsey G . Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods, 2014,11(8):817-820. |
[77] | Grosselin K, Durand A, Marsolier J, Poitou A, Marangoni E, Nemati F, Dahmani A, Lameiras S, Reyal F, Frenoy O, Pousse Y, Reichen M, Woolfe A, Brenan C, Griffiths AD, Vallot C, Gérard A . High-throughput single-cell ChIP-seq identifies heterogeneity of chromatin states in breast cancer. Nat Genet, 2019,51(6):1060-1066. |
[78] | Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, Chang HY, Greenleaf WJ . Single-cell chromatin accessibility reveals principles of regulatory variation. Nature, 2015,523(7561):486-490. |
[79] | Cusanovich DA, Daza R, Adey A, Pliner HA, Christiansen L, Gunderson KL, Steemers FJ, Trapnell C, Shendure J . Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science, 2015,348(6237):910-914. |
[80] | Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF, Magnusson J, Giacomello S, Asp M, Westholm JO, Huss M, Mollbrink A, Linnarsson S, Codeluppi S, Borg A, Pontén F, Costea PI, Sahlén P, Mulder J, Bergmann O, Lundeberg J, Frisén J . Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science, 2016,353(6294):78-82. |
[81] | Wang Y, Waters J, Leung ML, Unruh A, Roh W, Shi XQ, Chen K, Scheet P, Vattathil S, Liang H, Multani A, Zhang H, Zhao R, Michor F, Meric-Bernstam F, Navin NE . Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature, 2014,512(7513):155-160. |
[82] | Gao RL, Kim C, Sei E, Foukakis T, Crosetto N, Chan LK, Srinivasan M, Zhang H, Meric-Bernstam F, Navin N . Nanogrid single-nucleus RNA sequencing reveals phenotypic diversity in breast cancer. Nat Commun, 2017,8(1):228. |
[83] | Chung W, Eum HH, Lee HO, Lee KM, Lee HB, Kim KT, Ryu HS, Kim S, Lee JE, Park YH, Kan Z, Han W, Park WY . Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Nat Commun, 2017,8:15081. |
[84] | Allred DC, Wu Y, Mao S, Nagtegaal ID, Lee S, Perou CM, Mohsin SK, O’Connell P, Tsimelzon A, Medina D, . Ductal carcinoma in situ and the emergence of diversity during breast cancer evolution. Clin Cancer Res, 2008,14(2):370-378. |
[85] | Virnig BA, Tuttle TM, Shamliyan T, Kane RL . Ductal carcinoma in situ of the breast: a systematic review of incidence, treatment, and outcomes. J Nati Cancer Inst, 2010,102(3):170-178. |
[86] | Gao RL, Davis A, McDonald TO, Sei E, Shi XQ, Wang Y, Tsai PC, Casasent A, Waters J, Zhang H, Meric-Bernstam F, Michor F, Navin NE. Punctuated copy number evolution and clonal stasis in triple-negative breast cancer. Nat Genet, 2016,48(10):1119-1130. |
[87] | Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, Turashvili G, Ding J, Tse K, Haffari G, Bashashati A, Prentice LM, Khattra J, Burleigh A, Yap D, Bernard V, McPherson A, Shumansky K, Crisan A, Giuliany R, Heravi-Moussavi A, Rosner J, Lai D, Birol I, Varhol R, Tam A, Dhalla N, Zeng T, Ma K, Chan SK, Griffith M, Moradian A, Cheng SW, Morin GB, Watson P, Gelmon K, Chia S, Chin SF, Curtis C, Rueda OM, Pharoah PD, Damaraju S, Mackey J, Hoon K, Harkins T, Tadigotla V, Sigaroudinia M, Gascard P, Tlsty T, Costello JF, Meyer IM, Eaves CJ, Wasserman WW, Jones S, Huntsman D, Hirst M, Caldas C, Marra MA, Aparicio S . The clonal and mutational evolution spectrum of primary triple- negative breast cancers. Nature, 2012,486(7403):395-399. |
[88] | Yates LR, Gerstung M, Knappskog S, Desmedt C, Gundem G, Van Loo P, Aas T, Alexandrov LB, Larsimont D, Davies H, Li Y, Ju YS, Ramakrishna M, Haugland HK, Lilleng PK, Nik-Zainal S, McLaren S, Butler A, Martin S, Glodzik D, Menzies A, Raine K, Hinton J, Jones D, Mudie LJ, Jiang B, Vincent D, Greene-Colozzi A, Adnet PY, Fatima A, Maetens M, Ignatiadis M, Stratton MR, Sotiriou C, Richardson AL, Lønning PE, Wedge DC, Campbell PJ . Subclonal diversification of primary breast cancer revealed by multiregion sequencing. Nat Med, 2015,21(7):751-759. |
[89] | Casasent AK, Schalck A, Gao R, Sei E, Long A, Pangburn W, Casasent T, Meric-Bernstam F, Edgerton ME, Navin NE. Multiclonal invasion in breast tumors identified by topographic single cell sequencing. Cell, 2018,172(1-2): 205-217.e12. |
[90] | McAllister SS, Weinberg RA . Tumor-host interactions: a far-reaching relationship. J Clin Oncol, 2010,28(26):4022-4028. |
[91] | Gerdes MJ, Gökmen-Polar Y, Sui Y, Pang AS, LaPlante N, Harris AL, Tan PH, Ginty F, Badve SS, . Single-cell heterogeneity in ductal carcinoma in situ of breast. Mod Pathol, 2018,31(3):406-417. |
[92] | Wagner J, Rapsomaniki MA, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, Rees M, Ramaswamy A, Muenst S, Soysal SD, Jacobs A, Windhager J, Silina K, van den Broek M, Dedes KJ, Rodríguez Martínez M, Weber WP, Bodenmiller B, . A single-cell atlas of the tumor and immune ecosystem of human breast cancer. Cell, 2019,177(5):1-16. |
[93] | Azizi E, Carr AJ, Plitas G, Cornish AE, Konopacki C, Prabhakaran S, Nainys J, Wu K, Kiseliovas V, Setty M, Choi K, Fromme RM, Dao P, McKenney PT, Wasti RC, Kadaveru K, Mazutis L, Rudensky AY, Pe'er D. Single-Cell Map of diverse immune phenotypes in the breast tumor microenvironment. Cell, 2018, 174(5): 1293-1308.e36. |
[94] | Ruffell B, Au A, Rugo HS, Esserman LJ, Hwang ES, Coussens LM . Leukocyte composition of human breast cancer. Proc Natl Acad Sci USA, 2012,109(8):2796-2801. |
[95] | Savas P, Virassamy B, Ye C, Salim A, Mintoff CP, Caramia F, Salgado R, Byrne DJ, Teo ZL, Dushyanthen S, Byrne A, Wein L, Luen SJ, Poliness C, Nightingale SS, Skandarajah AS, Gyorki DE, Thornton CM, Beavis PA, Fox SB, Kathleen , Darcy PK, Speed TP, Mackay LK, Neeson PJ, Loi S . Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat Med, 2018,24(7):986-993. |
[96] | Noy R, Pollard JW . Tumor-associated macrophages: from mechanisms to therapy. Immunity, 2014,41(1):49-61. |
[97] | Qian BZ, Pollard JW . Macrophage diversity enhances tumor progression and metastasis. Cell, 2010,141(1):39-51. |
[98] | Ruffell B, Chang-Strachan D, Chan V, Rosenbusch A, Ho CM, Pryer N, Daniel D, Hwang ES, Rugo HS, Coussens LM . Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell, 2014,26(5):623-637. |
[99] | Ugel S, De Sanctis F, Mandruzzato S, Bronte V . Tumor- induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages. J Clin Invest, 2015,125(9):3365-3376. |
[100] | Solinas G, Germano G, Mantovani A, Allavena P . Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol, 2009,86(5):1065-1073. |
[101] | Racioppi L, Nelson ER, Huang W, Mukherjee D, Lawrence SA, Lento W, Masci AM, Jiao Y, Park S, York B, Liu YP, Baek AE, Drewry DH, Zuercher WJ, Bertani FR, Businaro L, Geradts J, Hall A, Means AR, Chao N, Chang CY, McDonnell DP . CaMKK2 in myeloid cells is a key regulator of the immune-suppressive microenvironment in breast cancer. Nat Commun, 2019,10(1):2450. |
[102] | Roth A, McPherson A, Laks E, Biele J, Yap D, Wan A, Smith MA, Nielsen CB, McAlpine JN, Aparicio S, Bouchard-Côté A, Shah SP . Clonal genotype and population structure inference from single-cell tumor sequencing. Nat Methods, 2016,13(7):573-576. |
[103] | Nik-Zainal S, Van Loo P, Wedge DC, Alexandrov LB, Greenman CD, Lau KW, Raine K, Jones D, Marshall J, Ramakrishna M, Shlien A, Cooke SL, Hinton J, Menzies A, Stebbings LA, Leroy C, Jia M, Rance R, Mudie LJ, Gamble SJ, Stephens PJ, McLaren S, Tarpey PS, Papaemmanuil E, Davies HR, Varela I, McBride DJ, Bignell GR, Leung K, Butler AP, Teague JW, Martin S, Jönsson G, Mariani O, Boyault S, Miron P, Fatima A, Langerød A, Aparicio SA, Tutt A, Sieuwerts AM, Borg Å, Thomas G, Salomon AV, Richardson AL, Børresen-Dale AL, Futreal PA, Stratton MR, Campbell PJ . The life history of 21 breast cancers. Cell, 2012,149(5):994-1007. |
[104] | McGranahan N, Swanton C . Clonal heterogeneity and tumor evolution: past, present, and the future. Cell, 2017,168(4):613-628. |
[105] | Dagogo-Jack I, Shaw AT . Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol, 2018,15(2):81-94. |
[106] | Kim C, Gao R, Sei E, Brandt R, Hartman J, Hatschek T, Crosetto N, Foukakis T, Navin NE. Chemoresistance evolution in triple-negative breast cancer delineated by single-cell sequencing. Cell, 2018, 173(4): 879-893.e13. |
[107] | Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell, 2011,144(5):646-674. |
[108] | Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SF, Csiszar K, Giaccia A, Weninger W, Yamauchi M, Gasser DL, Weaver VM . Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell, 2009,139(5):891-906. |
[109] | Laklai H, Miroshnikova YA, Pickup MW, Collisson EA, Kim GE, Barrett AS, Hill RC, Lakins JN, Schlaepfer DD, Mouw JK, LeBleu VS, Roy N, Novitskiy SV, Johansen JS, Poli V, Kalluri R, Iacobuzio-Donahue CA, Wood LD, Hebrok M, Hansen K, Moses HL, Weaver VM . Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression. Nat Med, 2016,22(5):497-505. |
[110] | Perrimon N, Pitsouli C, Shilo BZ . Signaling mechanisms controlling cell fate and embryonic patterning. Cold Spring Harb Perspect Biol, 2012,4(8):a005975. |
[111] | Wiseman BS, Werb Z . Stromal effects on mammary gland development and breast cancer. Science, 2002,296(5570):1046-1049. |
[112] | Hui M, Cazet A, Nair R, Watkins DN, O'Toole SA, Swarbrick A, . The Hedgehog signalling pathway in breast development, carcinogenesis and cancer therapy. Breast Cancer Res, 2013,15(2):203. |
[113] | Amakye D, Jagani Z, Dorsch M . Unraveling the therapeutic potential of the Hedgehog pathway in cancer. Nat Med, 2013,19(11):1410-1422. |
[114] | O'Toole SA, Machalek DA, Shearer RF, Millar EK, Nair R, Schofield P, McLeod D, Cooper CL, McNeil CM, McFarland A, Nguyen A, Ormandy CJ, Qiu MR, Rabinovich B, Martelotto LG, Vu D, Hannigan GE, Musgrove EA, Christ D, Sutherland RL, Watkins DN, Swarbrick A, . Hedgehog overexpression is associated with stromal interactions and predicts for poor outcome in breast cancer. Cancer Res, 2011,71(11):4002-4014. |
[115] | Cazet AS, Hui MN, Elsworth BL, Wu SZ, Roden D, Chan CL, Skhinas JN, Collot R, Yang J, Harvey K, Johan MZ, Cooper C, Nair R, Herrmann D, McFarland A, Deng N, Ruiz-Borrego M, Rojo F, Trigo JM, Bezares S, Caballero R, Lim E, Timpson P, O'Toole S, Watkins DN, Cox TR, Samuel MS, Martín M, Swarbrick A . Targeting stromal remodeling and cancer stem cell plasticity overcomes chemoresistance in triple negative breast cancer. Nat Commun, 2018,9(1):2897. |
[116] | Wen L, Tang FC . Recent progress in single-cell RNA-Seq analysis. Hereditas(Beijing), 2014,36(11):1069-1076. |
文路, 汤富酬 . 单细胞转录组高通量测序分析新进展. 遗传, 2014,36(11):1069-1076. | |
[117] | Kulkarni A, Anderson AG, Merullo DP, Konopka G . Beyond bulk: a review of single cell transcriptomics methodologies and applications. Curr Opin Biotechnol, 2019,58:129-136. |
[118] | Hedlund E, Deng QL . Single-cell RNA sequencing: Technical advancements and biological applications. Mol Aspects Med, 2018,59:36-46. |
[1] | 孙清玙, 周阳, 杜丽娟, 张梦珂, 王家乐, 任媛媛, 刘芳. 巨噬细胞相关基因与非小细胞肺癌预后和肿瘤微环境的分析[J]. 遗传, 2023, 45(8): 684-699. |
[2] | 马春辉, 胡海旭, 张丽娟, 刘毅, 刘天懿. 用于循环肿瘤细胞定量分析的CK19数字PCR检测方法的建立及性能验证[J]. 遗传, 2023, 45(3): 250-260. |
[3] | 常栋, 刘享享, 刘睿, 孙建伟. FSCN1在乳腺癌发生发展中的作用及其调控机制[J]. 遗传, 2023, 45(2): 115-127. |
[4] | 周俊, 赵成成, 吴霄, 石俊松, 周荣, 吴珍芳, 李紫聪. 猪耳成纤维细胞转录组异质性及对核移植胚胎发育的潜在影响[J]. 遗传, 2020, 42(9): 898-915. |
[5] | 王昕源, 张雨, 杨楠, 程禾, 孙玉洁. DNMT3a通过提升基因内部甲基化介导紫杉醇诱导的LINE-1异常表达[J]. 遗传, 2020, 42(1): 100-111. |
[6] | 禹奇超,宋彬,邹轩轩,王岭,刘德权,李波,马昆. 乳腺癌癌旁组织特异性表达基因分析[J]. 遗传, 2019, 41(7): 625-633. |
[7] | 余同露,蔡栋梁,朱根凤,叶晓娟,闵太善,陈红岩,卢大儒,陈浩明. CSN4基因干扰对乳腺癌MDA-MB-231细胞增殖和凋亡的影响[J]. 遗传, 2019, 41(4): 318-326. |
[8] | 吴保军,王卓,董宇,邓宇亮,施奇惠. 肺癌恶性胸腔积液中稀有肿瘤细胞的鉴定与单细胞测序分析[J]. 遗传, 2019, 41(2): 175-184. |
[9] | 胡伟澎, 李佑平, 张秀清. 基于迁移学习的MHC-I型抗原表位呈递预测[J]. 遗传, 2019, 41(11): 1041-1049. |
[10] | 康岚, 陈嘉瑜, 高绍荣. 中国细胞重编程和多能干细胞研究进展[J]. 遗传, 2018, 40(10): 825-840. |
[11] | 姚传波, 周鑫, 陈策实, 雷群英. Hippo信号通路在乳腺癌中的调控机制及作用[J]. 遗传, 2017, 39(7): 617-629. |
[12] | 许崇凤,段子渊. 中华民族永生细胞库在生命科学研究中的支撑作用[J]. 遗传, 2017, 39(1): 75-86. |
[13] | 李泰明, 蓝文俊, 黄灿, 张春, 刘晓玫. 近红外荧光蛋白标记乳腺癌细胞外泌体的构建及鉴定[J]. 遗传, 2016, 38(5): 427-435. |
[14] | 吴新刚,彭姝彬,黄谦. 乳腺癌耐药蛋白基因的转录调控机制[J]. 遗传, 2012, 34(12): 1529-1536. |
[15] | 程龙,黄翠芬,叶棋浓. 乳腺癌中雌激素受体α表达水平调节的分子机制[J]. 遗传, 2010, 32(3): 191-197. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: