遗传 ›› 2023, Vol. 45 ›› Issue (9): 754-764.doi: 10.16288/j.yczz.23-165
收稿日期:
2023-06-12
修回日期:
2023-07-15
出版日期:
2023-09-20
发布日期:
2023-08-01
通讯作者:
黄小珍
E-mail:lytian@genetics.ac.cn;xzhuang@genetics.ac.cn
作者简介:
田璐妍,硕士研究生,专业方向:遗传学。E-mail: 基金资助:
Luyan Tian1,2(), Xiaozhen Huang1()
Received:
2023-06-12
Revised:
2023-07-15
Online:
2023-09-20
Published:
2023-08-01
Contact:
Xiaozhen Huang
E-mail:lytian@genetics.ac.cn;xzhuang@genetics.ac.cn
Supported by:
摘要:
全球气候变化和人口快速增长严重威胁世界粮食安全,现有作物难以满足人类未来的粮食需求,亟需高产优质且环境适应性强的作物品种。利用野生种质资源进行快速从头驯化,获得可应用于育种的新种质是应对粮食安全问题的新策略。开花时间性状是决定作物种植区域和最终产量的重要因素,在作物驯化中常常受到选择。目前在从头驯化中,通常直接利用控制作物开花的主效基因来改造开花性状,基因数量非常有限且功能较为单一。植物成花转变受到环境和内源性信号的复杂调控,本文提出利用调控开花基因表达的重要蛋白质的可逆行为变化——蛋白质相分离定向改造蛋白功能,从而精准控制开花相关基因的表达,可能为从头驯化中开花性状的分子设计提供新的选择。
田璐妍, 黄小珍. 植物开花调控中蛋白质相分离机制在从头驯化中的应用价值[J]. 遗传, 2023, 45(9): 754-764.
Luyan Tian, Xiaozhen Huang. Application value of protein phase separation mechanism of flowering regulation in de novo domestication[J]. Hereditas(Beijing), 2023, 45(9): 754-764.
[1] |
Hickey LT, N Hafeez A, Robinson H, Jackson SA, Leal-Bertioli SCM, Tester M, Gao CX, Godwin ID, Hayes BJ, Wulff BBH. Breeding crops to feed 10 billion. Nat Biotechnol, 2019, 37(7): 744-754.
doi: 10.1038/s41587-019-0152-9 pmid: 31209375 |
[2] |
Chen Z, Bu QY, Liu GF, Wang MQ, Wang HR, Liu HZ, Li XF, Li H, Fang J, Liang Y, Teng ZF, Kang S, Yu H, Cheng ZK, Xue YB, Liang CZ, Tang JY, Li JY, Chu CC. Genomic decoding of breeding history to guide breeding-by-design in rice. Natl Sci Rev, 2023, 10(5): nwad029.
doi: 10.1093/nsr/nwad029 |
[3] |
Zhang CZ, Yang ZM, Tang D, Zhu YH, Wang P, Li DW, Zhu GT, Xiong XY, Shang Y, Li CH, Huang SW. Genome design of hybrid potato. Cell, 2021, 184(15): 3873-3883.e12.
doi: 10.1016/j.cell.2021.06.006 pmid: 34171306 |
[4] |
Yu H, Li JY. Breeding future crops to feed the world through de novo domestication. Nat Commun, 2022, 13(1): 1171.
doi: 10.1038/s41467-022-28732-8 |
[5] |
Li TD, Yang XP, Yu Y, Si XM, Zhai XW, Zhang HW, Dong WX, Gao CX, Xu C. Domestication of wild tomato is accelerated by genome editing. Nat Biotechnol, 2018, 36(12): 1160-1163.
doi: 10.1038/nbt.4273 |
[6] |
Zsögön A, Čermák T, Naves ER, Notini MM, Edel KH, Weinl S, Freschi L, Voytas DF, Kudla J, Peres LEP. De novo domestication of wild tomato using genome editing. Nat Biotechnol, 2018, 36(12): 1211-1216.
doi: 10.1038/nbt.4272 |
[7] |
Yu H, Lin T, Meng XB, Du HL, Zhang JK, Liu GF, Chen MJ, Jing YH, Kou LQ, Li XX, Gao Q, Liang Y, Liu XD, Fan ZL, Liang YT, Cheng ZK, Chen MS, Tian ZX, Wang YH, Chu CC, Zuo JR, Wan JM, Qian Q, Han B, Zuccolo A, Wing RA, Gao CX, Liang CZ, Li JY. A route to de novo domestication of wild allotetraploid rice. Cell, 2021, 184(5): 1156-1170.e14.
doi: 10.1016/j.cell.2021.01.013 |
[8] |
Bartlett ME, Moyers BT, Man J, Subramaniam B, Makunga NP. The power and perils of de novo domestication using genome editing. Annu Rev Plant Biol, 2022, 74: 727-750.
doi: 10.1146/arplant.2023.74.issue-1 |
[9] |
Zhao PS, Li XF, Sun H, Zhao X, Wang XH, Ran RL, Zhao JC, Wei YM, Liu X, Chen GX. Healthy values and de novo domestication of sand rice (Agriophyllum squarrosum), a comparative view against Chenopodium quinoa. Crit Rev Food Sci Nutr, 2021, 63(19): 4188-4209.
doi: 10.1080/10408398.2021.1999202 |
[10] |
Lemmon ZH, Reem NT, Dalrymple J, Soyk S, Swartwood KE, Rodriguez-Leal D, Van Eck J, Lippman ZB. Rapid improvement of domestication traits in an orphan crop by genome editing. Nat Plants, 2018, 4(10): 766-770.
doi: 10.1038/s41477-018-0259-x pmid: 30287957 |
[11] |
Lin XY, Liu BH, Weller JL, Abe J, Kong FJ. Molecular mechanisms for the photoperiodic regulation of flowering in soybean. J Integr Plant Biol, 2020, 63(6): 981-994.
doi: 10.1111/jipb.v63.6 |
[12] |
Lu SJ, Fang C, Abe J, Kong FJ, Liu BH. Current overview on the genetic basis of key genes involved in soybean domestication. aBIOTECH, 2022, 3(2): 126-139.
doi: 10.1007/s42994-022-00074-5 pmid: 36312442 |
[13] |
Sánchez B, Rasmussen A, Porter JR. Temperatures and the growth and development of maize and rice: a review. Glob Chang Biol, 2014, 20(2): 408-417.
doi: 10.1111/gcb.2014.20.issue-2 |
[14] |
Fang XF, Wang L, Ishikawa R, Li YX, Fiedler M, Liu FQ, Calder G, Rowan B, Weigel D, Li PL, Dean C. Arabidopsis FLL2 promotes liquid-liquid phase separation of polyadenylation complexes. Nature, 2019, 569(7755): 265-269.
doi: 10.1038/s41586-019-1165-8 |
[15] |
Zhang Y, Fan S, Hua CM, Teo ZWN, Kiang JX, Shen LS, Yu H. Phase separation of HRLP regulates flowering time in Arabidopsis. Sci Adv, 2022, 8(25): eabn5488.
doi: 10.1126/sciadv.abn5488 |
[16] |
Jung JH, Barbosa AD, Hutin S, Kumita JR, Gao MJ, Derwort D, Silva CS, Lai XL, Pierre E, Geng F, Kim SB, Baek S, Zubieta C, Jaeger KE, Wigge PA. A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis. Nature, 2020, 585(7824): 256-260.
doi: 10.1038/s41586-020-2644-7 |
[17] |
Huang XZ, Chen SD, Li WP, Tang LQ, Zhang YQ, Yang N, Zou YP, Zhai XW, Xiao N, Liu W, Li PL, Xu C. ROS regulated reversible protein phase separation synchronizes plant flowering. Nat Chem Biol, 2021, 17(5): 549-557.
doi: 10.1038/s41589-021-00739-0 pmid: 33633378 |
[18] |
Huang XZ, Xiao N, Zou YP, Xie Y, Tang LL, Zhang YQ, Yu Y, Li YT, Xu C. Heterotypic transcriptional condensates formed by prion-like paralogous proteins canalize flowering transition in tomato. Genome Biol, 2022, 23(1): 78.
doi: 10.1186/s13059-022-02646-6 pmid: 35287709 |
[19] |
Wang MM, Zhu XP, Peng GQ, Liu ML, Zhang SQ, Chen MH, Liao ST, Wei XY, Xu P, Tan XY, Li FP, Li ZC, Deng L, Luo ZL, Zhu LY, Zhao S, Jiang DG, Li J, Liu ZL, Xie XR, Wang SK, Wu AM, Zhuang CX, Zhou H. Methylesterification of cell-wall pectin controls the diurnal flower-opening times in rice. Mol Plant, 2022, 15(6): 956-972.
doi: 10.1016/j.molp.2022.04.004 |
[20] |
Michaels SD, Amasino RM. Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell, 2001, 13(4): 935-941.
doi: 10.1105/tpc.13.4.935 pmid: 11283346 |
[21] |
Simpson GG, Dijkwel PP, Quesada V, Henderson I, Dean C. FY is an RNA 3' end-processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell, 2003, 113(6): 777-787.
doi: 10.1016/s0092-8674(03)00425-2 pmid: 12809608 |
[22] |
Wang HP, Pan JJ, Li Y, Lou DJ, Hu YR, Yu DQ. The DELLA-CONSTANS transcription factor cascade integrates gibberellic acid and photoperiod signaling to regulate flowering. Plant Physiol, 2016, 172(1): 479-488.
doi: 10.1104/pp.16.00891 pmid: 27406167 |
[23] |
Cho LH, Yoon J, An G. The control of flowering time by environmental factors. Plant J, 2017, 90(4): 708-719.
doi: 10.1111/tpj.2017.90.issue-4 |
[24] |
Debernardi JM, Woods DP, Li K, Li CX, Dubcovsky J. MiR172-APETALA2-like genes integrate vernalization and plant age to control flowering time in wheat. PLoS Genet, 2022, 18(4): e1010157.
doi: 10.1371/journal.pgen.1010157 |
[25] |
Kong XX, Luo LD, Zhao JJ, Chen Q, Chang GX, Huang JL, Yang YP, Hu XY. Expression of FRIGIDA in root inhibits flowering in Arabidopsis thaliana. J Exp Bot, 2019, 70(19): 5101-5114.
doi: 10.1093/jxb/erz287 pmid: 31340000 |
[26] |
Ye J, Niu XJ, Yang YL, Wang S, Xu Q, Yuan XP, Yu HY, Wang YP, Wang S, Feng Y, Wei XH. Divergent Hd1, Ghd7, and DTH7 alleles control heading date and yield potential of Japonica rice in northeast China. Front Plant Sci, 2018, 9: 35.
doi: 10.3389/fpls.2018.00035 |
[27] |
Lu SJ, Dong LD, Fang C, Liu SL, Kong LP, Cheng Q, Chen LY, Su T, Nan HY, Zhang D, Zhang L, Wang ZJ, Yang YQ, Yu DY, Liu XL, Yang QY, Lin XY, Tang Y, Zhao XH, Yang XQ, Tian CG, Xie QG, Li X, Yuan XH, Tian ZX, Liu BH, Weller JL, Kong FJ. Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. Nat Genet, 2020, 52(4): 428-436.
doi: 10.1038/s41588-020-0604-7 pmid: 32231277 |
[28] |
Lu SJ, Zhao XH, Hu YL, Liu SL, Nan HY, Li XM, Fang C, Cao D, Shi XY, Kong LP, Su T, Zhang FG, Li SC, Wang Z, Yuan XH, Cober ER, Weller JL, Liu BH, Hou XL, Tian ZX, Kong FJ. Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nat Genet, 2017, 49(5): 773-779.
doi: 10.1038/ng.3819 pmid: 28319089 |
[29] |
Yang Q, Li Z, Li WQ, Ku LX, Wang C, Ye JR, Li K, Yang N, Li YP, Zhong T, Li JS, Chen YH, Yan JB, Yang XH, Xu ML. CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize. Proc Natl Acad Sci USA, 2013, 110(42): 16969-16974.
doi: 10.1073/pnas.1310949110 pmid: 24089449 |
[30] |
Cai X, Lin RM, Liang JL, King GJ, Wu J, Wang XW. Transposable element insertion: a hidden major source of domesticated phenotypic variation in Brassica rapa. Plant Biotechnol J, 2022, 20(7): 1298-1310.
doi: 10.1111/pbi.13807 pmid: 35278263 |
[31] |
Soyk S, Müller NA, Park SJ, Schmalenbach I, Jiang K, Hayama R, Zhang L, Van Eck J, Jiménez-Gómez JM, Lippman ZB. Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nat Genet, 2017, 49(1): 162-168.
doi: 10.1038/ng.3733 pmid: 27918538 |
[32] |
Song QX, Zhang TZ, Stelly DM, Chen ZJ. Epigenomic and functional analyses reveal roles of epialleles in the loss of photoperiod sensitivity during domestication of allotetraploid cottons. Genome Biol, 2017, 18(1): 99.
doi: 10.1186/s13059-017-1229-8 pmid: 28558752 |
[33] |
Park SJ, Jiang K, Tal L, Yichie Y, Gar O, Zamir D, Eshed Y, Lippman ZB. Optimization of crop productivity in tomato using induced mutations in the florigen pathway. Nat Genet, 2014, 46(12): 1337-1342.
doi: 10.1038/ng.3131 pmid: 25362485 |
[34] |
Xue WY, Xing YZ, Weng XY, Zhao Y, Tang WJ, Wang L, Zhou HJ, Yu SB, Xu CG, Li XH, Zhang QF. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40(6): 761-767.
doi: 10.1038/ng.143 pmid: 18454147 |
[35] |
Gao H, Jin MN, Zheng XM, Chen J, Yuan DY, Xin YY, Wang MQ, Huang DY, Zhang Z, Zhou KN, Sheng PK, Ma J, Ma WW, Deng HF, Jiang L, Liu SJ, Wang HY, Wu CY, Yuan LP, Wan JM. Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proc Natl Acad Sci USA, 2014, 111(46): 16337-16342.
doi: 10.1073/pnas.1418204111 pmid: 25378698 |
[36] |
Zhu SB, Gu JG, Yao JJ, Li YC, Zhang ZT, Xia WC, Wang Z, Gui XR, Li LT, Li D, Zhang H, Liu C. Liquid-liquid phase separation of RBGD2/4 is required for heat stress resistance in Arabidopsis. Dev Cell, 2022, 57(5): 583-597.
doi: 10.1016/j.devcel.2022.02.005 pmid: 35231447 |
[37] |
Boke E, Ruer M, Wühr M, Coughlin M, Lemaitre R, Gygi SP, Alberti S, Drechsel D, Hyman AA, Mitchison TJ. Amyloid-like self-assembly of a cellular compartment. Cell, 2016, 166(3): 637-650.
doi: S0092-8674(16)30859-5 pmid: 27471966 |
[38] |
Hampoelz B, Schwarz A, Ronchi P, Bragulat-Teixidor H, Tischer C, Gaspar I, Ephrussi A, Schwab Y, Beck M. Nuclear pores assemble from nucleoporin condensates during oogenesis. Cell, 2019, 179(3): 671-686.
doi: S0092-8674(19)31073-6 pmid: 31626769 |
[39] |
Rai AK, Chen JX, Selbach M, Pelkmans L. Kinase- controlled phase transition of membraneless organelles in mitosis. Nature, 2018, 559(7713): 211-216.
doi: 10.1038/s41586-018-0279-8 |
[40] |
Wang H, Yan X, Aigner H, Bracher A, Nguyen ND, Hee WY, Long BM, Price GD, Hartl FU, Hayer-Hartl M. Rubisco condensate formation by CcmM in β-carboxysome biogenesis. Nature, 2019, 566(7742): 131-135.
doi: 10.1038/s41586-019-0880-5 |
[41] |
Banani SF, Lee HO, Hyman AA, Rosen MK. Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol, 2017, 18(5): 285-298.
doi: 10.1038/nrm.2017.7 |
[42] |
Gao YF, Li X, Li PL, Lin Y. A brief guideline for studies of phase-separated biomolecular condensates. Nat Chem Biol, 2022, 18(12): 1307-1318.
doi: 10.1038/s41589-022-01204-2 pmid: 36400991 |
[43] |
Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C, Gharakhani J, Jülicher F, Hyman AA. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science, 2009, 324(5935): 1729-1732.
doi: 10.1126/science.1172046 pmid: 19460965 |
[44] |
Shen B, Chen Z, Yu C, Chen T, Shi M, Li T. Computational screening of phase-separating proteins. Genomics Proteomics Bioinformatics, 2021, 19(1): 13-24.
doi: 10.1016/j.gpb.2020.11.003 |
[45] |
Martin EW, Thomasen FE, Milkovic NM, Cuneo MJ, Grace CR, Nourse A, Lindorff-Larsen K, Mittag T. Interplay of folded domains and the disordered low-complexity domain in mediating hnRNPA1 phase separation. Nucleic Acids Res, 2021, 49(5): 2931-2945.
doi: 10.1093/nar/gkab063 pmid: 33577679 |
[46] |
Srikanth A, Schmid M. Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci, 2011, 68(12): 2013-2037.
doi: 10.1007/s00018-011-0673-y pmid: 21611891 |
[47] |
Zavaliev R, Mohan R, Chen TY, Dong XN. Formation of NPR1 condensates promotes cell survival during the plant immune response. Cell, 2020, 182(5): 1093-1108.e18.
doi: S0092-8674(20)30881-3 pmid: 32810437 |
[48] |
Wang BY, Zhang HH, Huai JL, Peng FY, Wu J, Lin RC, Fang XF. Condensation of SEUSS promotes hyperosmotic stress tolerance in Arabidopsis. Nat Chem Biol, 2022, 18(12): 1361-1369.
doi: 10.1038/s41589-022-01196-z pmid: 36376475 |
[49] |
Dorone Y, Boeynaems S, Flores E, Jin B, Hateley S, Bossi F, Lazarus E, Pennington JG, Michiels E, De Decker M, Vints K, Baatsen P, Bassel GW, Otegui MS, Holehouse AS, Exposito-Alonso M, Sukenik S, Gitler AD, Rhee SY. A prion-like protein regulator of seed germination undergoes hydration-dependent phase separation. Cell, 2021, 184(16): 4284-4298.e27.
doi: 10.1016/j.cell.2021.06.009 pmid: 34233164 |
[50] |
Quesada V, Macknight R, Dean C, Simpson GG. Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time. EMBO J, 2003, 22(12): 3142-3152.
pmid: 12805228 |
[51] |
Nusinow DA, Helfer A, Hamilton EE, King JJ, Imaizumi T, Schultz TF, Farré EM, Kay SA. The ELF4-ELF3- LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature, 2011, 475(7356): 398-402.
doi: 10.1038/nature10182 |
[52] | Andrade L, Lu YL, Cordeiro A, Costa JMF, Wigge PA, Saibo NJM, Jaeger KE. The evening complex integrates photoperiod signals to control flowering in rice. Proc Natl Acad Sci USA, 2022, 119(26): e2122582119. |
[53] |
Zhao YP, Zhao BB, Xie YR, Jia H, Li YX, Xu MY, Wu GX, Ma XJ, Li QQ, Hou M, Li CY, Xia ZC, He G, Xu H, Bai ZJ, Kong DX, Zheng ZG, Liu Q, Liu YT, Zhong JS, Tian F, Wang BB, Wang HY. The evening complex promotes maize flowering and adaptation to temperate regions. Plant Cell, 2022, 35(1): 369-389.
doi: 10.1093/plcell/koac296 |
[54] |
Chen M. Phytochrome nuclear body: an emerging model to study interphase nuclear dynamics and signaling. Curr Opin Plant Biol, 2008, 11(5): 503-508.
doi: 10.1016/j.pbi.2008.06.012 pmid: 18691930 |
[55] |
Más P, Devlin PF, Panda S, Kay SA.Functional interaction of phytochrome B and cryptochrome 2. Nature. 2000, 408(6809): 207-211.
doi: 10.1038/35041583 |
[56] |
Guo H, Yang H, Mockler TC, Lin C. Regulation of flowering time by Arabidopsis photoreceptors. Science, 1998, 279(5355): 1360-1363
doi: 10.1126/science.279.5355.1360 pmid: 9478898 |
[57] |
Wang X, Jiang BC, Gu LF, Chen YD, Mora M, Zhu M, Noory E, Wang Q, Lin CT. A photoregulatory mechanism of the circadian clock in Arabidopsis. Nat Plants, 2021, 7(10): 1397-1408.
doi: 10.1038/s41477-021-01002-z pmid: 34650267 |
[58] |
Chen D, Lyu MH, Kou XX, Li J, Yang ZX, Gao LL, Li Y, Fan LM, Shi H, Zhong SW. Integration of light and temperature sensing by liquid-liquid phase separation of phytochrome B. Mol Cell, 2022, 82(16): 3015-3029.e6.
doi: 10.1016/j.molcel.2022.05.026 pmid: 35728588 |
[59] |
Ronald J, Su C, Wang L, Davis SJ. Cellular localization of Arabidopsis EARLY FLOWERING3 is responsive to light quality. Plant Physiol, 2022, 190(2): 1024-1036.
doi: 10.1093/plphys/kiac072 pmid: 35191492 |
[60] |
Alvarez MA, Li CX, Lin HQ, Joe A, Padilla M, Woods DP, Dubcovsky J. EARLY FLOWERING3 interactions with PHYTOCHROME B and PHOTOPERIOD1 are critical for the photoperiodic regulation of wheat heading time. PLoS Genet, 2023, 19(5): e1010655.
doi: 10.1371/journal.pgen.1010655 |
[61] |
He JJ, Zhang RX, Kim DS, Sun P, Liu HG, Liu ZM, Hetherington AM, Liang YK.ROS of distinct sources and salicylic acid separate elevated CO2-mediated stomatal movements in Arabidopsis. Front Plant Sci, 2020, 11: 542.
doi: 10.3389/fpls.2020.00542 |
[62] |
Yamada M, Han XW, Benfey PN. RGF1 controls root meristem size through ROS signalling. Nature, 2020, 577(7788): 85-88.
doi: 10.1038/s41586-019-1819-6 |
[63] |
Nadarajah KK. ROS homeostasis in abiotic stress tolerance in plants. Int J Mol Sci, 2020, 21(15): 5208.
doi: 10.3390/ijms21155208 |
[64] |
MacAlister CA, Park SJ, Jiang K, Marcel F, Bendahmane A, Izkovich Y, Eshed Y, Lippman ZB. Synchronization of the flowering transition by the tomato TERMINATING FLOWER gene. Nat Genet, 2012, 44(12): 1393-1398.
doi: 10.1038/ng.2465 pmid: 23143603 |
[65] |
Zhu GY, Xie JJ, Kong WN, Xie JF, Li YC, Du L, Zheng QG, Sun L, Guan MF, Li H, Zhu TX, He H, Liu ZY, Xia X, Kan C, Tao YQ, Shen HC, Li D, Wang SY, Yu YG, Yu ZH, Zhang ZY, Liu C, Zhu JD. Phase separation of disease- associated SHP2 mutants underlies MAPK hyperactivation. Cell, 2020, 183(2): 490-502.e18.
doi: 10.1016/j.cell.2020.09.002 |
[66] |
Li CH, Coffey EL, Dall'Agnese A, Hannett NM, Tang X, Henninger JE, Platt JM, Oksuz O, Zamudio AV, Afeyan LK, Schuijers J, Liu XS, Markoulaki S, Lungjangwa T, LeRoy G, Svoboda DS, Wogram E, Lee TI, Jaenisch R, Young RA. MeCP2 links heterochromatin condensates and neurodevelopmental disease. Nature, 2020, 586(7829): 440-444.
doi: 10.1038/s41586-020-2574-4 |
[67] |
Ahn JH, Davis ES, Daugird TA, Zhao S, Quiroga IY, Uryu H, Li J, Storey AJ, Tsai YH, Keeley DP, Mackintosh SG, Edmondson RD, Byrum SD, Cai L, Tackett AJ, Zheng DY, Legant WR, Phanstiel DH, Wang GG. Phase separation drives aberrant chromatin looping and cancer development. Nature, 2021, 595(7868): 591-595.
doi: 10.1038/s41586-021-03662-5 |
[68] |
Sheldon CC, Rouse DT, Finnegan EJ, Peacock WJ, Dennis ES. The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc Natl Acad Sci USA, 2000, 97(7): 3753-3758.
doi: 10.1073/pnas.97.7.3753 pmid: 10716723 |
[69] |
Simpson GG. The autonomous pathway: epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time. Curr Opin Plant Biol, 2004, 7(5): 570-574.
doi: 10.1016/j.pbi.2004.07.002 pmid: 15337100 |
[70] |
Jeong SY, Ahn H, Ryu J, Oh Y, Sivanandhan G, Won K, Park YD, Kim JS, Kim H, Lim YP, Kim S. Generation of early-flowering Chinese cabbage (Brassica rapa spp.pekinensis) through CRISPR/Cas9-mediated genome editing. Plant Biotechnol Rep, 2019, 13(5): 491-499.
doi: 10.1007/s11816-019-00566-9 |
[1] | 廉小平, 黄光福, 张玉娇, 张静, 胡凤益, 张石来. 长雄野生稻有利基因的发掘与利用[J]. 遗传, 2023, 45(9): 765-780. |
[2] | 简六梅, 肖英杰, 严建兵. 从头驯化:作物品种设计与培育的新方向[J]. 遗传, 2023, 45(9): 741-753. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: