遗传 ›› 2023, Vol. 45 ›› Issue (9): 765-780.doi: 10.16288/j.yczz.23-154
廉小平(), 黄光福, 张玉娇, 张静, 胡凤益(), 张石来()
收稿日期:
2023-05-31
修回日期:
2023-07-29
出版日期:
2023-09-20
发布日期:
2023-08-18
通讯作者:
胡凤益,张石来
E-mail:lianxp@ynu.edu.cn;hfengyi@ynu.edu.cn;shilaizhang@ynu.edu.cn
作者简介:
廉小平,博士,研究方向:长雄野生稻有利基因发掘与利用。E-mail: 基金资助:
Xiaoping Lian(), Guangfu Huang, Yujiao Zhang, Jing Zhang, Fengyi Hu(), Shilai Zhang()
Received:
2023-05-31
Revised:
2023-07-29
Published:
2023-09-20
Online:
2023-08-18
Contact:
Fengyi Hu,Shilai Zhang
E-mail:lianxp@ynu.edu.cn;hfengyi@ynu.edu.cn;shilaizhang@ynu.edu.cn
Supported by:
摘要:
人类将普通野生稻驯化为亚洲栽培稻,其农艺性状如株高、落粒性、穗型等发生了重要变化,产量也大幅提高,但许多优良性状如抗逆性等却丢失。长雄野生稻与亚洲栽培稻同属AA基因组,蕴藏了许多生物胁迫和非生物胁迫的抗性基因,被认为是亚洲栽培稻遗传改良的潜在基因库。本文总结了长雄野生稻生物及非生物胁迫抗性、地下茎性状以及其他潜在应用价值性状,包括白叶枯抗性、抗旱性、耐热性、自交不亲和性、氮高效利用以及高产等有利性状。基于长雄野生稻地下茎性状开展多年生稻育种实践的应用研究,对长雄野生稻进行从头驯化的策略进行了探讨,以期为长雄野生稻基础研究及栽培稻遗传改良提供理论参考。
廉小平, 黄光福, 张玉娇, 张静, 胡凤益, 张石来. 长雄野生稻有利基因的发掘与利用[J]. 遗传, 2023, 45(9): 765-780.
Xiaoping Lian, Guangfu Huang, Yujiao Zhang, Jing Zhang, Fengyi Hu, Shilai Zhang. The discovery and utilization of favorable genes in Oryza longistaminata[J]. Hereditas(Beijing), 2023, 45(9): 765-780.
表1
长雄野生稻有利性状发掘研究进展"
性状 | QTL/基因位点 | 染色体 | 克隆 | 应用 | 性状类型 | 参考文献 |
---|---|---|---|---|---|---|
抗白叶枯 | Xa21 | 11 | 是 | 是 | 生物胁迫抗性 | [ |
抗稻瘟病 | Pi57(t) | 12 | 否 | 否 | 生物胁迫抗性 | [ |
抗黄斑驳病毒 | - | - | 否 | - | 生物胁迫抗性 | [ |
抗东格鲁病毒 | - | - | 否 | 是 | 生物胁迫抗性 | [ |
抗根结线虫 | - | - | 否 | 否 | 生物胁迫抗性 | [ |
抗三化螟 | - | - | 否 | 否 | 生物胁迫抗性 | [ |
抗螟蛾科昆虫 | - | - | 否 | 否 | 生物胁迫抗性 | [ |
抗黑尾叶蝉 | qGRH2、qGRH4、qGRH5、qGRH11 | 2、4、5、11 | 否 | 否 | 生物胁迫抗性 | [ |
抗旱 | qDWR8.1/MH08g0242800 | 8 | 否 | 否 | 非生物胁迫抗性 | [ |
耐盐 | qSIS2/qWCSST2/qRWCS2 | 2 | 否 | 否 | 非生物胁迫抗性 | [ |
耐热 | - | - | 否 | 否 | 非生物胁迫抗性 | [ |
高配合力 | qGCA1、qSCA8 | 1、8 | 否 | 否 | 其他性状 | [ |
高异交率(柱头形态相关) | qSTGL8.0 | 8 | 否 | 否 | 其他性状 | [ |
种子活力 | q9SL1.1/q6SL1.1/q3SL1.1、9GR8.1/q9GP8.1 | 1、8 | 否 | 否 | 其他性状 | [ |
低肥高产 | 20个QTL | - | 否 | 否 | 其他性状 | [ |
高产 | - | 1、8(NIL) | 否 | 否 | 其他性状 | [ |
高光合 | qPn8.1、qBM1.1/qDBM1.1 | 1、8 | 否 | 否 | 其他性状 | [ |
穗粒数 | qSPP2.2 | 2 | 否 | 否 | 其他性状 | [ |
种间不育 | S40 | 1 | 是 | 否 | 其他性状 | [ |
自交不亲和 | OlSS1、OlSS2、OlSP | 5 | 否 | 否 | 其他性状 | [ |
表2
长雄野生稻从头驯化亟待改良性状及对应栽培稻关键驯化基因"
性状 | QTL/基因 | 染色体 | 日本晴基因组 ID号 | 与长雄野生稻基因组比对结果 (一致性与对空情况) | 参考文献 |
---|---|---|---|---|---|
株高 | SD1 | 1 | Os01g0883800 | 93% (2927/3158), 5% (157/3158) | [ |
株高/分蘖 | D10 (OsCCD8) | 1 | Os01g0746400 | 97% (3040/3130), 2% (67/3130) | [ |
株型(匍匐/直立) | PROG1 | 7 | Os07g0153600 | 90% (824/913), 7% (62/913) | [ |
株型(分蘖角) | TAC1 (SPK) | 9 | Os09g0529300 | 98% (3109/3160), 1% (22/3160) | [ |
穗型(穗粒数) | Gn1a | 1 | Os01g0197700 | 96% (1655/1718), 1% (25/1718) | [ |
穗型(直立密穗) | EP2 (DEP2) | 7 | Os07g0616000 | 98% (6120/6246), 0% (26/6246) | [ |
种子落粒性 | qSH1 | 1 | Os01g0848400 | 98% (4430/4522), 1% (48/4522) | [ |
Sh4 | 4 | Os04g0670900 | 93% (1523/1629), 4% (62/1629) | [ | |
SH5 | 5 | Os05g0455200 | 97% (2640/2723), 2% (60/2723) | [ | |
SHAT1 | 4 | Os04g0649100 | 95% (3357/3523), 2% (112/3523) | [ | |
种子休眠 | Sdr4 | 7 | Os07g0585700 | 96% (1007/1047), 3% (27/1047) | [ |
种皮颜色 | Rc | 7 | Os07g0211500 | 98% (3387/3472), 1% (36/3472) | [ |
Rd | 1 | Os01g0633500 | 96% (1828/1897), 2% (39/1897) | [ | |
芒 | LABA1 | 4 | Os04g0518800 | 98% (4053/4134), 1% (34/4134) | [ |
RAE2 (OsEPFL1) | 8 | Os08g0485500 | 93% (795/855), 4% (38/855) | [ | |
抽穗期 | Hd2 (DTH7) | 7 | Os07g0695100 | 99% (3307/3346), 0% (11/3346) | [ |
Hd5/DTH8/Ghd8 | 8 | Os08g0174500 | 94% (1857/1982), 4% (40/1982) | [ | |
Ehd1 (EF1) | 10 | Os10g0463400 | 98% (2965/3022), 0% (5/3022) | [ | |
RFT1 | 6 | Os06g0157500 | 96% (1593/1660), 1% (24/1660) | [ | |
Hd3a (FT) | 6 | Os06g0157700 | 94% (1381/1467), 3% (39/1467) | [ | |
Hd6 | 3 | Os03g0762000 | 96% (4042/4226), 2% (74/4226) | [ | |
自交不亲和性 | OlSS1、OlSS2、OlSP | 5 | - | * | [ |
地下茎有无 | Rhz2、Rhz3 | 3、4 | - | * | [ |
地下茎数量 | QRn2、QRn3、QRn5、QRn6、QRn7、QRn10 | 2、3、5、6、7、10 | - | * | [ |
地下茎长度 | QRl1、QRl6、QRl7 | 1、6、7 | - | * | [ |
地下茎丰度 | QRbd2 | 2 | - | * | [ |
[1] |
Seck PA, Diagne A, Mohanty S, Wopereis MCS. Crops that feed the world 7: rice. Food Secur, 2012, 4(1): 7-24.
doi: 10.1007/s12571-012-0168-1 |
[2] | Atwell BJ, Wang H, Scafaro AP. Could abiotic stress tolerance in wild relatives of rice be used to improve Oryza sativa? Plant Sci, 2014, 215: 48-58. |
[3] |
Kovach MJ, McCouch SR. Leveraging natural diversity: back through the bottleneck. Curr Opin Plant Biol, 2008, 11(2): 193-200.
doi: 10.1016/j.pbi.2007.12.006 pmid: 18313975 |
[4] |
Zhu QH, Zheng XM, Luo JC, Gaut BS, Ge S. Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives: severe bottleneck during domestication of rice. Mol Biol Evol, 2007, 24(3): 875-888.
doi: 10.1093/molbev/msm005 |
[5] | Vaughan DA. The wild relatives of rice, a genetic resources handbook. Manila: International Rice Research Institute, 1994, 137. |
[6] |
Wambugu PW, Brozynska M, Furtado A, Waters DL, Henry RJ. Relationships of wild and domesticated rices (Oryza AA genome species) based upon whole chloroplast genome sequences. Sci Rep, 2015, 5: 13957.
doi: 10.1038/srep13957 |
[7] |
Zhu T, Xu PZ, Liu JP, Peng S, Mo XC, Gao LZ. Phylogenetic relationships and genome divergence among the AA- genome species of the genus Oryza as revealed by 53 nuclear genes and 16 intergenic regions. Mol Phylogenet Evol, 2014, 70: 348-361.
doi: 10.1016/j.ympev.2013.10.008 pmid: 24148990 |
[8] |
Vaughan DA, Kadowaki K, Kaga A, Tomooka N. On the phylogeny and biogeography of the genus Oryza. Breed Sci, 2005, 55(2): 113-122.
doi: 10.1270/jsbbs.55.113 |
[9] | Bezancon G, Bozza J, Koffi G, Second G. Genetic diversity of indigenous rice in Africa. In: Rice in Africa. International Insititute of Tropical Agriculture, Ibadan, Nigeria: Academic Press. 1978. |
[10] | Kleynhans MT, James CS, Birkhead AL. Hydrologic and hydraulic modelling of the Nyl River floodplain part 3: applications to assess ecological impact. Water Sa, 2007, 33(1): 21-25. |
[11] |
Scholte P, de Kort S, van Weerd M,. Floodplain rehabilitation in Far North Cameroon: expected impact on bird life. Ostrich, 2000, 71(1-2): 112-117.
doi: 10.1080/00306525.2000.9639884 |
[12] | Ghesquiere A. Evolution of Oryza longistaminata. In: Banta SJ, edited. Rice Genetics I. 2008,15-25. |
[13] |
Zhang YS, Zhang SL, Liu H, Fu BY, Li LJ, Xie M, Song Y, Li X, Cai J, Wan WT, Kui L, Huang H, Lyu J, Dong Y, Wang WS, Huang LY, Zhang J, Yang QZ, Shan QL, Li Q, Huang WQ, Tao DY, Wang MH, Chen MS, Yu YS, Wing RA, Wang W, Hu FY. Genome and comparative transcriptomics of african wild rice Oryza longistaminata provide insights into molecular mechanism of rhizomatousness and self-incompatibility. Mol Plant, 2015, 8(11): 1683-1686.
doi: 10.1016/j.molp.2015.08.006 |
[14] |
Marathi B, Ramos J, Hechanova SL, Oane RH, Jena KK. SNP genotyping and characterization of pistil traits revealing a distinct phylogenetic relationship among the species of Oryza. Euphytica, 2015, 201: 131-148.
doi: 10.1007/s10681-014-1213-2 |
[15] | Causse M, Ghesquiere A. Prospective use of Oryza longistaminata for rice breeding. Rice Genetics II, 2008: 81-89. |
[16] | Kiambi DK, Newbury HJ, Ford-Lloyd BV, Dawson I. Contrasting genetic diversity among Oryza longistaminata (A. Chev et Roehr) populations from different geographic origins using AFLP. Afr J Biotechnol, 2005, 4(4): 308-317. |
[17] | Katayama TC, Ching'Ang'A HM, Nakagama A. Distribution and some morphological characters of wild rice in Tanzania. Kagoshima University Research Center Occasional Papers, 1987, 10: 30-35. |
[18] |
Tian ZX, Qian Q, Liu QQ, Yan MX, Liu XF, Yan CJ, Liu GF, Gao ZY, Tang SZ, Zeng DL, Wang YH, Yu JM, Gu MH, Li JY. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proc Natl Acad Sci USA, 2009, 106(51): 21760-21765.
doi: 10.1073/pnas.0912396106 pmid: 20018713 |
[19] |
Ronald PC, Albano B, Tabien R, Abenes L, Wu KS, McCouch S, Tanksley SD. Genetic and physical analysis of the rice bacterial blight disease resistance locus, Xa21. Mol Gen Genet, 1992, 236(1): 113-120.
doi: 10.1007/BF00279649 |
[20] |
Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science, 1995, 270(5243): 1804-1806.
doi: 10.1126/science.270.5243.1804 pmid: 8525370 |
[21] |
Giuliani R, Koteyeva N, Voznesenskaya E, Evans MA, Cousins AB, Edwards GE. Coordination of leaf photosynthesis, transpiration, and structural traits in rice and wild relatives (Genus Oryza). Plant Physiol, 2013, 162(3): 1632-1651.
pmid: 23669746 |
[22] |
Liu L, Lafitte R, Guan D. Wild Oryza species as potential sources of drought adaptive traits. Euphytica, 2004, 138(2): 149-161.
doi: 10.1023/B:EUPH.0000046801.27042.14 |
[23] | Ghesquiere A. Reexamination of genetic-control of the reproductive barrier between Oryza longistaminata and Oryza sativa, and relationship to rhizome expression. In: Rice Genetics II. 1991. Int Rice Research Inst, Los Banos, Philippines. |
[24] | Maekawa M, Inukai T, Rikiishi K. Inheritance of the rhizomatous trait in hybrids of Oryza longistaminata chev. et roehr. and O. sativa L. Sabrao J Breed Genet, 1998, (2): 30. |
[25] |
Fan ZQ, Wang K, Rao JL, Cai ZQ, Tao LZ, Fan YR, Yang JY. Interactions among multiple quantitative trait loci underlie rhizome development of perennial rice. Front Plant Sci, 2020, 11: 591157
doi: 10.3389/fpls.2020.591157 |
[26] | Sacks EJ, Roxas JP, Cruz MTS. Developing perennial upland rice II: Field performance of S-1 families from an intermated Oryza sativa/O. longistaminata population. Crop Sci, 2003, 43(1): 129-134. |
[27] |
Hu FY, Tao DY, Sacks E, Fu BY, Xu P, Li J, Yang Y, McNally K, Khush GS, Paterson AH, Li ZK. Convergent evolution of perenniality in rice and sorghum. Proc Natl Acad Sci USA, 2003, 100(7): 4050-4054.
pmid: 12642667 |
[28] | Tao DY, Prapa S. Preliminary report on transfer traits of vegetative propagation from wild rice species to Oryza sativa via distant hybridization and embryo rescue. Kasetsart J, 2000, 34(1): 1-11. |
[29] | 李勤修, 刘表喜, 王玉兰. 长药野生稻的研究及其利用. 四川农业科技, 1981, (06): 10-12. |
[30] |
Zhang T, Huang LY, Wang YX, Wang WS, Zhao XQ, Zhang SL, Zhang J, Hu FY, Fu BY, Li ZK. Differential transcriptome profiling of chilling stress response between shoots and rhizomes of Oryza longistaminata using RNA sequencing. PLoS One, 2017, 12(11): e0188625
doi: 10.1371/journal.pone.0188625 |
[31] |
Zhang YJ, Huang GF, Zhang SL, Zhang J, Gan SX, Cheng M, Hu J, Huang LY, Hu FY. An innovated crop management scheme for perennial rice cropping system and its impacts on sustainable rice production. Eur J Agron, 2021, 122: 126186
doi: 10.1016/j.eja.2020.126186 |
[32] |
Zhang SL, Huang GF, Zhang YJ, Lv XT, Wan KJ, Liang J, Feng YP, Dao JR, Wu SK, Zhang L, Yang X, Lian XP, Huang LY, Shao L, Zhang J, Qin SW, Tao DY, Crews TE, Sacks EJ, Lyu J, Wade LJ, Hu FY. Sustained productivity and agronomic potential of perennial rice. Nat Sustain, 2023, 6(1): 28-38.
doi: 10.1038/s41893-022-00997-3 |
[33] |
Zhang SL, Huang GF, Zhang J, Huang LY, Cheng M, Wang ZL, Zhang YN, Wang CL, Zhu PF, Yu XL, Tao K, Hu J, Yang F, Qi HW, Li XP, Liu SL, Yang RJ, Long YC, Harnpichitvitaya D, Wade LJ, Hu FY.Genotype by environment interactions for performance of perennial rice genotypes (Oryza sativa L./Oryza longistaminata) relative to annual rice genotypes over regrowth cycles and locations in southern China. Field Crop Res, 2019, 241: 107556.
doi: 10.1016/j.fcr.2019.107556 |
[34] |
Zhang SL, Hu J, Yang CD, Liu HT, Yang F, Zhou JH, Samson BK, Boualaphanh C, Huang LY, Huang GF, Zhang J, Huang WQ, Tao DY, Harnpichitvitaya D, Wade LJ, Hu FY.Genotype by environment interactions for grain yield of perennial rice derivatives (Oryza sativa L./Oryza longistaminata) in southern China and Laos. Field Crop Res, 2017, 207: 62-70.
doi: 10.1016/j.fcr.2017.03.007 |
[35] |
Li WF, Zhang SL, Huang GF, Huang LY, Zhang J, Li Z, Hu FY. A genetic network underlying rhizome development in Oryza longistaminata. Front Plant Sci, 2022, 13: 866165.
doi: 10.3389/fpls.2022.866165 |
[36] |
Huang GF, Qin SW, Zhang SL, Cai XL, Wu SK, Dao JR, Zhang J, Huang LY, Harnpichitvitaya D, Wade LJ, Hu FY. Performance, economics and potential impact of perennial rice PR23 relative to annual rice cultivars at multiple locations in Yunnan province of China. Sustainability, 2018, 10(4): 1086.
doi: 10.3390/su10041086 |
[37] |
Lian XP, Zhang SL, Huang GF, Huang LY, Zhang J, Hu FY. Confirmation of a gametophytic self-incompatibility in Oryza longistaminata. Front Plant Sci, 2021, 12: 576340.
doi: 10.3389/fpls.2021.576340 |
[38] | Gichuhi E, Himi E, Takahashi H, Maekawa M. Characterization and QTL analysis of Oryza longistaminata introgression line, pLIA-1, derived from a cross between Oryza longistaminata and Oryza sativa (Taichung 65) under non-fertilized conditions. J Rice Res, 2016, 4(4): 174. |
[39] | Brar DS. Broadening the gene pool of rice through introgression from wild species. Rice is life: Scientific perspectives for the 21st Century, 2005, 157-160. |
[40] | Gichuhi E, Himi E, Ahmed N, Takahashi H, Maekawa M. Preliminary QTL detection for improving basmati rice in a F2 population derived from the cross between kernel basmati and plia-1 carrying Oryza longistaminata chromosome. Sabrao J Breed Genet, 2016, 48(4): 402-415. |
[41] |
Ramos JM, Furuta T, Uehara K, Chihiro N, Angeles- Shim RB, Shim J, Brar DS, Ashikari M, Jena KK.Development of chromosome segment substitution lines (CSSLs) of Oryza longistaminata A. Chev. & Röhr in the background of the elite japonica rice cultivar, Taichung 65 and their evaluation for yield traits. Euphytica, 2016, 210: 151-163.
doi: 10.1007/s10681-016-1685-3 |
[42] | Khush GS, Mackill DJ, Sidhu GS. Breeding rice for resistance to bacterial blight. In: Bacterial blight of rice. International Rice Research Institute: Manila, Philippines. 1989, 207-217. |
[43] | Khush GS, Bacalangco E, Ogawa T. A new gene for resistance to bacterial blight from O. longistaminata. Rice Genet News Lett, 1990, 7: 121-122. |
[44] | Zhao TL, Fan YL, Wang YJ, Jiang D, Li MR, Zhai WX, Xia ZH. Study on pyramiding Bacterial Blight resistance gene Xa21 and Xa23 into rice. Molecular Plant Breeding, 2015, 13(3): 513-517. |
赵天龙, 范玉龙, 王艺洁, 姜达, 李明容, 翟文学, 夏志辉. 白叶枯病抗病基因Xa21与Xa23的聚合育种研究. 分子植物育种, 2015, 13(3): 513-517. | |
[45] | Wan BL, Yang GC, Chen ZJ, Mu TM, Chen QZ. Breeding rice resistante to Bacterial Blight with PCR marker of Xa21 gene. J Huazhong Agric Univ, 2001, 20(4): 310-313. |
万丙良, 杨国才, 陈志军, 牟同敏, 陈其志. 利用Xa21基因的 PCR 标记进行抗白叶枯病水稻育种. 华中农业大学学报, 2001, 20(4): 310-313. | |
[46] | Chen S, Zhang QF. Improvement of Bacterial Blight resistance of hybrid rice by molecul ar marker-assisted selection. J Huazhong Agric Univ, 2000, 19(3): 183-189. |
陈升, 张启发. 分子标记辅助选择改良杂交水稻的白叶枯病抗性(英文). 华中农业大学学报, 2000, 19(3): 183-189. | |
[47] | Cao LY, Shen XH, Zhan XD, Chen SG, Wu WM, Cheng SH. The selection and breeding of hybrid rice Guodao No.6 and its high yield cultural techniques. Bulletin of Agricultural Science and Technology, 2008, (3): 55-56. |
曹立勇, 沈希宏, 占小登, 陈深广, 吴伟明, 程式华. 杂交水稻新品种国稻6号的选育及栽培技术. 农业科技通讯, 2008, (3): 55-56. | |
[48] |
Zhai WX, Wang WM, Zhou YL, Li XB, Zheng XW, Zhang Q, Wang GL, Zhu LH. Breeding bacterial blight-resistant hybrid rice with the cloned bacterial blight resistance gene Xa21. Mol Breeding, 2002, 8: 285-293.
doi: 10.1023/A:1015234802902 |
[49] |
Swathi G, Rani CVD, Md J, Madhav MS, Vanisree S, Anuradha C, Kumar NR, Kumar NAP, Kumari KA, Bhogadhi SC, Ramprasad E, Sravanthi P, Raju SK, Bhuvaneswari V, Rajan CPD, Jagadeeswar R. Marker-assisted introgression of the major bacterial blight resistance genes, Xa21 and xa13, and blast resistance gene, Pi54, into the popular rice variety, JGL1798. Mol Breeding, 2019, 39: 1-12.
doi: 10.1007/s11032-018-0907-x |
[50] |
He RF, Salvato F, Park JJ, Kim MJ, Nelson W, Balbuena TS, Willer M, Crow JA, May GD, Soderlund CA, Thelen JJ, Gang DR. A systems-wide comparison of red rice (Oryza longistaminata) tissues identifies rhizome specific genes and proteins that are targets for cultivated rice improvement. BMC Plant Biol, 2014, 14: 1-21.
doi: 10.1186/1471-2229-14-1 |
[51] |
Xu P, Dong LY, Zhou JW, Li J, Zhang Y, Hu FY, Liu SF, Wang Q, Deng W, Deng XN, Tharreau D, Yang QZ, Tao DY.Identification and mapping of a novel blast resistance gene Pi57(t) in Oryza longistaminata. Euphytica, 2015, 205(1): 95-102.
doi: 10.1007/s10681-015-1402-7 |
[52] |
Dong LY, Liu SF, Xu P, Deng W, Li XD, Tharreau D, Li J, Zhou JW, Wang Q, Tao DY, Yang QZ.Fine mapping of Pi57(t) conferring broad spectrum resistance against Magnaporthe oryzae in introgression line IL-E1454 derived from Oryza longistaminata. PLoS One, 2017, 12(10): e0186201.
doi: 10.1371/journal.pone.0186201 |
[53] | Thottappilly G, Rossel HW. Evaluation of resistance to rice yellow mottle virus in Oryza species. Indian J Virol, 1993, 9(1): 65-73. |
[54] | Rakotomalala M. Case history on development and deployment of resistant varieties to control RYMV in Madagascar. In: Hughes J, Odu B, Plant Virology in sub-Saharan Africa. Ibadan, eds. Nigeria: International Institute of Tropical Agriculture, 2001, 423-431. |
[55] | Angeles ER, Cabunagan RC, Tiongco ER, Azzam O, Teng PS, Khush GS, Chancellor TCB. Advanced breeding lines with resistance to rice tungro viruses. International Rice Research Notes, 1998, 23(1): 17-18. |
[56] | Khush GS, Angeles ER, Virak PS, Brar DS. Breeding rice for resistance to tungro virus at IRRI. Sabrao J Breed Genet, 2004, 36(2): 101-106. |
[57] |
Soriano IR, Schmit V, Brar DS, Prot JC, Reversat G. Resistance to rice root-knot nematode Meloidogyne graminicola identified in Oryza longistaminata and O. glaberrima. Nematology, 1999, 1(4): 395-398.
doi: 10.1163/156854199508397 |
[58] | Brar DS, Khush GS.Transferring genes from wild species into rice. Quantitative genetics, genomics, and plant breeding, Kang MS, 2002, CABI 24: 197-220. |
[59] | Du MJC. Transfer of resistance to yellow stem borer (Scirpophaga incertulas Walker) from wild species into rice (Oryza sativa L.) and molecular characterization of introgression. University of the Phillipines Los Banos, 2008. |
[60] | Brar DS, Khush GS. Cytogenetic manipulation and germplasm enhancement of rice (Oryza sativa L.). Genet Resour Chromosome Eng Crop Improv Ser, 2006, 2: 115-158. |
[61] | Panigrahi D, Rajamani S. Genetic evaluation of the wild Oryza species for resistance against the yellow stem borer, Scirpophaga incertulas Wlk. J Plant Prot Environ, 2008, 5(1): 26-29. |
[62] |
Ba NM, Dakouo D, Nacro S, Karamage F. Seasonal abundance of lepidopteran stemborers and diopsid flies in irrigated fields of cultivated (Oryza sativa) and wild rice (Oryza longistaminata) in western Burkina Faso. Int J Trop Insect Sci, 2008, 28: 30-36.
doi: 10.1017/S1742758408930435 |
[63] |
Thein HW, Yamagata Y, Van Mai T, Yasui H. Four resistance alleles derived from Oryza longistaminata (A. Chev. & Roehrich) against green rice leafhopper, Nephotettix cincticeps (Uhler) identified using novel introgression lines. Breed Sci, 2019, 69(4): 573-584.
doi: 10.1270/jsbbs.19060 |
[64] |
Huang SY, Liu MM, Chen GL, Si FF, Fan FF, Guo Y, Yuan L, Yang F, Li SQ. Favorable QTLs from Oryza longistaminata improve rice drought resistance. BMC Plant Biol, 2022, 22(1): 1-12.
doi: 10.1186/s12870-021-03391-x |
[65] |
Neelam K, Sahi GK, Kumar K, Singh K. Identification of drought stress tolerance in wild species germplasm of rice based on leaf and root morphology. Plant Genet Resour, 2018, 16(4): 289-295.
doi: 10.1017/S1479262117000284 |
[66] |
Yuan L, Zhang LC, Wei X, Wang RH, Li NN, Chen GL, Fan FF, Huang SY, Li JX, Li SQ. Quantitative trait locus mapping of salt tolerance in wild rice Oryza longistaminata. Int J Mol Sci, 2022, 23(4): 2379.
doi: 10.3390/ijms23042379 |
[67] |
Fan FF, Long WX, Liu MM, Yuan HR, Pan GJ, Li NW, Li SQ. Quantitative trait locus mapping of the combining ability for yield-related traits in wild rice Oryza longistaminata. J Agric Food Chem, 2019, 67(32): 8766-8772.
doi: 10.1021/acs.jafc.9b02224 |
[68] | Prahalada GD, Marathi B, Vinarao R, Kim SR, Diocton R 4th, Ramos J, Jena KK. QTL mapping of a novel genomic region associated with high out-crossing rate derived from Oryza longistaminata and development of new CMS lines in rice, O. sativa L. Rice (N Y), 2021, 14(1): 80. |
[69] |
Jin J, Long WX, Wang LT, Liu XD, Pan GJ, Xiang W, Li NW, Li SQ. QTL mapping of seed vigor of backcross inbred lines derived from Oryza longistaminata under artificial aging. Front Plant Sci, 2018, 9: 1909.
doi: 10.3389/fpls.2018.01909 |
[70] |
Gichuhi E, Himi E, Takahashi H, Zhu SH, Doi K, Tsugane K, Maekawa M. Identification of QTLs for yield-related traits in RILs derived from the cross between pLIA-1 carrying Oryza longistaminata chromosome segments and Norin 18 in rice. Breed Sci, 2016, 66(5): 720-733.
doi: 10.1270/jsbbs.16083 |
[71] | Melaku G, Guangfu H, Shilai Z, Labroo M, Rhodes B, Harold E, Hu F.Single marker analysis for leaf gas exchange traits from RILS of RD23 (O. sativa L.) and O. longistaminata. Biotechnol Rep (Amst), 2022, 35: e00743. |
[72] |
Si FF, Fan FF, Wei X, He SH, Li XL, Peng XJ, Li SQ. Quantitative trait locus mapping of high photosynthetic efficiency and biomass in Oryza longistaminata. Rice Sci, 2022, 29(6): 569-576.
doi: 10.1016/j.rsci.2022.01.011 |
[73] |
Hu ZH, Chen XY, Huangfu LX, Shao SB, Tao X, Song LS, Tong WZ, Yi CD. Comparative analysis morphology, anatomical structure and transcriptional regulatory network of chlorophyll biosynthesis in Oryza longistaminata, O. sativa and their F1 generation. PeerJ, 2021, 9: e12099.
doi: 10.7717/peerj.12099 |
[74] |
Kaur A, Sidana K, Bhatia D, Neelam K, Singh G, Sahi GK, Gill BK, Sharma P, Yadav IS, Singh K. A novel QTL qSPP2.2 controlling spikelet per panicle identified from Oryza longistaminata (A. Chev. et Roehr.), mapped and transferred to Oryza sativa (L.). Mol Breed, 2018, 38(7): 92.
doi: 10.1007/s11032-018-0843-9 |
[75] |
Chen H, Zhao Z, Liu L, Kong W, Lin Y, You S, Bai W, Xiao Y, Zheng H, Jiang L, Li J, Zhou J, Tao D, Wan J. Genetic analysis of a hybrid sterility gene that causes both pollen and embryo sac sterility in hybrids between Oryza sativa L. and Oryza longistaminata. Heredity (Edinb), 2017, 119(3): 166-173.
doi: 10.1038/hdy.2017.32 |
[76] | Chen ZW, Hu FY, Xu P, Li J, Deng XN, Zhou JW, Li F, Chen SN, Tao DY. QTL analysis for hybrid sterility and plant height in interspecific populations derived from a wild rice relative, Oryza longistaminata. Breed Sci, 2009, 59(4): 441-445. |
[77] |
Li R, Werger MJA, During HJ, Zhong ZC. Carbon and nutrient dynamics in relation to growth rhythm in the giant bamboo Phyllostachys pubescens. Plant Soil, 1998, 201(1): 113-123.
doi: 10.1023/A:1004322812651 |
[78] | Hu FY.Molecular mapping and inheritance studies of rhizomatous traits in Oryza longistaminata [Dissertation]. Southwest Agricultural University, 2002. |
胡凤益.长雄野生稻 (Oryza longistaminata) 地下茎分子定位和遗传研究[学位论文]. 西南农业大学, 2002. | |
[79] | Hu FY.Fine mapping of rhizome gene Rhz2, Rhz3 and identification of rhizome-specific genes by genome- wide differential expression analysis in Oryza longistaminata [Dissertation]. Chinese Academy of Agricultural Sciences, 2010. |
胡凤益.长雄野生稻地下茎基因Rhz2、Rhz3精细定位及地下茎全基因组表达谱分析[学位论文]. 中国农业科学院, 2010. | |
[80] |
Hu FY, Wang D, Zhao XQ, Zhang T, Sun HX, Zhu LH, Zhang F, Li LJ,. Li QO, Tao DY, Fu BY, Li ZK. Identification of rhizome-specific genes by genome- wide differential expression analysis in Oryza longistaminata. BMC Plant Biol, 2011, 11(1): 18.
doi: 10.1186/1471-2229-11-18 |
[81] |
Jang CS, Kamps TL, Skinner DN, Schulze SR, Vencill WK, Paterson AH. Functional classification, genomic organization, putatively cis-acting regulatory elements, and relationship to quantitative trait loci, of sorghum genes with rhizome-enriched expression. Plant Physiol, 2006, 142(3): 1148-1159.
pmid: 16998090 |
[82] |
Toriba T, Tokunaga H, Nagasawa K, Nie F, Yoshida A, Kyozuka J. Suppression of leaf blade development by BLADE-ON-PETIOLE orthologs is a common strategy for underground rhizome growth. Curr Biol, 2020, 30(3): 509-516.
doi: S0960-9822(19)31525-8 pmid: 31956025 |
[83] |
Zong Y, Huang LY, Zhang T, Qin Q, Wang WS, Zhao XQ, Hu FY, Fu BY, Li ZK. Differential microRNA expression between shoots and rhizomes in Oryza longistaminata using high-throughput RNA sequencing. Crop J, 2014, 2(2-3): 102-109.
doi: 10.1016/j.cj.2014.03.005 |
[84] |
Yoshida A, Terada Y, Toriba T, Kose K, Ashikari M, Kyozuka J. Analysis of rhizome development in Oryza longistaminata, a wild rice species. Plant Cell Physiol, 2016, 57(10): 2213-2220.
pmid: 27516415 |
[85] |
Bessho-Uehara K, Nugroho JE, Kondo H, Angeles-Shim RB, Ashikari M. Sucrose affects the developmental transition of rhizomes in Oryza longistaminata. J Plant Res, 2018, 131(4): 693-707.
doi: 10.1007/s10265-018-1033-x pmid: 29740707 |
[86] |
Fan ZQ, Huang GW, Fan YR, Yang JY. Sucrose facilitates rhizome development of perennial rice (Oryza longistaminata). Int J Mol Sci, 2022, 23(21): 13396.
doi: 10.3390/ijms232113396 |
[87] |
Kawai M, Tabata R, Ohashi M, Honda H, Kamiya T, Kojima M, Takebayashi Y, Oishi S, Okamoto S, Hachiya T, Sakakibara H. Regulation of ammonium acquisition and use in Oryza longistaminata ramets under nitrogen source heterogeneity. Plant Physiol, 2022, 188(4): 2364-2376.
doi: 10.1093/plphys/kiac025 |
[88] |
Shibasaki K, Takebayashi A, Makita N, Kojima M, Takebayashi Y, Kawai M, Hachiya T, Sakakibara H. Nitrogen nutrition promotes rhizome bud outgrowth via regulation of cytokinin biosynthesis genes and an Oryza longistaminata ortholog of FINE CULM 1. Front Plant Sci, 2021, 12: 670101.
doi: 10.3389/fpls.2021.670101 |
[89] | Li QX. Interspecific crosses for breeding perennial lines in Oryza. Southwest China Journal of Agricultural Sciences, 1997, 10(2): 9-14. |
李勤修. 宿根稻 I. 种间复合杂交选育水稻宿根系. 西南农业学报, 1997, 10(2): 9-14. | |
[90] | 胡凤益, 张石来, 黄立钰, 陶大云, 张静, 黄光福, 胡建, 道金荣,. 利用长雄野生稻无性繁殖特性培育多年生稻的方法: 云南, CN201710132494.2. 2017-05-24. |
[91] | Zhang SL, Wang WS, Zhang J, Zhang T, Huang WQ, Xu P, Tao DY, Fu BY, Hu FY. The progression of perennial rice breeding and genetics. Perennial crops for food security, 2018, 27. |
[92] |
Samson BK, Voradeth S, Zhang SL, Tao DY, Xayavong S, Khammone T, Douangboupha K, Sihathep V, Sengxua P, Phimphachanhvongsod V, Bouahom B, Jackson T, Harnpichitvitaya D, Hu FY, Wade LJ.Performance and survival of perennial rice derivatives (Oryza sativa L./Oryza longistaminata) in Lao PDR. Exp Agric, 2017, 54(4): 1-12.
doi: 10.1017/S0014479716000648 |
[93] |
Shi JF, Huang GF, Zhang YJ, Li XB, Wang CR, Zhang SL, Zhang J, Hu FY. Quality analysis of perennial rice in different altitude regions. China Rice, 2020, 26(4): 40-43.
doi: 10.3969/j.issn.1006-8082.2020.04.009 |
施继芳, 黄光福, 张玉娇, 李小波, 王春荣, 张石来, 张静, 胡凤益. 不同海拔地区多年生稻稻米品质分析. 中国稻米, 2020, 26(4): 40-43.
doi: 10.3969/j.issn.1006-8082.2020.04.009 |
|
[94] | Gepts P. Crop domestication as a long-term selection experiment. Plant Breed Rev, 2010, 24(2): 1-44. |
[95] |
Kovach MJ, Sweeney MT, McCouch SR. New insights into the history of rice domestication. Trends Genet, 2007, 23(11): 578-587.
doi: 10.1016/j.tig.2007.08.012 pmid: 17963977 |
[96] |
Doebley JF, Gaut BS, Smith BD. The molecular genetics of crop domestication. Cell, 2006, 127(7): 1309-1321.
doi: 10.1016/j.cell.2006.12.006 pmid: 17190597 |
[97] | Tong S, Ashikari M, Nagai K, Pedersen O. Can the wild perennial, rhizomatous rice species Oryza longistaminata be a candidate for de novo domestication? Rice (N Y), 2023, 16(1): 13. |
[98] |
Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y. Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res, 2002, 9(1): 11-17.
doi: 10.1093/dnares/9.1.11 pmid: 11939564 |
[99] |
Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M. Green revolution: a mutant gibberellin-synthesis gene in rice. Nature, 2002, 416(6882): 701-702.
doi: 10.1038/416701a |
[100] | Zhang SY, Li G, Fang J, Chen WQ, Jiang HP, Zou JH, Liu X, Zhao XF, Li XB, Chu CC, Xie Q, Jiang XN, Zhu LH. The interactions among DWARF10, auxin and cytokinin underlie lateral bud outgrowth in rice. J Integr Plant Biol, 2010, 52(7): 626-638. |
[101] |
Wang YH, Li JY, Rice, rising. Nat Genet, 2008, 40(11): 1273-1275.
doi: 10.1038/ng1108-1273 pmid: 18957983 |
[102] |
Jin J, Huang W, Gao JP, Yang J, Shi M, Zhu MZ, Luo D, Lin HX. Genetic control of rice plant architecture under domestication. Nat Genet, 2008, 40(11): 1365-1369.
doi: 10.1038/ng.247 pmid: 18820696 |
[103] |
Tan LB, Li XR, Liu FX. Sun XY, Li CG, Zhu ZF, Fu YC, Cai HW, Wang XK, Xie DX, Sun CQ. Control of a key transition from prostrate to erect growth in rice domestication. Nat Genet, 2008, 40(11): 1360-1364.
doi: 10.1038/ng.197 pmid: 18820699 |
[104] |
Yu BS, Lin ZW, Li HX, Li XJ, Li JY, Wang YH, Zhang X, Zhu ZF, Zhai WX, Wang XK, Xie DX, Sun CQ. TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J, 2007, 52(5): 891-898.
doi: 10.1111/j.1365-313X.2007.03284.x pmid: 17908158 |
[105] | Jiang JH, Tan LB, Zhu ZF, Fu YC, Liu FX, Cai HW, Sun CQ. Molecular evolution of the TAC1 gene from rice (Oryza sativa L.). J Genet Genomicss, 2012, 39(10): 551-560. |
[106] |
Guo T, Lu ZQ, Shan JX, Ye WW, Dong NQ, Lin HX. ERECTA1 Acts upstream of the OsMKKK10-OsMKK4- OsMPK6 cascade to control spikelet number by regulating cytokinin metabolism in rice. Plant Cell, 2020, 32(9): 2763-2779.
doi: 10.1105/tpc.20.00351 |
[107] |
Ashikari M, Sakakibara H, Lin SY, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309(5735): 741-745.
doi: 10.1126/science.1113373 pmid: 15976269 |
[108] |
Abe Y, Mieda K, Ando T, Kono I, Yano M, Kitano H, Iwasaki Y. The SMALL AND ROUND SEED1 (SRS1/DEP2) gene is involved in the regulation of seed size in rice. Genes Genet Syst, 2010, 85(5): 327-339.
doi: 10.1266/ggs.85.327 |
[109] |
Li F, Liu WB, Tang JY, Chen JF, Tong HN, Hu B, Li CL, Fang J, Chen MS, Chu CC. Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation. Cell Res, 2010, 20(7): 838-849.
doi: 10.1038/cr.2010.69 |
[110] |
Zhu CL, Xing B, Teng SZ, Deng C, Shen ZY, Ai PF, Lu TG, Zhang SW, Zhang ZG. OsRELA regulates leaf inclination by repressing the transcriptional activity of OsLIC in rice. Front Plant Sci, 2021, 12: 760041.
doi: 10.3389/fpls.2021.760041 |
[111] |
Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T, Yano M. An SNP caused loss of seed shattering during rice domestication. Science, 2006, 312(5778): 1392-1396.
doi: 10.1126/science.1126410 pmid: 16614172 |
[112] |
Zhang LB, Zhu QH, Wu ZQ, Ross-Ibarra J, Gaut BS, Ge S, Sang T. Selection on grain shattering genes and rates of rice domestication. New Phytol, 2009, 184(3): 708-720.
doi: 10.1111/nph.2009.184.issue-3 |
[113] |
Li CB, Zhou AL, Sang T. Rice domestication by reducing shattering. Science, 2006, 311(5769): 1936-1939.
doi: 10.1126/science.1123604 pmid: 16527928 |
[114] |
Lin ZW, Griffith ME, Li XR, Zhu ZF, Tan LB, Fu YC, Zhang WX, Wang XK, Xie DX, Sun CQ. Origin of seed shattering in rice (Oryza sativa L.). Planta, 2007, 226(1): 11-20.
doi: 10.1007/s00425-006-0460-4 |
[115] |
Xiong LX, Liu KD, Dai XK, Xu CG, Zhang QF.Identification of genetic factors controlling domestication- related traits of rice using an F2 population of a cross between Oryza sativa and O. rufipogon. Theor Appl Genet, 1999, 98(2): 243-251.
doi: 10.1007/s001220051064 |
[116] |
Yoon J, Cho LH, Antt HW, Koh HJ, An G. KNOX protein OSH15 induces grain shattering by repressing lignin biosynthesis genes. Plant Physiol, 2017, 174(1): 312-325.
doi: 10.1104/pp.17.00298 pmid: 28351912 |
[117] |
Yoon J, Cho LH, Kim SL, Choi H, Koh HJ, An G. The BEL1-type homeobox gene SH5 induces seed shattering by enhancing abscission-zone development and inhibiting lignin biosynthesis. Plant J, 2014, 79(5): 717-728.
doi: 10.1111/tpj.2014.79.issue-5 |
[118] |
Zhou Y, Lu DF, Li CY, Luo JH, Zhu BF, Zhu JJ, Shangguan YY, Wang ZX, Sang T, Zhou B, Han B.Genetic control of seed shattering in rice by the APETALA2 transcription factor shattering abortion1. Plant Cell, 2012, 24(3): 1034-1048.
doi: 10.1105/tpc.111.094383 |
[119] |
Zhao B, Zhang H, Chen TX, Ding L, Zhang LY, Ding XL, Zhang J, Qian Q, Xiang Y. Sdr4 dominates pre-harvest sprouting and facilitates adaptation to local climatic condition in Asian cultivated rice. J Integr Plant Biol, 2022, 64(6): 1246-1263.
doi: 10.1111/jipb.v64.6 |
[120] |
Chen WQ, Wang W, Lyu YS, Wu YW, Huang PL, Hu SK, Wei XJ, Jiao GA, Sheng ZH, Tang SQ, Shao GN, Luo J. OsVP1 activates Sdr4 expression to control rice seed dormancy via the ABA signaling pathway. Crop J, 2021, 9(1): 68-78.
doi: 10.1016/j.cj.2020.06.005 |
[121] |
Sugimoto K, Takeuchi Y, Ebana K, Miyao A, Hirochika H, Hara N, Ishiyama K, Kobayashi M, Ban Y, Hattori T, Yano M. Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice. Proc Natl Acad Sci USA, 2010, 107(13): 5792-5797.
doi: 10.1073/pnas.0911965107 |
[122] |
Wang J, Deng QW, Li YH, Yu Y, Liu X, Han YF, Luo XD, Wu XJ, Ju L, Sun JQ, Liu AH, Fang J. Transcription factors Rc and OsVP1 coordinately regulate preharvest sprouting tolerance in red pericarp rice. J Agric Food Chem, 2020, 68(50): 14748-14757.
doi: 10.1021/acs.jafc.0c04748 |
[123] |
Furukawa T, Maekawa M, Oki T, Suda I, Iida S, Shimada H, Takamure I, Kadowaki K. The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp. Plant J, 2007, 49(1): 91-102.
doi: 10.1111/j.1365-313X.2006.02958.x pmid: 17163879 |
[124] |
Gross BL, Steffen FT, Olsen KM. The molecular basis of white pericarps in African domesticated rice: novel mutations at the Rc gene. J Evol Biol, 2010, 23(12): 2747-2753.
doi: 10.1111/jeb.2010.23.issue-12 |
[125] |
Sun XM, Zhang ZY, Chen C, Wu W, Ren NN, Jiang CH, Yu JP, Zhao Y, Zheng XM, Yang QW, Zhang HL, Li JJ, Li ZC. The C-S-A gene system regulates hull pigmentation and reveals evolution of anthocyanin biosynthesis pathway in rice. J Exp Bot, 2018, 69(7): 1485-1498.
doi: 10.1093/jxb/ery001 |
[126] |
Hua L, Wang DR, Tan LB, Fu YC, Liu FX, Xiao LT, Zhu ZF, Fu Q, Sun XY, Gu P, Cai HW, McCouch SR, Sun CQ. LABA1, a domestication gene associated with long, barbed awns in wild rice. Plant Cell, 2015, 27(7): 1875-1888.
doi: 10.1105/tpc.15.00260 |
[127] |
Gu BG, Zhou TY, Luo JH, Liu H, Wang YC, Shangguan YY, Zhu JJ, Li Y, Sang T, Wang ZX, Han B. An-2 encodes a cytokinin synthesis eenzyme that regulates awn length and grain production in rice. Mol Plant, 2015, 8(11): 1635-1650.
doi: 10.1016/j.molp.2015.08.001 |
[128] |
Jin J, Xiong LL, Gray JE, Hu B, Chu CC. Two awn-development-related peptides, GAD1 and OsEPFL2, promote seed dispersal and germination in rice. Mol Plant, 2023, 16(3): 485-488.
doi: 10.1016/j.molp.2022.12.011 |
[129] |
Bessho-Uehara K, Wang DR, Furuta T, Minami A, Nagai K, Gamuyao R, Asano K, Angeles-Shim RB, Shimizu Y, Ayano M, Komeda N, Doi K, Miura K, Toda Y, Kinoshita T, Okuda S, Higashiyama T, Nomoto M, Tada Y, Shinohara H, Matsubayashi Y, Greenberg A, Wu JZ, Yasui H, Yoshimura A, Mori H, McCouch SR, Ashikari M. Loss of function at RAE2, a previously unidentified EPFL, is required for awnlessness in cultivated Asian rice. Proc Natl Acad Sci USA, 2016, 113(32): 8969-8974.
doi: 10.1073/pnas.1604849113 pmid: 27466405 |
[130] |
Jin J, Hua L, Zhu ZF, Tan LB, Zhao XH, Zhang WF, Liu FX, Fu YC, Cai HW, Sun XY, Gu P, Xie DX, Sun CQ. GAD1 encodes a secreted peptide that regulates grain number, grain length, and awn development in rice domestication. Plant Cell, 2016, 28(10): 2453-2463.
doi: 10.1105/tpc.16.00379 |
[131] |
Gao H, Jin MN, Zheng XM, Chen J, Yuan DY, Xin YY, Wang MQ, Huang DY, Zhang Z, Zhou KN, Sheng P K, Ma J, Ma WW, Deng HF, Jiang L, Liu SJ, Wang HY, Wu CY, Yuan LP, Wan JM. Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proc Natl Acad Sci USA, 2014, 111(51): 18399-18399.
doi: 10.1073/pnas.1422341112 |
[132] |
Zhang YS, Luo LJ, Xu CG, Zhang QF, Xing YZ. Quantitative trait loci for panicle size, heading date and plant height co-segregating in trait-performance derived near-isogenic lines of rice (Oryza sativa). Theor Appl Genet, 2006, 113(2): 361-368.
doi: 10.1007/s00122-006-0305-3 pmid: 16791702 |
[133] |
Yan WH, Wang P, Chen HX, Zhou HJ, Li QP, Wang CR, Ding ZH, Zhang YS, Yu SB, Xing YZ, Zhang QF. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant, 2011, 4(2): 319-330.
doi: 10.1093/mp/ssq070 |
[134] |
Feng ZM, Zhang L, Yang CY, Wu T, Lv J, Chen YL, Liu X, Liu SJ, Jiang L, Wan JM. EF8 is involved in photoperiodic flowering pathway and chlorophyll biogenesis in rice. Plant Cell Rep, 2014, 33(12): 2003-2014.
doi: 10.1007/s00299-014-1674-8 |
[135] |
Wei XJ, Xu JF, Guo HN, Jiang L, Chen SH, Yu CY, Zhou ZL, Hu PS, Zhai HQ, Wan JM. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol, 2010, 153(4): 1747-1758.
doi: 10.1104/pp.110.156943 |
[136] | Doi K, Yoshimura A, Iwata N.RFLP mapping and QTL analysis of heading date and pollen sterility using backcross populations between Oryza sativa L. and Oryza glaberrima Steud. Breed Sci, 1998, 48(4): 395-399. |
[137] |
Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev, 2004, 18(8): 926- 936.
doi: 10.1101/gad.1189604 |
[138] |
Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol, 2002, 43(10): 1096-1105.
doi: 10.1093/pcp/pcf156 pmid: 12407188 |
[139] |
Komiya R, Ikegami A, Tamaki S, Yokoi S, Shimamoto S. Hd3a and RFT1 are essential for flowering in rice. Development, 2008, 135(4): 767-774.
doi: 10.1242/dev.008631 pmid: 18223202 |
[140] |
Takahashi Y, Shomura A, Sasaki T, Yano M.Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2. Proc Natl Acad Sci USA, 2001, 98(14): 7922-7927.
doi: 10.1073/pnas.111136798 pmid: 11416158 |
[141] |
Reuscher S, Furuta T, Bessho-Uehara K, Cosi M, Jena KK, Toyoda A, Fujiyama A, Kurata N, Ashikari M. Assembling the genome of the African wild rice Oryza longistaminata by exploiting synteny in closely related Oryza species. Commun Biol, 2018, 1(1): 162.
doi: 10.1038/s42003-018-0171-y |
[142] | Long WX, Li NW, Jin J, Wang J, Dan D, Fan FF, Gao ZZ, Li SQ. Resequencing-based QTL mapping for yield and resistance traits reveals great potential of Oryza longistaminata in rice breeding. Crop J, 2023. |
[143] |
Long WX, Dan D, Yuan ZQ, Chen YP, Jin J, Yang WL, Zhang ZH, Li NW, Li SQ. Deciphering the genetic basis of lodging resistance in wild rice Oryza longistaminata. Front Plant Sci, 2020, 11: 628.
doi: 10.3389/fpls.2020.00628 pmid: 32547576 |
[144] |
Yu H, Lin T, Meng XB, Du HL, Zhang JK, Liu GF, Chen MJ, Jing YH, Kou LQ, Li XX, Gao Q, Liang Y, Liu XD, Fan ZL, Liang YT, Cheng ZK, Chen MS, Tian ZX, Wang YH, Chu CC, Zuo JR, Wan JM, Qian Q, Han B, Zuccolo A, Wing RA, Gao CX, Liang CZ, Li JY. A route to de novo domestication of wild allotetraploid rice. Cell, 2021, 184(5): 1156-1170.
doi: 10.1016/j.cell.2021.01.013 |
[1] | 田璐妍, 黄小珍. 植物开花调控中蛋白质相分离机制在从头驯化中的应用价值[J]. 遗传, 2023, 45(9): 754-764. |
[2] | 简六梅, 肖英杰, 严建兵. 从头驯化:作物品种设计与培育的新方向[J]. 遗传, 2023, 45(9): 741-753. |
[3] | 王珏, 黄娟, 许蕊. 利用CRISPR/Cas9和piggyBac实现果蝇基因组无缝编辑[J]. 遗传, 2019, 41(5): 422-429. |
[4] | 梁彩娇, 孟繁梅, 艾云灿. 基于CRISPR/Cas系统的噬菌体基因组编辑[J]. 遗传, 2018, 40(5): 378-389. |
[5] | 童晓玲,方春燕,盖停停,石津,鲁成,代方银. CRISPR/Cas9系统在昆虫中的应用[J]. 遗传, 2018, 40(4): 266-278. |
[6] | 刘佳伟,洪涛,秦鑫,梁英民,张萍. β-血红蛋白病基因组编辑治疗的研究进展[J]. 遗传, 2018, 40(2): 95-103. |
[7] | 李红花,刘钢. CRISPR/Cas9在丝状真菌基因组编辑中的应用[J]. 遗传, 2017, 39(5): 355-367. |
[8] | 黄娇娇, 曹春伟, 郑国民, 赵建国. 基因组编辑技术在猪遗传改良中的应用[J]. 遗传, 2017, 39(11): 1078-1089. |
[9] | 马三垣,夏庆友. 家蚕遗传育种:从传统杂交到分子设计[J]. 遗传, 2017, 39(11): 1025-1032. |
[10] | 刘丁源, 邱婷, 丁晓辉, 李苗苗, 朱睦元, 王君晖. 快速构建多重sgRNA载体利用CRISPR/Cas9技术敲除拟南芥IAA2基因[J]. 遗传, 2016, 38(8): 756-764. |
[11] | 谢德健, 师明磊, 张彦, 王天艺, 沈文龙, 叶丙雨, 李平, 何超, 张香媛, 赵志虎. 利用CRISPR/Cas9技术构建CTCF蛋白降解细胞系[J]. 遗传, 2016, 38(7): 651-657. |
[12] | 王干诚, 马明, 叶延帧, 席建忠. 基于CRISPR/Cas9系统高通量筛选研究功能基因[J]. 遗传, 2016, 38(5): 391-401. |
[13] | 周想春, 邢永忠. 基因组编辑技术在植物基因功能鉴定及作物育种中的应用[J]. 遗传, 2016, 38(3): 227-242. |
[14] | 幸宇云, 杨强, 任军. CRISPR/Cas9基因组编辑技术在农业动物中的应用[J]. 遗传, 2016, 38(3): 217-226. |
[15] | 苏方, 黄宗靓, 郭雅文, 焦仁杰, 李孜, 陈建明, 刘继勇. 从随机突变到精确编辑:果蝇基因组编辑技术的发展及演化[J]. 遗传, 2016, 38(1): 17-27. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: