遗传 ›› 2023, Vol. 45 ›› Issue (9): 741-753.doi: 10.16288/j.yczz.23-194
收稿日期:
2023-07-19
修回日期:
2023-08-30
出版日期:
2023-09-20
发布日期:
2023-09-04
通讯作者:
严建兵
E-mail:liumjian@webmail.hzau.edu.cn;yjianbing@mail.hzau.edu.cn
作者简介:
简六梅,博士研究生,专业方向:作物遗传育种。E-mail: 基金资助:
Liumei Jian1,2(), Yingjie Xiao1,2, Jianbing Yan1,2()
Received:
2023-07-19
Revised:
2023-08-30
Online:
2023-09-20
Published:
2023-09-04
Contact:
Jianbing Yan
E-mail:liumjian@webmail.hzau.edu.cn;yjianbing@mail.hzau.edu.cn
Supported by:
摘要:
全球气候变化对农业生产带来了巨大挑战。在农业投入减少的前提下如何保障粮食生产持续稳步增长,满足人们吃饱、吃好的需求是亟需考虑的问题。培育高产、稳产、绿色、营养的新型作物品种仍然是解决该挑战的有效措施之一。作物新品种的培育高度依赖育种材料遗传多样性的拓宽和育种技术的创新。从头驯化是一种作物品种创新的全新育种策略,以具有某些优异性状的未驯化、半驯化植物作为底盘物种,通过农艺性状重新设计和驯化基因导入实现野生植物快速驯化,从而满足人类多样化需求。本文回顾了作物驯化、遗传改良历程,阐明了丰富作物多样性的必要性,强调野生植物丰富的遗传多样性对于拓展作物重新设计空间的重要价值,提出育种策略革新是加速作物育种的关键,探讨了通过从头驯化快速培育新型作物品种的可行性和发展前景。
简六梅, 肖英杰, 严建兵. 从头驯化:作物品种设计与培育的新方向[J]. 遗传, 2023, 45(9): 741-753.
Liumei Jian, Yingjie Xiao, Jianbing Yan. De novo domestication: a new way for crop design and breeding[J]. Hereditas(Beijing), 2023, 45(9): 741-753.
[1] | Taiz L. Agriculture, plant physiology, and human population growth: past, present, and future. Theor Exp Plant Physiol, 2013, 25(3): 167-181. |
[2] |
Tian ZX, Wang JW, Li JY, Han B. Designing future crops: challenges and strategies for sustainable agriculture. Plant J, 2021, 105(5): 1165-1178.
doi: 10.1111/tpj.v105.5 |
[3] |
Jian LM, Yan JB, Liu J. De novo domestication in the multi-omics era. Plant Cell Physiol, 2022, 63(11): 1592-1606.
doi: 10.1093/pcp/pcac077 |
[4] |
Doebley JF, Gaut BS, Smith BD. The molecular genetics of crop domestication. Cell, 2006, 127(7): 1309-1321.
doi: 10.1016/j.cell.2006.12.006 pmid: 17190597 |
[5] |
Larson G, Piperno DR, Allaby RG, Purugganan MD, Andersson L, Arroyo-Kalin M, Barton L, Climer Vigueira C, Denham T, Dobney K, Doust AN, Gepts P, Gilbert MTP, Gremillion KJ, Lucas L, Lukens L, Marshall FB, Olsen KM, Pires JC, Richerson PJ, Rubio de Casas R, Sanjur OI, Thomas MG, Fuller DQ. Current perspectives and the future of domestication studies. Proc Natl Acad Sci USA, 2014, 111(17): 6139-6146.
doi: 10.1073/pnas.1323964111 pmid: 24757054 |
[6] |
Diamond J. Evolution, consequences and future of plant and animal domestication. Nature, 2002, 418(6898): 700-707.
doi: 10.1038/nature01019 |
[7] |
Meyer RS, DuVal AE, Jensen HR. Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytol, 2012, 196(1): 29-48.
doi: 10.1111/j.1469-8137.2012.04253.x pmid: 22889076 |
[8] |
Smýkal P, Nelson MN, Berger JD, Von Wettberg EJB. The impact of genetic changes during crop domestication. Agronomy, 2018, 8(7): 119.
doi: 10.3390/agronomy8070119 |
[9] |
Khoshbakht K, Hammer K. How many plant species are cultivated? Genet Resour Crop Evol, 2008, 55: 925-928.
doi: 10.1007/s10722-008-9368-0 |
[10] |
Duarte CM, Marba N, Holmer M. Rapid domestication of marine species. Science, 2007, 316(5823): 382-383.
doi: 10.1126/science.1138042 |
[11] |
Fernie AR, Yan JB. De novo domestication: an alternative route toward new crops for the future. Mol Plant, 2019, 12(5): 615-631.
doi: 10.1016/j.molp.2019.03.016 |
[12] |
Khoury CK, Bjorkman AD, Dempewolf H, Ramirez- Villegas J, Guarino L, Jarvis A, Rieseberg LH, Struik PC. Increasing homogeneity in global food supplies and the implications for food security. Proc Natl Acad Sci USA, 2014, 111(11): 4001-4006.
doi: 10.1073/pnas.1313490111 pmid: 24591623 |
[13] | Hossain A, Islam MT, Maitra S, Majumder D, Garai S, Mondal M, Ahmed A, Roy A, Skalicky M, Brestic M, Islam T. Neglected and underutilized crop species: are they future smart crops in fighting poverty, hunger and malnutrition under changing climate? Front Nutr, 2021: 1-50. |
[14] |
Hufford MB, Berny Mier YTJC, Gepts P. Crop biodiversity: an unfinished magnum opus of nature. Annu Rev Plant Biol, 2019, 70: 727-751.
doi: 10.1146/annurev-arplant-042817-040240 pmid: 31035827 |
[15] |
Purugganan MD. Evolutionary insights into the nature of plant domestication. Curr Biol, 2019, 29(14): R705-R714.
doi: 10.1016/j.cub.2019.05.053 |
[16] |
Purugganan MD, Fuller DQ. Archaeological data reveal slow rates of evolution during plant domestication. Evolution, 2011, 65(1): 171-183.
doi: 10.1111/j.1558-5646.2010.01093.x pmid: 20666839 |
[17] |
Meyer RS, Purugganan MD. Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet, 2013, 14(12): 840-852.
doi: 10.1038/nrg3605 pmid: 24240513 |
[18] |
Doust AN, Lukens L, Olsen KM, Mauro-Herrera M, Meyer A, Rogers K. Beyond the single gene: how epistasis and gene-by-environment effects influence crop domestication. Proc Natl Acad Sci USA, 2014, 111(17): 6178-6183.
doi: 10.1073/pnas.1308940110 pmid: 24753598 |
[19] |
Wu DY, Lao ST, Fan LG. De-domestication: an extension of crop evolution. Trends Plant Sci, 2021, 26(6): 560-574.
doi: 10.1016/j.tplants.2021.02.003 pmid: 33648850 |
[20] |
Bartlett ME, Moyers BT, Man J, Subramaniam B, Makunga NP. The power and perils of de novo domestication using genome editing. Annu Rev Plant Biol, 2022, 74: 727-750.
doi: 10.1146/arplant.2023.74.issue-1 |
[21] |
Liang YM, Liu HJ, Yan JB, Tian F. Natural variation in crops: realized understanding, continuing promise. Annu Rev Plant Biol, 2021, 72: 357-385.
doi: 10.1146/annurev-arplant-080720-090632 pmid: 33481630 |
[22] |
Siqueira JA, Batista-Silva W, Zsögön A, Fernie AR, Araújo WL, Nunes-Nesi A. Plant domestication: setting biological clocks. Trends Plant Sci, 2023, 28(5): 597-608.
doi: 10.1016/j.tplants.2023.01.009 |
[23] |
Hickey LT, Hafeez AN, Robinson H, Jackson SA, Leal-Bertioli SCM, Tester M, Gao CX, Godwin ID, Hayes BJ, Wulff BBH. Breeding crops to feed 10 billion. Nat Biotechnol, 2019, 37(7): 744-754.
doi: 10.1038/s41587-019-0152-9 pmid: 31209375 |
[24] |
Shelef O, Weisberg PJ, Provenza FD. The value of native plants and local production in an era of global agriculture. Front Plant Sci, 2017, 8: 2069.
doi: 10.3389/fpls.2017.02069 pmid: 29259614 |
[25] | Yang XP, Yu Y, Xu C. De novo domestication to create new crops. Hereditas (Beijing), 2019, 41(9): 827-835. |
杨新萍, 于媛, 许操. 重新设计与快速驯化创造新型作物. 遗传, 2019, 41(9): 827-835. | |
[26] |
DeHaan L, Larson S, López-Marqués RL, Wenkel S, Gao CX, Palmgren M. Roadmap for accelerated domestication of an emerging perennial grain crop. Trends Plant Sci, 2020, 25(6): 525-537.
doi: S1360-1385(20)30053-4 pmid: 32407693 |
[27] |
Van Tassel DL, Tesdell O, Schlautman B, Rubin MJ, DeHaan LR, Crews TE, Streit Krug A. New food crop domestication in the age of gene editing: genetic, agronomic and cultural change remain co-evolutionarily entangled. Front Plant Sci, 2020, 11: 789.
doi: 10.3389/fpls.2020.00789 pmid: 32595676 |
[28] |
Fernie AR, Alseekh S, Liu J, Yan J. Using precision phenotyping to inform de novo domestication. Plant Physiol, 2021, 186(3): 1397-1411.
doi: 10.1093/plphys/kiab160 |
[29] |
Kumar R, Sharma V, Suresh S, Ramrao DP, Veershetty A, Kumar S, Priscilla K, Hangargi B, Narasanna R, Pandey MK, Naik GR, Thomas S, Kumar A. Understanding omics driven plant improvement and de novo crop domestication: some examples. Front Genet, 2021, 12. :637141.
doi: 10.3389/fgene.2021.637141 |
[30] |
Teng YB, Su MK, Liu LL, Chen S, Liu XY. Creating and de novo improvement of new allopolyploid crops for future agriculture. Crit Rev Plant Sci, 2023, 42(2):1-12.
doi: 10.1080/07352689.2022.2156061 |
[31] |
Khan MZ, Zaidi SSEA, Amin I, Mansoor S. A CRISPR way for fast-forward crop domestication. Trends Plant Sci, 2019, 24(4): 293-296.
doi: S1360-1385(19)30026-3 pmid: 30738789 |
[32] |
Xie XR, Liu YG. De novo domestication towards new crops. Natl Sci Rev, 2021, 8(4): nwab033.
doi: 10.1093/nsr/nwab033 |
[33] |
Zhu XG, Zhu JK. Precision genome editing heralds rapid de novo domestication for new crops. Cell, 2021, 184(5): 1133-1134.
doi: 10.1016/j.cell.2021.02.004 |
[34] |
Gerland P, Raftery AE, Sevčíková H, Li N, Gu DN, Spoorenberg T, Alkema L, Fosdick BK, Chunn J, Lalic N, Bay G, Buettner T, Heilig GK, Wilmoth J. World population stabilization unlikely this century. Science, 2014, 346(6206): 234-237.
doi: 10.1126/science.1257469 pmid: 25301627 |
[35] | 曹晓风, 孙波, 陈化榜, 周俭民, 宋显伟, 刘小京, 邓向东, 李秀军, 赵玉国, 张佳宝, 李家洋. 我国边际土地产能扩增和生态效益提升的途径与研究进展. 战略与决策研究, 2021, 36(3):336-348. |
[36] |
Fernie AR, Yan JB. Targeting key genes to tailor old and new crops for a greener agriculture. Mol Plant, 2020, 13(3): 354-356.
doi: S1674-2052(20)30037-X pmid: 32074483 |
[37] |
Kwon CT, Heo J, Lemmon ZH, Capua Y, Hutton SF, Van Eck J, Park SJ, Lippman ZB. Rapid customization of Solanaceae fruit crops for urban agriculture. Nat Biotechnol, 2020, 38(2): 182-188.
doi: 10.1038/s41587-019-0361-2 |
[38] |
O'Sullivan CA, McIntyre CL, Dry IB, Hani SM, Hochman Z, Bonnett GD.Vertical farms bear fruit. Nat Biotechnol, 2020, 38(2): 160-162.
doi: 10.1038/s41587-019-0400-z pmid: 31937973 |
[39] |
Yu H, Li JY. Breeding future crops to feed the world through de novo domestication. Nat Commun, 2022, 13(1): 1171.
doi: 10.1038/s41467-022-28732-8 |
[40] |
Bailey-Serres J, Parker JE, Ainsworth EA, Oldroyd GED, Schroeder JI. Genetic strategies for improving crop yields. Nature, 2019, 575(7781): 109-118.
doi: 10.1038/s41586-019-1679-0 |
[41] |
Cai WJ, Ng B, Geng T, Wu LX, Santoso A, McPhaden MJ. Butterfly effect and a self-modulating El Niño response to global warming. Nature, 2020, 585(7823): 68-73.
doi: 10.1038/s41586-020-2641-x |
[42] |
Yuan X, Wang YM, Ji P, Wu PL, Sheffield J, Otkin JA. A global transition to flash droughts under climate change. Science, 2023, 380(6641): 187-191.
doi: 10.1126/science.abn6301 pmid: 37053316 |
[43] |
Hassan Mu, Wen X, Xu JL, Zhong JH, Li XX. Development and challenges of green food in China. Front Agr Sci Eng, 2020, 7(1): 56-66.
doi: 10.15302/J-FASE-2019296 |
[44] |
Tilman D, Clark M. Global diets link environmental sustainability and human health. Nature, 2014, 515(7528): 518-522.
doi: 10.1038/nature13959 |
[45] |
Galili G, Amir R, Fernie AR. The regulation of essential amino acid synthesis and accumulation in plants. Annu Rev Plant Biol, 2016, 67: 153-178.
doi: 10.1146/annurev-arplant-043015-112213 pmid: 26735064 |
[46] |
Le DT, Chu HD, Le NQ. Improving nutritional quality of plant proteins through genetic engineering. Curr Genomics, 2016, 17(3): 220-229.
doi: 10.2174/1389202917666160202215934 pmid: 27252589 |
[47] | Shepon A, Eshel G, Noor E, Milo R. Energy and protein feed-to-food conversion efficiencies in the US and potential food security gains from dietary changes. Environ Res Lett, 2016, 11(10): 105002. |
[48] |
Khush GS. Green revolution: the way forward. Nat Rev Genet, 2001, 2(10): 815-822.
doi: 10.1038/35093585 pmid: 11584298 |
[49] |
Pingali PL. Green revolution: impacts, limits, and the path ahead. Proc Natl Acad Sci USA, 2012, 109(31): 12302-12308.
doi: 10.1073/pnas.0912953109 pmid: 22826253 |
[50] |
Sumberg J, Keeney D, Dempsey B. Public agronomy: norman borlaug as ‘Brand Hero’ for the green revolution. J Dev Stud, 2012, 48(11): 1587-1600.
doi: 10.1080/00220388.2012.713470 |
[51] |
Chen QY, Li WY, Tan LB, Tian F. Harnessing knowledge from maize and rice domestication for new crop breeding. Mol Plant, 2021, 14(1): 9-26.
doi: 10.1016/j.molp.2020.12.006 pmid: 33316465 |
[52] |
Olsen KM, Wendel JF. A bountiful harvest: genomic insights into crop domestication phenotypes. Annu Rev Plant Biol, 2013, 64: 47-70.
doi: 10.1146/annurev-arplant-050312-120048 pmid: 23451788 |
[53] |
Alseekh S, Scossa F, Wen WW, Luo J, Yan JB, Beleggia R, Klee HJ, Huang SW, Papa R, Fernie AR. Domestication of crop metabolomes: desired and unintended consequences. Trends Plant Sci, 2021, 26(6): 650-661.
doi: 10.1016/j.tplants.2021.02.005 pmid: 33653662 |
[54] |
Jia GQ, Meng Q, Tang S, Zhang RL. Current advances and future perspectives on crop domestication. J Plant Genet Res, 2019, 20(6): 1355-1371.
doi: 10.13430/j.cnki.jpgr.20190822001 |
贾冠清, 孟强, 汤沙, 张仁梁. 主要农作物驯化研究进展与展望. 植物遗传资源学报, 2019, 20(6): 1355-1371.
doi: 10.13430/j.cnki.jpgr.20190822001 |
|
[55] | Hufford MB, Xu X, van Heerwaarden J, Pyhäjärvi T, Chia JM, Cartwright RA, Elshire RJ, Glaubitz JC, Guill KE, Kaeppler SM, Lai JS, Morrell PL, Shannon LM, Song C, Springer NM, Swanson-Wagner RA, Tiffin P, Wang J, Zhang GY, Doebley J, McMullen MD, Ware D, Buckler ES, Yang S, Ross-Ibarra J. Comparative population genomics of maize domestication and improvement. Nat Genet, 2012, 44(7): 808-811. |
[56] |
Qi JJ, Liu X, Shen D, Miao H, Xie BY, Li XX, Zeng P, Wang SH, Shang Y, Gu XF, Du YC, Li Y, Lin T, Yuan JH, Yang XY, Chen JF, Chen HM, Xiong XY, Huang K, Fei ZJ, Mao LY, Tian L, Städler T, Renner SS, Kamoun S, Lucas WJ, Zhang ZH, Huang SW. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat Genet, 2013, 45(12): 1510-1515.
doi: 10.1038/ng.2801 pmid: 24141363 |
[57] |
Zhou ZK, Jiang Y, Wang Z, Gou ZH, Lyu J, Li WY, Yu YJ, Shu LP, Zhao YJ, Ma YM, Fang C, Shen YT, Liu TF, Li CC, Li Q, Wu M, Wang M, Wu YS, Dong Y, Wan WT, Wang X, Ding ZL, Gao YD, Xiang H, Zhu BG, Lee SH, Wang W, Tian ZX. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol, 2015, 33(4): 408-414.
doi: 10.1038/nbt.3096 pmid: 25643055 |
[58] |
Lin T, Zhu GT, Zhang JH, Xu XY, Yu QH, Zheng Z, Zhang ZH, Lun YY, Li S, Wang XX, Huang ZJ, Li JM, Zhang CZ, Wang TT, Zhang YY, Wang AX, Zhang YC, Lin K, Li CY, Xiong GS, Xue YB, Mazzucato A, Causse M, Fei ZJ, Giovannoni JJ, Chetelat RT, Zamir D, Städler T, Li JF, Ye ZB, Du YC, Huang SW. Genomic analyses provide insights into the history of tomato breeding. Nat Genet, 2014, 46(11): 1220-1226.
doi: 10.1038/ng.3117 pmid: 25305757 |
[59] |
Huang XH, Kurata N, Wei XH, Wang ZX, Wang AH, Zhao Q, Zhao Y, Liu KY, Lu HY, Li WJ, Guo YL, Lu YQ, Zhou CC, Fan DL, Weng QJ, Zhu CR, Huang T, Zhang L, Wang YC, Feng L, Furuumi H, Kubo T, Miyabayashi T, Yuan XP, Xu Q, Dong GJ, Zhan QL, Li CY, Fujiyama A, Toyoda A, Lu TT, Feng Q, Qian Q, Li JY, Han B. A map of rice genome variation reveals the origin of cultivated rice. Nature, 2012, 490(7421): 497-501.
doi: 10.1038/nature11532 |
[60] |
Cubry P, Tranchant-Dubreuil C, Thuillet AC, Monat C, Ndjiondjop MN, Labadie K, Cruaud C, Engelen S, Scarcelli N, Rhoné B, Burgarella C, Dupuy C, Larmande P, Wincker P, François O, Sabot F, Vigouroux Y. The rise and fall of african rice cultivation revealed by analysis of 246 new genomes. Curr Biol, 2018, 28(14): 2274-2282.e6.
doi: S0960-9822(18)30702-4 pmid: 29983312 |
[61] |
Chen WK, Chen L, Zhang X, Yang N, Guo JH, Wang M, Ji SH, Zhao XY, Yin PF, Cai LC, Xu J, Zhang LL, Han YJ, Xiao YN, Xu G, Wang YB, Wang SH, Wu S, Yang F, Jackson D, Cheng JK, Chen SH, Sun CQ, Qin F, Tian F, Fernie AR, Li JS, Yan JB, Yang XH. Convergent selection of a WD40 protein that enhances grain yield in maize and rice. Science, 2022, 375(6587): eabg7985.
doi: 10.1126/science.abg7985 |
[62] |
Zamir D. Improving plant breeding with exotic genetic libraries. Nat Rev Genet, 2001, 2(12): 983-989.
doi: 10.1038/35103590 pmid: 11733751 |
[63] |
Moyers BT, Morrell PL, McKay JK. Genetic costs of domestication and improvement. J Hered, 2018, 109(2): 103-116.
doi: 10.1093/jhered/esx069 pmid: 28992310 |
[64] |
Zhang FN, Batley J. Exploring the application of wild species for crop improvement in a changing climate. Curr Opin Plant Biol, 2020, 56: 218-222.
doi: S1369-5266(20)30001-7 pmid: 32029361 |
[65] |
Cortes AJ, Barnaby JY. Harnessing genebanks: high-throughput phenotyping and genotyping of crop wild relatives and landraces. Front Plant Sci, 2023, 14: 1149469.
doi: 10.3389/fpls.2023.1149469 |
[66] | Shelake RM, Kadam US, Kumar R, Pramanik D, Singh AK, Kim JY. Engineering drought and salinity tolerance traits in crops through CRISPR-mediated genome editing: targets, tools, challenges, and perspectives. Plant Commun, 2022, 3(6): 100417. |
[67] |
Burgarella C, Barnaud A, Kane NA, Jankowski F, Scarcelli N, Billot C, Vigouroux Y, Berthouly-Salazar C. Adaptive introgression: an untapped evolutionary mechanism for crop adaptation. Front Plant Sci, 2019, 10: 4.
doi: 10.3389/fpls.2019.00004 pmid: 30774638 |
[68] |
Cortés AJ, López-Hernández F. Harnessing crop wild diversity for climate change adaptation. Genes (Basel), 2021, 12(5): 783.
doi: 10.3390/genes12050783 |
[69] |
Belamkar V, Farmer AD, Weeks NT, Kalberer SR, Blackmon WJ, Cannon SB. Genomics-assisted characterization of a breeding collection of Apios americana, an edible tuberous legume. Sci Rep, 2016, 6: 34908.
doi: 10.1038/srep34908 pmid: 27721469 |
[70] |
Osterberg JT, Xiang W, Olsen LI, Edenbrandt AK, Vedel SE, Christiansen A, Landes X, Andersen MM, Pagh P, Sandøe P, Nielsen J, Christensen SB, Thorsen BJ, Kappel K, Gamborg C, Palmgren M. Accelerating the domestication of new crops: feasibility and approaches. Trends Plant Sci, 2017, 22(5): 373-384.
doi: S1360-1385(17)30015-8 pmid: 28262427 |
[71] |
Yu H, Li JY. Short- and long-term challenges in crop breeding. Natl Sci Rev, 2021, 8(2): nwab002.
doi: 10.1093/nsr/nwab002 |
[72] |
Folta KM, Klee HJ. Sensory sacrifices when we mass- produce mass produce. Hortic Res, 2016, 3: 16032.
doi: 10.1038/hortres.2016.32 |
[73] |
Hebelstrup KH. Differences in nutritional quality between wild and domesticated forms of barley and emmer wheat. Plant Sci, 2017, 256: 1-4.
doi: S0168-9452(16)30854-8 pmid: 28167022 |
[74] |
Morris CE, Sands DC. The breeder's dilemma--yield or nutrition? Nat Biotechnol, 2006, 24(9):1078-1080.
doi: 10.1038/nbt0906-1078 pmid: 16964212 |
[75] |
Fernie AR, Tadmor Y, Zamir D. Natural genetic variation for improving crop quality. Curr Opin Plant Biol, 2006, 9(2): 196-202.
doi: 10.1016/j.pbi.2006.01.010 pmid: 16480915 |
[76] |
Nelson R, Wiesner-Hanks T, Wisser R, Balint-Kurti P. Navigating complexity to breed disease-resistant crops. Nat Rev Genet, 2018, 19(1): 21-33.
doi: 10.1038/nrg.2017.82 pmid: 29109524 |
[77] |
Ashikari M, Sakakibara H, Lin SY, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309(5735): 741-745.
doi: 10.1126/science.1113373 pmid: 15976269 |
[78] |
Bailey-Serres J, Fukao T, Ronald P, Ismail A, Heuer S, Mackill D. Submergence tolerant rice: SUB1’s journey from landrace to modern cultivar. Rice, 2010, 3(3): 138-147.
doi: 10.1007/s12284-010-9048-5 |
[79] |
Fridman E, Carrari F, Liu YS, Fernie AR, Zamir D. Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science, 2004, 305(5691): 1786-1789.
doi: 10.1126/science.1101666 pmid: 15375271 |
[80] |
Haverkort AJ, Boonekamp PM, Hutten R, Jacobsen E, Lotz LAP, Kessel GJT, Vossen JH, Visser RGF. Durable late blight resistance in potato through dynamic varieties obtained by cisgenesis: scientific and societal advances in the DuRPh project. Potato Res, 2016, 59(1): 35-66.
doi: 10.1007/s11540-015-9312-6 |
[81] |
Subbarao GV, Kishii M, Bozal-Leorri A, Ortiz- Monasterio I, Gao X, Ibba MI, Karwat H, Gonzalez- Moro MB, Gonzalez-Murua C, Yoshihashi T, Tobita S, Kommerell V, Braun HJ, Iwanaga M. Enlisting wild grass genes to combat nitrification in wheat farming: a nature-based solution. Proc Natl Acad Sci USA, 2021, 118(35): e2106595118.
doi: 10.1073/pnas.2106595118 |
[82] |
Dempewolf H, Baute G, Anderson J, Kilian B, Smith C, Guarino L. Past and future use of wild relatives in crop breeding. Crop Sci, 2017, 57(3): 1070-1082.
doi: 10.2135/cropsci2016.10.0885 |
[83] |
Atkins PA, Voytas DF. Overcoming bottlenecks in plant gene editing. Curr Opin Plant Biol, 2020, 54: 79-84.
doi: S1369-5266(20)30003-0 pmid: 32143167 |
[84] |
Lemmon ZH, Reem NT, Dalrymple J, Soyk S, Swartwood KE, Rodriguez-Leal D, Van Eck J, Lippman ZB. Rapid improvement of domestication traits in an orphan crop by genome editing. Nat Plants, 2018, 4(10): 766-770.
doi: 10.1038/s41477-018-0259-x pmid: 30287957 |
[85] |
Li TD, Yang XP, Yu Y, Si XM, Zhai XW, Zhang HW, Dong WX, Gao CX, Xu C. Domestication of wild tomato is accelerated by genome editing. Nat Biotechnol, 2018, 36: 1160-1163.
doi: 10.1038/nbt.4273 |
[86] |
Ye MW, Peng Z, Tang D, Yang ZM, Li DW, Xu YM, Zhang CZ, Huang SW. Generation of self-compatible diploid potato by knockout of S-RNase. Nat Plants, 2018, 4(9): 651-654.
doi: 10.1038/s41477-018-0218-6 pmid: 30104651 |
[87] |
Zsögön A, Čermák T, Naves ER, Notini MM, Edel KH, Weinl S, Freschi L, Voytas DF, Kudla J, Peres LEP. De novo domestication of wild tomato using genome editing. Nat Biotechnol, 2018, 36: 1211-1216.
doi: 10.1038/nbt.4272 |
[88] |
Yu H, Lin T, Meng XB, Du HL, Zhang JK, Liu GF, Chen MJ, Jing YH, Kou LQ, Li XX, Gao Q, Liang Y, Liu XD, Fan ZL, Liang YT, Cheng ZK, Chen MS, Tian ZX, Wang YH, Chu CC, Zuo JR, Wan JM, Qian Q, Han B, Zuccolo A, Wing RA, Gao CX, Liang CZ, Li JY. A route to de novo domestication of wild allotetraploid rice. Cell, 2021, 184(5): 1156-1170.e14.
doi: 10.1016/j.cell.2021.01.013 |
[89] |
Chen ZL, Debernardi JM, Dubcovsky J, Gallavotti A. Recent advances in crop transformation technologies. Nat Plants, 2022, 8(12): 1343-1351.
doi: 10.1038/s41477-022-01295-8 pmid: 36522447 |
[90] |
Gao CX. Genome engineering for crop improvement and future agriculture. Cell, 2021, 184(6): 1621-1635.
doi: 10.1016/j.cell.2021.01.005 pmid: 33581057 |
[91] |
Wallace JG, Rodgers-Melnick E, Buckler ES. On the road to breeding 4.0: unraveling the good, the bad, and the boring of crop quantitative genomics. Annu Rev Genet, 2018, 52: 421-444.
doi: 10.1146/annurev-genet-120116-024846 pmid: 30285496 |
[92] |
Liu J, Fernie AR, Yan JB. Crop breeding - from experience-based selection to precision design. J Plant Physiol, 2021, 256: 153313.
doi: 10.1016/j.jplph.2020.153313 |
[93] |
Holme IB, Gregersen PL, Brinch-Pedersen H. Induced genetic variation in crop plants by random or targeted mutagenesis: convergence and differences. Front Plant Sci, 2019, 10: 1468.
doi: 10.3389/fpls.2019.01468 pmid: 31803209 |
[94] |
Raman R. The impact of Genetically Modified (GM) crops in modern agriculture: a review. GM Crops Food, 2017, 8(4): 195-208.
doi: 10.1080/21645698.2017.1413522 pmid: 29235937 |
[95] |
Curtin S, Qi YP, Peres LEP, Fernie AR, Zsögön A. Pathways to de novo domestication of crop wild relatives. Plant Physiol, 2022, 188(4): 1746-1756.
doi: 10.1093/plphys/kiab554 |
[96] |
Hammer K. Das Domestikationssyndrom. Die Kulturpflanze, 1984, 32(1): 11-34.
doi: 10.1007/BF02098682 |
[97] |
Abbo S, Pinhasi van-Oss R, Gopher A, Saranga Y, Ofner I, Peleg Z. Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes. Trends Plant Sci, 2014, 19(6): 351-360.
doi: 10.1016/j.tplants.2013.12.002 pmid: 24398119 |
[98] |
Si LZ, Chen JY, Huang XH, Gong H, Luo JH, Hou QQ, Zhou TY, Lu TT, Zhu JJ, Shangguan YY, Chen EW, Gong CX, Zhao Q, Jing YF, Zhao Y, Li Y, Cui LL, Fan DL, Lu YQ, Weng QJ, Wang YC, Zhan QL, Liu KY, Wei XH, An K, An G, Han B. OsSPL13 controls grain size in cultivated rice. Nat Genet, 2016, 48(4): 447-456.
doi: 10.1038/ng.3518 |
[99] |
Zhu GT, Wang SC, Huang ZJ, Zhang SB, Liao QG, Zhang CZ, Lin T, Qin M, Peng M, Yang CK, Cao X, Han X, Wang XX, van der Knaap E, Zhang ZH, Cui X, Klee H, Fernie AR, Luo J, Huang SW. Rewiring of the fruit metabolome in tomato breeding. Cell, 2018, 172(1-2): 249-261.e12.
doi: S0092-8674(17)31499-X pmid: 29328914 |
[100] |
Nanjundiah V, Geeta R, Suslov VV. Revisiting N.I.Vavilov’s “The Law of Homologous Series in Variation” (1922). Biol Theory, 2022, 17(4): 253-262.
doi: 10.1007/s13752-022-00403-3 |
[101] |
Wang M, Li WZ, Fang C, Xu F, Liu YC, Wang Z, Yang R, Zhang M, Liu SL, Lu SJ, Lin T, Tang JY, Wang YQ, Wang HR, Lin H, Zhu BG, Chen MS, Kong FJ, Liu BH, Zeng DL, Jackson SA, Chu CC, Tian ZX. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nat Genet, 2018, 50(10): 1435-1441.
doi: 10.1038/s41588-018-0229-2 pmid: 30250128 |
[102] |
McSteen P, Kellogg EA. Molecular, cellular, and developmental foundations of grass diversity. Science, 2022, 377(6606): 599-602.
doi: 10.1126/science.abo5035 pmid: 35926032 |
[103] |
Liu HQ, Fang XJ, Zhou LN, Li Y, Zhu C, Liu JC, Song Y, Jian X, Xu M, Dong L, Lin ZW. Transposon insertion drove the loss of natural seed shattering during foxtail millet domestication. Mol Biol Evol, 2022, 39(6): msac078.
doi: 10.1093/molbev/msac078 |
[104] |
Lin ZW, Li XR, Shannon LM, Yeh CT, Wang ML, Bai GH, Peng Z, Li JR, Trick HN, Clemente TE, Doebley J, Schnable PS, Tuinstra MR, Tesso TT, White F, Yu JM. Parallel domestication of the Shattering1 genes in cereals. Nat Genet, 2012, 44(6): 720-724.
doi: 10.1038/ng.2281 |
[105] | Pourkheirandish M, Hensel G, Kilian B, Senthil N, Chen GX, Sameri M, Azhaguvel P, Sakuma S, Dhanagond S, Sharma R, Mascher M, Himmelbach A, Gottwald S, Nair SK, Tagiri A, Yukuhiro F, Nagamura Y, Kanamori H, Matsumoto T, Willcox G, Middleton CP, Wicker T, Walther A, Waugh R, Fincher GB, Stein N, Kumlehn J, Sato K, Komatsuda T.Evolution of the grain dispersal system in barley. Cell, 2015, 162(3): 527-539. |
[106] |
Zhao Y, Xie P, Guan P, Wang Y, Li Y, Yu K, Xin M, Hu Z, Yao Y, Ni Z, Sun Q, Xie C, Peng H. Btr1-A induces grain shattering and affects spike morphology and yield-related traits in wheat. Plant Cell Physiol, 2019, 60(6): 1342-1353.
doi: 10.1093/pcp/pcz050 pmid: 30994893 |
[107] |
Sosso D, Luo DP, Li QB, Sasse J, Yang JL, Gendrot G, Suzuki M, Koch KE, McCarty DR, Chourey PS, Rogowsky PM, Ross-Ibarra J, Yang B, Frommer WB. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nat Genet, 2015, 47(12): 1489-1493.
doi: 10.1038/ng.3422 pmid: 26523777 |
[108] | Gaut BS. Evolution is an experiment: assessing parallelism in crop domestication and experimental evolution:(Nei Lecture, SMBE 2014, Puerto Rico). Mol Biol Evol, 2015, 32(7): 1661-1671. |
[109] | Pickersgill B. Parallel vs. convergent evolution in domestication and diversification of crops in the Americas. Front Ecol Evol, 2018, 6. |
[110] |
Gasparini K, Moreira JDR, Peres LEP, Zsögön A. De novo domestication of wild species to create crops with increased resilience and nutritional value. Curr Opin Plant Biol, 2021, 60: 102006.
doi: 10.1016/j.pbi.2021.102006 |
[111] | Hasan S, Furtado A, Henry R. Analysis of domestication loci in wild rice populations. Plants (Basel), 2023, 12(3): 489. |
[112] |
Massawe F, Mayes S, Cheng A. Crop diversity: an unexploited treasure trove for food security. Trends Plant Sci, 2016, 21(5): 365-368.
doi: S1360-1385(16)00060-1 pmid: 27131298 |
[113] |
Li Q, Yan JB. Sustainable agriculture in the era of omics: knowledge-driven crop breeding. Genome Biol, 2020, 21(1): 154.
doi: 10.1186/s13059-020-02073-5 pmid: 32591012 |
[114] |
Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol, 2020, 38(7): 824-844.
doi: 10.1038/s41587-020-0561-9 pmid: 32572269 |
[1] | 田璐妍, 黄小珍. 植物开花调控中蛋白质相分离机制在从头驯化中的应用价值[J]. 遗传, 2023, 45(9): 754-764. |
[2] | 廉小平, 黄光福, 张玉娇, 张静, 胡凤益, 张石来. 长雄野生稻有利基因的发掘与利用[J]. 遗传, 2023, 45(9): 765-780. |
[3] | 杨新萍,于媛,许操. 重新设计与快速驯化创造新型作物[J]. 遗传, 2019, 41(9): 827-835. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: