遗传 ›› 2023, Vol. 45 ›› Issue (11): 986-997.doi: 10.16288/j.yczz.23-191
杨茂艺1(), 崔潇月2,3, 郑诗棋2, 马诗瑶2, 郑增长4(), 邓万燕2()
收稿日期:
2023-07-18
修回日期:
2023-10-18
出版日期:
2023-11-20
发布日期:
2023-11-02
通讯作者:
郑增长,邓万燕
E-mail:yang9910150028@163.com;dengwanyan@cqmu.edu.cn;zhengzengzhang@126.com
作者简介:
杨茂艺,硕士研究生,专业方向:临床检验诊断学。E-mail: 基金资助:
Maoyi Yang1(), Xiaoyue Cui2,3, Shiqi Zheng2, Shiyao Ma2, Zengzhang Zheng4(), Wanyan Deng2()
Received:
2023-07-18
Revised:
2023-10-18
Published:
2023-11-20
Online:
2023-11-02
Contact:
Zengzhang Zheng,Wanyan Deng
E-mail:yang9910150028@163.com;dengwanyan@cqmu.edu.cn;zhengzengzhang@126.com
Supported by:
摘要:
细胞焦亡是一种由Gasdermin家族蛋白介导的新型程序性细胞死亡。当宿主细胞感应病原体感染或其他危险信号时,Gasdermin家族蛋白被切割活化并诱导细胞焦亡。细胞焦亡过程往往伴随大量炎性细胞因子释放,这些炎性细胞因子在宿主清除病原体过程中发挥着至关重要作用,而病原体在与宿主长期“博弈”过程中也进化出抑制细胞焦亡的策略以实现免疫逃逸。本文介绍了细胞焦亡的发现历程及其在抗感染免疫中的重要功能,并总结了病原体抑制细胞焦亡的多种新策略及其相关研究进展。深入理解细胞焦亡的发生及调控机制,可揭示相关感染性疾病的发病机制并有助于开发有效的抗感染治疗策略。
杨茂艺, 崔潇月, 郑诗棋, 马诗瑶, 郑增长, 邓万燕. 病原体逃逸宿主固有免疫的新策略:抑制细胞焦亡[J]. 遗传, 2023, 45(11): 986-997.
Maoyi Yang, Xiaoyue Cui, Shiqi Zheng, Shiyao Ma, Zengzhang Zheng, Wanyan Deng. Inhibiting pyroptosis: novel immune evasion strategies for pathogens[J]. Hereditas(Beijing), 2023, 45(11): 986-997.
表1
病原体抑制细胞焦亡的新策略"
逃逸策略 | 病原体 | PAMPs | 作用靶点 | 参考文献 |
---|---|---|---|---|
逃逸炎症小体识别 | P. aeruginosa | PCN | NLRP3 | [ |
Y. pseudotuberculosis | YopK | NLRP3 | [ | |
Y. pestis | YopM | Pyrin | [ | |
Sendai Virus | V Protein | NLRP3 | [ | |
EVB | BILF1 | NLRP3 | [ | |
STm | SpvC | NLRP/NLRC4 | [ | |
STm | - | NLRC4 | [ | |
S. paratyphi A | Long O-antigen chains | NLRP3 | [ | |
STm | SsrB | NLRC4 | [ | |
STm | SopB | NLRC4 | [ | |
KSHV | Orf63 | NLRP1 | [ | |
A. phagocytophilum | Sialostatin L2 | NLRC4 | [ | |
S. aureus | AdsA | NLRP3 | [ | |
M. tuberculosis | Zmp1 | NLRC4 | [ | |
重编程病原体代谢 | E. piscicida | - | NLRP3 | [ |
STm | Aconitase | NLRP3 | [ | |
S. aureus | PGN | Caspase-11 | [ | |
Y. pestis | - | Caspase-11 | [ | |
F. novicidaa | - | Caspase-11 | [ | |
抑制炎性Caspase 的活化 | P. aeruginosa | ExoU | Caspase-1 | [ |
Brucella | TcpB | Caspase-1/4/11 | [ | |
EPEC/EHEC | NleF | Caspase-4/11 | [ | |
S. flexneri | OspC3 | Caspase-11/4 | [ | |
IpaH9.8 | GBPs | [ | ||
C. burnetii | IcaA | Caspase-11 | [ | |
EHEC | STX2 | Caspase-11 | [ | |
抑制Gasdermin的活化 | SARS-CoV-2 | Nucleocapsid | Caspase1 | [ |
Enterovirus 71 | 3C protease | GSDMD | [ | |
S. flexneri | IpaH7.8 | GSDMD/GSDMB | [ | |
抑制GSDM-NT的成孔功能 | M. tuberculosis | PtpB | GSDMD | [ |
[1] |
Kanneganti TD. Intracellular innate immune receptors: life inside the cell. Immunol Rev, 2020, 297(1): 5-12.
doi: 10.1111/imr.v297.1 |
[2] |
Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev, 2017, 277(1): 61-75.
doi: 10.1111/imr.12534 pmid: 28462526 |
[3] |
Man SM, Kanneganti TD. Regulation of inflammasome activation. Immunol Rev, 2015, 265(1): 6-21.
doi: 10.1111/imr.12296 pmid: 25879280 |
[4] |
Jorgensen I, Miao EA. Pyroptotic cell death defends against intracellular pathogens. Immunol Rev, 2015, 265(1): 130-142.
doi: 10.1111/imr.12287 pmid: 25879289 |
[5] |
Friedlander AM. Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J Biol Chem, 1986, 261(16): 7123-7126.
pmid: 3711080 |
[6] |
Black RA, Kronheim SR, Merriam JE, March CJ, Hopp TP. A pre-aspartate-specific protease from human leukocytes that cleaves pro-interleukin-1 beta. J Biol Chem, 1989, 264(10): 5323-5326.
pmid: 2784432 |
[7] |
Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, Miller DK, Molineaux SM, Weidner JR, Aunins J. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature, 1992, 356(6372): 768-774.
doi: 10.1038/356768a0 |
[8] |
Zychlinsky A, Prevost MC, Sansonetti PJ. Shigella flexneri induces apoptosis in infected macrophages. Nature, 1992, 358(6382): 167-169.
doi: 10.1038/358167a0 |
[9] |
Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, Yuan J. Human ICE/CED-3 protease nomenclature. Cell, 1996, 87(2): 171.
doi: 10.1016/s0092-8674(00)81334-3 pmid: 8861900 |
[10] |
Chen Y, Smith MR, Thirumalai K, Zychlinsky A. A bacterial invasin induces macrophage apoptosis by binding directly to ICE. EMBO J, 1996, 15(15): 3853-3860.
pmid: 8670890 |
[11] |
Cookson BT, Brennan MA. Pro-inflammatory programmed cell death. Trends Microbiol, 2001, 9(3): 113-114.
doi: 10.1016/s0966-842x(00)01936-3 pmid: 11303500 |
[12] |
Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflamematory caspases and processing of proIL-beta. Mol Cell, 2002, 10(2): 417-426.
doi: 10.1016/s1097-2765(02)00599-3 pmid: 12191486 |
[13] |
Shi JJ, Zhao Y, Wang K, Shi XY, Wang Y, Huang HW, Zhuang YH, Cai T, Wang FC, Shao F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature, 2015, 526(7575): 660-665.
doi: 10.1038/nature15514 |
[14] |
Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K, Warming S, Cuellar T, Haley B, Roose-Girma M, Phung QT, Liu PS, Lill JR, Li H, Wu JS, Kummerfeld S, Zhang J, Lee WP, Snipas SJ, Salvesen GS, Morris LX, Fitzgerald L, Zhang YF, Bertram EM, Goodnow CC, Dixit VM. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature, 2015, 526(7575): 666-671.
doi: 10.1038/nature15541 |
[15] |
Shi JJ, Gao WQ, Shao F. Pyroptosis: Gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci, 2017, 42(4): 245-254.
doi: S0968-0004(16)30182-7 pmid: 27932073 |
[16] |
Zheng ZZ, Deng WY, Lou XW, Bai Y, Wang JH, Zeng HS, Gong ST, Liu X. Gasdermins: pore-forming activities and beyond. Acta Biochim Biophys Sin (Shanghai), 2020, 52(5): 467-474.
doi: 10.1093/abbs/gmaa016 |
[17] |
Ding JJ, Wang K, Liu W, She Y, Sun Q, Shi JJ, Sun HZ, Wang DC, Shao F. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature, 2016, 535(7610): 111-116.
doi: 10.1038/nature18590 |
[18] |
Liu X, Zhang ZB, Ruan JB, Pan YD, Magupalli VG, Wu H, Lieberman J. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature, 2016, 535(7610): 153-158.
doi: 10.1038/nature18629 |
[19] |
Hu JJ, Liu X, Xia SY, Zhang ZB, Zhang Y, Zhao JX, Ruan JB, Luo XM, Lou XW, Bai Y, Wang JH, Hollingsworth LR, Magupalli VG, Zhao L, Luo HR, Kim J, Lieberman J, Wu H. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat Immunol, 2020, 21(7): 736-745.
doi: 10.1038/s41590-020-0669-6 pmid: 32367036 |
[20] |
Xia SY, Zhang Z, Magupalli VG, Pablo JL, Dong Y, Vora SM, Wang LF, Fu TM, Jacobson MP, Greka A, Lieberman J, Ruan JB, Wu H. Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature, 2021, 593(7860): 607-611.
doi: 10.1038/s41586-021-03478-3 |
[21] |
Kesavardhana S, Malireddi RKS, Kanneganti TD. Caspases in cell death, inflammation, and pyroptosis. Annu Rev Immunol, 2020, 38: 567-595.
doi: 10.1146/annurev-immunol-073119-095439 pmid: 32017655 |
[22] |
Liu X, Lieberman J. A mechanistic understanding of pyroptosis: the fiery death triggered by invasive infection. Adv Immunol, 2017, 135: 81-117.
doi: S0065-2776(17)30018-4 pmid: 28826530 |
[23] |
Shi JJ, Zhao Y, Wang YP, Gao WQ, Ding JJ, Li P, Hu LY, Shao F. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature, 2014, 514(7521): 187-192.
doi: 10.1038/nature13683 |
[24] |
Wang YP, Gao WQ, Shi XY, Ding JJ, Liu W, He HB, Wang K, Shao F. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature, 2017, 547(7661): 99-103.
doi: 10.1038/nature22393 |
[25] |
Rogers C, Fernandes-Alnemri T, Mayes L, Alnemri D, Cingolani G, Alnemri ES. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat Commun, 2017, 8: 14128.
doi: 10.1038/ncomms14128 pmid: 28045099 |
[26] |
Kambara H, Liu F, Zhang XY, Liu P, Bajrami B, Teng Y, Zhao L, Zhou SY, Yu HB, Zhou WD, Silberstein LE, Cheng T, Han MZ, Xu YF, Luo HR. Gasdermin D exerts anti-inflammatory effects by promoting neutrophil death. Cell Rep, 2018, 22(11): 2924-2936.
doi: S2211-1247(18)30261-4 pmid: 29539421 |
[27] |
Burgener SS, Leborgne NGF, Snipas SJ, Salvesen GS, Bird PI, Benarafa C. Cathepsin G inhibition by Serpinb1 and Serpinb6 prevents programmed necrosis in neutrophils and monocytes and reduces GSDMD-driven inflammation. Cell Rep, 2019, 27(12): 3646-3656.e5.
doi: S2211-1247(19)30694-1 pmid: 31216481 |
[28] |
Zhang ZB, Zhang Y, Xia SY, Kong Q, Li SY, Liu X, Junqueira C, Meza-Sosa KF, Mok TMY, Ansara J, Sengupta S, Yao Y, Wu H, Lieberman J. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature, 2020, 579(7799): 415-420.
doi: 10.1038/s41586-020-2071-9 |
[29] |
Zhou ZW, He HB, Wang K, Shi XY, Wang YP, Su Y, Wang Y, Li D, Liu W, Zhang YL, Shen LJ, Han WD, Shen L, Ding JJ, Shao F. Granzyme a from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science, 2020, 368(6494): eaaz7548.
doi: 10.1126/science.aaz7548 |
[30] |
Hou JW, Zhao RC, Xia WY, Chang CW, You Y, Hsu JM, Nie L, Chen Y, Wang YC, Liu CX, Wang WJ, Wu Y, Ke BZ, Hsu JL, Huang KB, Ye Z, Yang Y, Xia XH, Li YT, Li CW, Shao B, Tainer JA, Hung MC. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nat Cell Biol, 2020, 22(10): 1264-1275.
doi: 10.1038/s41556-020-0575-z pmid: 32929201 |
[31] |
Zhang JY, Zhou B, Sun RY, Ai YL, Cheng K, Li FN, Wang BR, Liu FJ, Jiang ZH, Wang WJ, Zhou DW, Chen HZ, Wu Q. The metabolite alpha-KG induces GSDMC-dependent pyroptosis through death receptor 6-activated caspase-8. Cell Res, 2021, 31(9): 980-997.
doi: 10.1038/s41422-021-00506-9 pmid: 34012073 |
[32] | Sarhan J, Liu BC, Muendlein HI, Li P, Nilson R, Tang AY, Rongvaux A, Bunnell SC, Shao F, Green DR, Poltorak A. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. Proc Natl Acad Sci USA, 2018, 115(46): E10888-E10897. |
[33] |
Orning P, Weng D, Starheim K, Ratner D, Best Z, Lee B, Brooks A, Xia SY, Wu H, Kelliher MA, Berger SB, Gough PJ, Bertin J, Proulx MM, Goguen JD, Kayagaki N, Fitzgerald KA, Lien E. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science, 2018, 362(6418): 1064-1069.
doi: 10.1126/science.aau2818 pmid: 30361383 |
[34] |
Zheng ZZ, Deng WY, Bai Y, Miao R, Mei SL, Zhang ZB, Pan YD, Wang Y, Min R, Deng F, Wu ZY, Li W, Chen PC, Ma TC, Lou XW, Lieberman J, Liu X. The lysosomal Rag-Ragulator complex licenses RIPK1 and Caspase-8- mediated pyroptosis by Yersinia. Science, 2021, 372(6549): eabg0269.
doi: 10.1126/science.abg0269 |
[35] |
Deng WY, Bai Y, Deng F, Pan YD, Mei SL, Zheng ZZ, Min R, Wu ZY, Li W, Miao R, Zhang ZB, Kupper TS, Lieberman J, Liu X. Streptococcal pyrogenic exotoxin B cleaves GSDMA and triggers pyroptosis. Nature, 2022, 602(7897): 496-502.
doi: 10.1038/s41586-021-04384-4 |
[36] |
Brodsky IE, Palm NW, Sadanand S, Ryndak MB, Sutterwala FS, Flavell RA, Bliska JB, Medzhitov R. A Yersinia effector protein promotes virulence by preventing inflammasome recognition of the type III secretion system. Cell Host Microbe, 2010, 7(5): 376-387.
doi: 10.1016/j.chom.2010.04.009 pmid: 20478539 |
[37] |
Chung LK, Park YH, Zheng YT, Brodsky IE, Hearing P, Kastner DL, Chae JJ, Bliska JB. The Yersinia virulence factor YopM hijacks host kinases to inhibit Type III effector-triggered activation of the Pyrin inflammasome. Cell Host Microbe, 2016, 20(3): 296-306.
doi: S1931-3128(16)30317-1 pmid: 27569559 |
[38] |
Ratner D, Orning MP, Proulx MK, Wang D, Gavrilin MA, Wewers MD, Alnemri ES, Johnson PF, Lee B, Mecsas J, Kayagaki N, Goguen JD, Lien E. The Yersinia pestis Effector YopM inhibits Pyrin inflammasome activation. PLoS Pathog, 2016, 12(12): e1006035.
doi: 10.1371/journal.ppat.1006035 |
[39] |
Deng J, Zhang BZ, Chu H, Wang XL, Wang YX, Gong HR, Li RH, Yang D, Li C, Dou Y, Gao P, Cai JP, Jin ML, Du Q, Chan JFW, Kao RYT, Yuen KY, Huang JD. Adenosine synthase A contributes to recurrent Staphylococcus aureus infection by dampening protective immunity. EBioMedicine, 2021, 70: 103505.
doi: 10.1016/j.ebiom.2021.103505 |
[40] |
Hu GQ, Song PX, Chen W, Qi S, Yu SX, Du CT, Deng XM, Ouyang HS, Yang YJ. Cirtical role for Salmonella effector SopB in regulating inflammasome activation. Mol Immunol, 2017, 90: 280-286.
doi: 10.1016/j.molimm.2017.07.011 |
[41] |
Virreira Winter S, Zychlinsky A. The bacterial pigment pyocyanin inhibits the NLRP3 inflammasome through intracellular reactive oxygen and nitrogen species. J Biol Chem, 2018, 293(13): 4893-4900.
doi: 10.1074/jbc.RA117.001105 pmid: 29414783 |
[42] | Mylona E, Sanchez-Garrido J, Hoang Thu TN, Dongol S, Karkey A, Baker S, Shenoy AR, Frankel G. Very long O-antigen chains of Salmonella Paratyphi A inhibit inflammasome activation and pyroptotic cell death. Cell Microbiol, 2021, 23(5): e13306. |
[43] | Ilyas B, Mulder DT, Little DJ, Elhenawy W, Banda MM, Pérez-Morales D, Tsai CN, Chau NYE, Bustamante VH, Coombes BK. Regulatory evolution drives evasion of host inflammasomes by Salmonella typhimurium. Cell Rep, 2018, 25(4): 825-832.e5. |
[44] |
Yiu SPT, Zerbe C, Vanderwall D, Huttlin EL, Weekes MP, Gewurz BE. An Epstein-Barr virus protein interaction map reveals NLRP3 inflammasome evasion via MAVS UFMylation. Mol Cell, 2023, 83(13): 2367-2386.e15.
doi: 10.1016/j.molcel.2023.05.018 pmid: 37311461 |
[45] | Master SS, Rampini SK, Davis AS, Keller C, Ehlers S, Springer B, Timmins GS, Sander P, Deretic V. Mycobacterium tuberculosis prevents inflammasome activation. Cell Host Microbe, 2008, 3(4): 224-232. |
[46] |
Gregory SM, Davis BK, West JA, Taxman DJ, Matsuzawa S, Reed JC, Ting JP, Damania B. Discovery of a viral NLR homolog that inhibits the inflammasome. Science, 2011, 331(6015): 330-334.
doi: 10.1126/science.1199478 pmid: 21252346 |
[47] |
Wang XW, Shaw DK, Sakhon OS, Snyder GA, Sundberg EJ, Santambrogio L, Sutterwala FS, Dumler JS, Shirey KA, Perkins DJ, Richard K, Chagas AC, Calvo E, Kopecky J, Kotsyfakis M, Pedra JHF. The Tick protein Sialostatin L2 binds to Annexin A2 and inhibits NLRC4-mediated inflammasome activation. Infect Immun, 2016, 84(6): 1796-1805.
doi: 10.1128/IAI.01526-15 pmid: 27045038 |
[48] | Komatsu T, Tanaka Y, Kitagawa Y, Koide N, Naiki Y, Morita N, Gotoh B, Yokochi T. Sendai virus V protein inhibits the secretion of interleukin-1beta by preventing NLRP3 inflammasome assembly. J Virol, 2018, 92(19): e00842-18. |
[49] |
Perez-Lopez A, Rosales-Reyes R, Alpuche-Aranda CM, Ortiz-Navarrete V. Salmonella downregulates Nod-like receptor family CARD domain containing protein 4 expression to promote its survival in B cells by preventing inflammasome activation and cell death. J Immunol, 2013, 190(3): 1201-1209.
doi: 10.4049/jimmunol.1200415 pmid: 23284055 |
[50] |
Zuo LL, Zhou LT, Wu CY, Wang YL, Li YY, Huang R, Wu SY. Salmonella spvC gene inhibits pyroptosis and intestinal inflammation to aggravate systemic infection in mice. Front Microbiol, 2020, 11: 562491.
doi: 10.3389/fmicb.2020.562491 |
[51] |
Jiang JT, Wang WW, Sun F, Zhang YX, Liu Q, Yang DH. Bacterial infection reinforces host metabolic flux from arginine to spermine for NLRP3 inflammasome evasion. Cell Rep, 2021, 34(10): 108832.
doi: 10.1016/j.celrep.2021.108832 |
[52] |
Wynosky-Dolfi MA, Snyder AG, Philip NH, Doonan PJ, Poffenberger MC, Avizonis D, Zwack EE, Riblett AM, Hu B, Strowig T, Flavell RA, Jones RG, Freedman BD, Brodsky IE. Oxidative metabolism enables Salmonella evasion of the NLRP3 inflammasome. J Exp Med, 2014, 211(4):653-668.
doi: 10.1084/jem.20130627 |
[53] | Shimada T, Park BG, Wolf AJ, Brikos C, Goodridge HS, Becker CA, Reyes CN, Miao EA, Aderem A, Götz F, Liu GY, Underhill DM. Staphylococcus aureus evades lysozyme-based peptidoglycan digestion that links phagocytosis, inflammasome activation, and IL-1beta secretion. Cell Host Microbe, 2010, 7(1): 38-49. |
[54] |
Vinogradov E, Perry MB, Conlan JW. Structural analysis of Francisella tularensis lipopolysaccharide. Eur J Biochem, 2002, 269(24): 6112-6118.
pmid: 12473106 |
[55] |
Hagar JA, Powell DA, Aachoui Y, Ernst RK, Miao EA. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science, 2013, 341(6151): 1250-1253.
doi: 10.1126/science.1240988 pmid: 24031018 |
[56] |
Sutterwala FS, Mijares LA, Li L, Ogura Y, Kazmierczak BI, Flavell RA. Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J Exp Med, 2007, 204(13): 3235-3245.
doi: 10.1084/jem.20071239 |
[57] |
Jakka P, Namani S, Murugan S, Rai N, Radhakrishnan G. The Brucella effector protein TcpB induces degradation of inflammatory caspases and thereby subverts non-canonical inflammasome activation in macrophages. J Biol Chem, 2017, 292(50): 20613-20627.
doi: 10.1074/jbc.M117.815878 |
[58] | Pallett MA, Crepin VF, Serafini N, Habibzay M, Kotik O, Sanchez-Garrido J, Di Santo JP, Shenoy AR, Berger CN, Frankel G. Bacterial virulence factor inhibits caspase-4/11 activation in intestinal epithelial cells. Mucosal Immunol, 2017, 10(3): 602-612. |
[59] | Song T, Li KW, Zhou W, Zhou J, Jin Y, Dai HM, Xu TT, Hu MD, Ren HG, Yue JJ, Liang L. A Type III effector NleF from EHEC inhibits epithelial inflammatory cell death by targeting Caspase-4. Biomed Res Int, 2017, 2017: 4101745. |
[60] |
Kobayashi T, Ogawa M, Sanada T, Mimuro H, Kim M, Ashida H, Akakura R, Yoshida M, Kawalec M, Reichhart JM, Mizushima T, Sasakawa C. The Shigella OspC3 effector inhibits caspase-4, antagonizes inflammatory cell death, and promotes epithelial infection. Cell Host Microbe, 2013, 13(5): 570-583.
doi: S1931-3128(13)00155-8 pmid: 23684308 |
[61] |
Li ZL, Liu W, Fu JQ, Cheng S, Xu Y, Wang ZQ, Liu XF, Shi XY, Liu YX, Qi XB, Liu XY, Ding JJ, Shao F. Shigella evades pyroptosis by arginine ADP-riboxanation of caspase-11. Nature, 2021, 599(7884): 290-295.
doi: 10.1038/s41586-021-04020-1 |
[62] |
Wandel MP, Kim BH, Park ES, Boyle KB, Nayak K, Lagrange B, Herod A, Henry T, Zilbauer M, Rohde J, MacMicking JD, Randow F. Guanylate-binding proteins convert cytosolic bacteria into caspase-4 signaling platforms. Nat Immunol, 2020, 21(8): 880-891.
doi: 10.1038/s41590-020-0697-2 pmid: 32541830 |
[63] |
Li P, Jiang W, Yu Q, Liu W, Zhou P, Li J, Xu JJ, Xu B, Wang FC, Shao F. Ubiquitination and degradation of GBPs by a Shigella effector to suppress host defence. Nature, 2017, 551(7680): 378-383.
doi: 10.1038/nature24467 |
[64] |
Cunha LD, Ribeiro JM, Fernandes TD, Massis LM, Khoo CA, Moffatt JH, Newton HJ, Roy CR, Zamboni DS. Inhibition of inflammasome activation by Coxiella burnetii type IV secretion system effector IcaA. Nat Commun, 2015, 6: 10205.
doi: 10.1038/ncomms10205 pmid: 26687278 |
[65] |
Havira MS, Ta A, Kumari P, Wang CL, Russo AJ, Ruan JB, Rathinam VA, Vanaja SK. Shiga toxin suppresses noncanonical inflammasome responses to cytosolic LPS. Sci Immunol, 2020, 5(53): eabc0217.
doi: 10.1126/sciimmunol.abc0217 |
[66] |
Ma J, Zhu FR, Zhao M, Shao F, Yu D, Ma JW, Zhang XS, Li WT, Qian Y, Zhang Y, Jiang D, Wang S, Xia P. SARS-CoV-2 nucleocapsid suppresses host pyroptosis by blocking Gasdermin D cleavage. EMBO J, 2021, 40(18): e108249.
doi: 10.15252/embj.2021108249 |
[67] | Lei XB, Zhang ZZ, Xiao X, Qi JL, He B, Wang JW. Enterovirus 71 inhibits pyroptosis through cleavage of Gasdermin D. J Virol, 2017, 91(18): e01069-17. |
[68] |
Luchetti G, Roncaioli JL, Chavez RA, Schubert AF, Kofoed EM, Reja R, Cheung TK, Liang YX, Webster JD, Lehoux I, Skippington E, Reeder J, Haley B, Tan MW, Rose CM, Newton K, Kayagaki N, Vance RE, Dixit VM. Shigella ubiquitin ligase IpaH7.8 targets gasdermin D for degradation to prevent pyroptosis and enable infection. Cell Host Microbe, 2021, 29(10): 1521-1530.e10.
doi: 10.1016/j.chom.2021.08.010 pmid: 34492225 |
[69] | Hansen JM, de Jong MF, Wu Q, Zhang LS, Heisler DB, Alto LT, Alto NM. Pathogenic ubiquitination of GSDMB inhibits NK cell bactericidal functions. Cell, 2021, 184(12): 3178-3191.e18. |
[70] |
Yin H, Zheng J, He QQ, Zhang X, Li XZC, Ma YJ, Liang X, Gao JQ, Kocsis BL, Li Z, Liu X, Alto NM, Li L, Zhang H. Insights into the GSDMB-mediated cellular lysis and its targeting by IpaH7.8. Nat Commun, 2023, 14(1): 61.
doi: 10.1038/s41467-022-35725-0 pmid: 36599845 |
[71] |
Scheffner M, Nuber U, Huibregtse JM. Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature, 1995, 373(6509): 81-83.
doi: 10.1038/373081a0 |
[72] |
Hu HB, Sun SC. Ubiquitin signaling in immune responses. Cell Res, 2016, 26(4): 457-483.
doi: 10.1038/cr.2016.40 pmid: 27012466 |
[73] |
Mukherjee R, Dikic I. Regulation of host-pathogen interactions via the ubiquitin system. Annu Rev Microbiol, 2022, 76: 211-233.
doi: 10.1146/annurev-micro-041020-025803 pmid: 36075095 |
[74] |
Chai QY, Yu SS, Zhong YZ, Lu Z, Qiu CG, Yu Y, Zhang XW, Zhang Y, Lei ZH, Qiang LH, Li BX, Pang Y, Qiu XB, Wang J, Liu CH. A bacterial phospholipid phosphatase inhibits host pyroptosis by hijacking ubiquitin. Science, 2022, 378(6616): eabq0132.
doi: 10.1126/science.abq0132 |
[75] |
Krause DS, Dikic I. Mycobacterium tuberculosis hijacks ubiquitin to inhibit pyroptosis. Mol Cell, 2022, 82(24): 4588-4590.
doi: 10.1016/j.molcel.2022.11.020 pmid: 36525954 |
[76] |
Zigangirova NA, Nesterenko LN, Sheremet AB, Soloveva AV, Luyksaar SI, Zayakin ES, Balunets DV, Gintsburg AL. Fluorothiazinon, a small-molecular inhibitor of T3SS, suppresses salmonella oral infection in mice. J Antibiot (Tokyo), 2021, 74(4): 244-254.
doi: 10.1038/s41429-020-00396-w |
[77] |
Warrener P, Varkey R, Bonnell JC, DiGiandomenico A, Camara M, Cook K, Peng L, Zha JY, Chowdury P, Sellman B, Stover CK. A novel anti-PcrV antibody providing enhanced protection against Pseudomonas aeruginosa in multiple animal infection models. Antimicrob Agents Chemother, 2014, 58(8): 4384-4391.
doi: 10.1128/AAC.02643-14 pmid: 24841258 |
[78] |
Jain R, Beckett VV, Konstan MW, Accurso FJ, Burns JL, Mayer-Hamblett N, Milla C, VanDevanter DR, Chmiel JF. KB001-A, a novel anti-inflammatory, found to be safe and well-tolerated in cystic fibrosis patients infected with Pseudomonas aeruginosa. J Cyst Fibros, 2018, 17(4): 484-491.
doi: S1569-1993(17)30984-0 pmid: 29292092 |
[79] |
Milla CE, Chmiel JF, Accurso FJ, VanDevanter DR, Konstan MW, Yarranton G, Geller DE. Anti-PcrV antibody in cystic fibrosis: a novel approach targeting Pseudomonas aeruginosa airway infection. Pediatr Pulmonol, 2014, 49(7): 650-658.
doi: 10.1002/ppul.22890 |
[80] |
Ali SO, Yu XQ, Robbie GJ, Wu Y, Shoemaker K, Yu L, DiGiandomenico A, Keller AE, Anude C, Hernandez-Illas M, Bellamy T, Falloon J, Dubovsky F, Jafri HS. Phase1 study of MEDI3902, an investigational anti-Pseudomonas aeruginosa PcrV and Psl bispecific human monoclonal antibody, in healthy adults. Clin Microbiol Infect, 2019, 25(5): 629.e1-629.e6.
doi: 10.1016/j.cmi.2018.08.004 |
[81] |
Xue YS, Enosi Tuipulotu D, Tan WH, Kay C, Man SM. Emerging activators and regulators of inflammasomes and pyroptosis. Trends Immunol, 2019, 40(11): 1035-1052.
doi: 10.1016/j.it.2019.09.005 |
[82] |
Garnacho-Montero J, Palacios-García I, Díaz-Martín A, Gutiérrez-Pizarraya A, López-Sánchez JM, Gómez EA, Cordero MD. Sequential changes of NLRP3 inflammasome activation in sepsis and its relationship with death. Shock, 2020, 54(3): 294-300.
doi: 10.1097/SHK.0000000000001521 pmid: 32049880 |
[83] |
Huet O, Pickering RJ, Tikellis C, Latouche C, Long F, Kingwell B, Dickinson B, Chang CJ, Masters S, Mackay F, Cooper ME, de Haan JB,. Protective effect of inflamemasome activation by hydrogen peroxide in a mouse model of septic shock. Crit Care Med, 2017, 45(2): e184-e194.
doi: 10.1097/CCM.0000000000002070 |
[84] |
Pai MH, Wu JM, Yang PJ, Lee PC, Huang CC, Yeh SL, Lin MT. Antecedent dietary glutamine supplementation benefits modulation of liver pyroptosis in mice with polymicrobial sepsis. Nutrients, 2020, 12(4): 1086.
doi: 10.3390/nu12041086 |
[85] | Place DE, Kanneganti TD. Metabolic regulation of pyroptotic cell death expands the therapeutic landscape for treating inflammatory disease. Signal Transduct Target Ther, 2021, 6(1): 37. |
[1] | 刘丹妮, 武海萍, 周国华. 可视化分析在病原体核酸现场快速检测中的研究进展[J]. 遗传, 2023, 45(4): 306-323. |
[2] | 何峰, 张浩, 刘金灵, 王志龙, 王国梁. 水稻抗稻瘟病天然免疫机制及抗病育种新策略[J]. 遗传, 2014, 36(8): 756-765. |
[3] | 宋博研,朱卫国. 组蛋白甲基化修饰效应分子的研究进展[J]. 遗传, 2011, 33(4): 285-292. |
[4] | 陆勇军,李向辉,曾咏伦. 一个细菌的致命之旅——嗜肺军团菌分泌系统及效应蛋白的研究进展[J]. 遗传, 2011, 33(10): 1093-1101. |
[5] | 姚潇,黄留玉,杨伯伦,苏国富,. 一种体内研究病原体致病机理的新方法——信号标签诱变技术 [J]. 遗传, 2002, 24(6): 721-726. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: