遗传 ›› 2014, Vol. 36 ›› Issue (8): 756-765.doi: 10.3724/SP.J.1005.2014.0756
何峰1, 2, 张浩1, 2, 刘金灵1, 王志龙1, 王国梁1, 2
收稿日期:
2014-04-08
出版日期:
2014-08-20
发布日期:
2013-07-19
通讯作者:
王国梁,博士,教授,研究方向:植物抗病与功能基因组学。E-mail:wang.620@osu.edu
作者简介:
何峰,硕士研究生,专业方向:作物基因工程。E-mail: hf36606@126.com
基金资助:
Feng He1, 2, Hao Zhang1, 2, Jinling Liu1, Zhilong Wang1, Guoliang Wang1, 2
Received:
2014-04-08
Online:
2014-08-20
Published:
2013-07-19
摘要: 稻瘟病是水稻最严重的病害之一,由子囊菌(Magnaporthe oryzae)引起。利用抗病品种是防治稻瘟病最经济、最有效的措施。近年来,稻瘟病已发展为研究植物与病原真菌分子互作机制的模式系统,在水稻与稻瘟菌互作和寄主抗性分子生物学、基因组学和蛋白组学等领域取得了一系列重要的研究成果。文章综述了近年来水稻抗稻瘟病两种天然免疫机制,即病原菌相关分子模式诱导和效应蛋白诱导的抗病机制研究的最新进展,讨论了GWAS、TALLEN、CRISPR和HIGS等基因组研究新方法和新技术在水稻抗病育种中的应用,并对目前稻瘟病抗性机制研究和抗病育种中的问题和挑战进行了探讨和展望。
何峰, 张浩, 刘金灵, 王志龙, 王国梁. 水稻抗稻瘟病天然免疫机制及抗病育种新策略[J]. 遗传, 2014, 36(8): 756-765.
Feng He, Hao Zhang, Jinling Liu, Zhilong Wang, Guoliang Wang. Recent advances in understanding the innate immune mechanisms and developing new disease resistance breeding strategies against the rice blast fungus Magnaporthe oryzae in rice[J]. HEREDITAS(Beijing), 2014, 36(8): 756-765.
[1] R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD. The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol , 2012, 13(4): 414-430. [2] P, Gurr SJ. Against the grain: safeguarding rice from rice blast disease. Trends Biotechnol , 2009, 27(3): 141-150. [3] JDG, Dangl JL. The plant immune system. Nature , 2006, 444(7117): 323-329. [4] T, He SY. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science , 2009, 324(5928): 742-744. [5] BJ, Cotter PA, Miller JF. Ectopic expression of the flagellar regulon alters development of the Bordetella-host interaction. Cell , 1995, 80(4): 611-620. [6] G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell , 2004, 16(12): 3496-3507. [7] M, Newman MA, von Roepenack E. The induction and modulation of plant defense responses by bacterial lipopolysaccharides. Annu Rev Phytopathol , 2000, 38: 241-261. [8] G, Silipo A, Aslam S, De Castro C, Liparoti V, Flagiello A, Pucci P, Lanzetta R, Parrilli M, Molinaro A. Peptidoglycan and muropeptides from pathogens agrobacterium and xanthomonas elicit plant innate immunity: structure and activity. Chem Biol , 2008, 15(5): 438-448. [9] T, Tena G, Plotnikova J, Willmann MR, Chiu W-L, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature , 2002, 415(6875): 977-983. [10] Y, Tsuda K, Glazebrook J, Katagiri F. Physical association of pattern-triggered immunity (PTI) and effector-trig-gered immunity (ETI) immune receptors in Arabidopsis. Mol Plant Pathol , 2011, 12(7): 702-708. [11] BPHJ, Nürnberger T, Joosten MHAJ. Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell , 2011, 23(1): 4-15. [12] G, Duran JD, Volko S, Boller T. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J , 1999, 18(3): 265-276. [13] R, Isogai A, Takayama S, Che FS. Analysis of flagellin perception mediated by flg22 receptor OsFLS2 in rice. Mol Plant Microbe Interact , 2008, 21(12): 1635- 1642. [14] Y, Li L, Macho AP, Han Z, Hu Z, Zipfel C, Zhou JM, Chai J. Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science , 2013, 342(6158): 624-628. [15] D, Wu S, Gao X, Zhang Y, Shan L, He P. A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proc Natl Acad Sci USA , 2010, 107(1): 496-501. [16] Y, Sklenar J, Derbyshire P, Stransfeld L, Asai S, Ntoukakis V, Jones JD, Shirasu K, Menke F, Jones A. Direct regulation of the NADPH oxidase RBOHD by the PRR-Associated kinase BIK1 during plant immunity. Mol Cell , 2014, 54(1): 43-55. [17] L, Li M, Yu LP, Zhou ZY, Liang XX, Liu ZX, Cai GH, Gao LY, Zhang XJ, Wang YC, Chen S, Zhou JM. The FLS2-Associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host Microbe , 2014, 15(3): 329-338. [18] D, Wang L, Wang M, Xu YY, Luo W, Liu YJ, Xu ZH, Li J, Chong K. Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield. Plant B i otechnol J , 2009, 7(8): 791-806. [19] 磷酸-1-鞘氨醇在植物抗病反应中的作用及水稻和拟南芥 BIK1 在逆境反应中的功能分析[学位论文]. 杭州: 浙江大学, 2009. [20] A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis . Proc Natl Acad Sci USA , 2007, 104(49): 19613-19618. [21] Ei, Mitsutomi M, Nagano Y. Direct binding of a plant LysM receptor-like kinase, LysM RLK1/CERK1, to chitin in vitro. J Biol Chem , 2010, 285(5): 2996-3004. [22] EK, Jones AM, Serazetdinova L, Lipka U, Lipka V. The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. J Biol Chem , 2010, 285(37): 28902-28911. [23] H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomi-yama C, Dohmae N, Takio K, Minami E, Shibuya N. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci USA , 2006, 103(29): 11086-11091. [24] T, Nakano T, Takamizawa D, Desaki Y, Ishii- Minami N, Nishizawa Y, Minami E, Okada K, Yamane H, Kaku H, Shibuya N. Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor sig-naling in rice. Plant J , 2010, 64(2): 204-214. [25] A, Wong HL, Fujiwara M, Okuda J, Nishide K, Uno K, Imai K, Umemura K, Kawasaki T, Kawano Y, Shimamoto K. An OsCEBiP/OsCERK1-OsRacGEF1-OsRac1 module is an essential early component of chitin-induced rice immunity. Cell Host Microbe , 2013, 13(4): 465-476. [26] Y, Akamatsu A, Hayashi K, Housen Y, Okuda J, Yao A, Nakashima A, Takahashi H, Yoshida H, Wong HL, Kawasaki T, Shimamoto K. Activation of a Rac GTPase by the NLR family disease resistance protein Pit plays a critical role in rice innate immunity. Cell Host M i crobe , 2010, 7(5): 362-375. [27] Y, Shimamoto K. Early signaling network in rice PRR-mediated and R-mediated immunity. Curr Opin Plant Biol , 2013, 16(4): 496-504. [28] Liu B, Li JF, Ao Y, Qu J, Li Z, Su J, Zhang Y, Liu J, Feng D, Qi KB, He YM, Wang JF, Wang HB. Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity. Plant Cell , 2012, 24(8): 3406-3419. [29] A, Bycroft M. The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD). J Mol Biol , 2000, 299(4): 1113-1119. [30] A, Erbs G, Shinya T, Dow JM, Parrilli M, Lanzetta R, Shibuya N, Newman MA, Molinaro A. Glyco-conjug-ates as elicitors or suppressors of plant innate immunity. Glycobiology , 2010, 20(4): 406-419. [31] R, Lajunen HM, Erbs G, Newman MA, Kolb D, Tsuda K, Katagiri F, Fliegmann J, Bono JJ, Cullimore JV, Jehle AK, Götz F, Kulik A, Molinaro A, Lipka V, Gust AA, Nürnberger T. Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proc Natl Acad Sci USA , 2011, 108(49): 19824-19829. [32] T, Motoyama N, Ikeda A, Wada M, Kamiya K, Hayafune M, Kaku H, Shibuya N. Functional characterization of CEBiP and CERK1 homologs in Arabidopsis and rice reveals the presence of different chitin receptor systems in plants. Plant Cell Physiol , 2012, 53(10): 1696- 1706. [33] C, Petutschnig E, Benitez-Alfonso Y, Beck M, Robatzek S, Lipka V, Maule AJ. LYM2-dependent chitin perception limits molecular flux via plasmodesmata. Proc Natl Acad Sci USA , 2013, 110(22): 9166-9170. [34] XW, Shang JJ, Chen DX, Lei CL, Zou Y, Zhai WX, Liu GZ, Xu JC, Ling ZZ, Cao G, Ma BT, Wang YP, Zhao XF, Li SG, Zhu LH. AB‐lectin receptor kinase gene conferring rice blast resistance. Plant J , 2006, 46(5): 794-804. [35] S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science , 2009, 325(5943): 998-1001. [36] ZX, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J , 1999, 19(1): 55-64. [37] GT, Wu K-S, Farrall L, Jia Y, Hershey HP, McA-dams SA, Faulk KN, Donaldson GK, Tarchini R, Valent B. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell , 2000, 12(11): 2033-2046. [38] SH, Liu GF, Zhou B, Bellizzi M, Zeng LR, Dai LY, Han B, Wang GL. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics , 2006, 172(3): 1901-1914. [39] B, Qu SH, Liu GF, Dolan M, Sakai H, Lu GD, Bellizzi M, Wang GL. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea . Mol Plant Microbe Interact , 2006, 19(11): 1216-1228. [40] X, Lin F, Wang L, Pan Q. The in silico map-based clon-ing of Pi36, a rice coiled-coil-nucleotide-binding site- eucine-rich repeat gene that confers race-specific resis-tance to the blast fungus. Genetics , 2007, 176(4): 2541- 2549. [41] F, Chen S, Que Z, Wang L, Liu X, Pan Q. The blast resistance gene Pi37 encodes a nucleotide binding site- leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics , 2007, 177(3): 1871-1880. [42] I, Hayashi N, Yamane H, Kanamori H, Wu J, Matsumoto T, Ono K, Yano M. Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. G e netics , 2008, 180(4): 2267-2276. [43] K, Yoshida H. Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter. Plant J , 2009, 57(3): 413-425. [44] SK, Song MY, Seo YS, Kim HK, Ko S, Cao PJ, Suh JP, Yi G, Roh JH, Lee S,An G, Hahn TR, Wang GL, Ronald P, Jeon JS. Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil-nucleo-tide-binding-leucine-rich repeat genes. Genetics , 2009, 181(4): 1627-1638. [45] J, Tao Y, Chen X, Zou Y, Lei C, Wang J, Li X, Zhao X, Zhang M, Lu Z, Xu J, Cheng Z, Wan J, Zhu L. Identification of a new rice blast resistance gene, Pid3, by genomewide comparison of paired nucleotide-binding site-leuc-ine-rich repeat genes and their pseudogene alleles between the two sequenced rice genomes. Genetics , 2009, 182(4): 1303-1311. [46] A, Hayashi N, Miyao A, Hirochika H. Unique features of the rice blast resistance Pish locus revealed by large scale retrotransposon-tagging. BMC Plant Biol , 2010, 10(1): 175. [47] N, Inoue H, Kato T, Funao T, Shirota M, Shimizu T, Kanamori H, Yamane H, Hayano-Saito Y, Matsumoto T, Yano M, Takatsuji H. Durable panicle blast‐resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. Plant J , 2010, 64(3): 498-510. [48] AK, Kumar SP, Gupta SK, Gautam N, Singh NK, Sharma TR. Functional complementation of rice blast resistance gene Pi-k h (Pi54) conferring resistance to diverse strains of Magnaporthe oryzae . J Plant Biochem Biotech , 2011, 20(1): 55-65. [49] C, Lin F, Dong ZQ, He XY, Yuan B, Zeng XS, Wang L, Pan QH. The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytol , 2011, 189(1): 321-334. [50] B, Zhai C, Wang WJ, Zeng XS, Xu XK, Hu HQ, Lin F, Wang L, Pan QH. The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. Theor Appl Genet , 2011, 122(5): 1017-1028. [51] Y, Kanzaki H, Abe A, Yoshida K, Tamiru M, Saitoh H, Fujibe T, Matsumura H, Shenton M, Galam DC, Undan J, Ito A, Sone T, Terauchi R. A multifaceted genomics approach allows the isolation of the rice Pia‐blast resistance gene consisting of two adjacent NBS-LRR protein genes. Plant J , 2011, 66(3): 467-479. [52] J, Shi YF, Liu WZ, Chai RY, Fu YP, Zhuang JY, Wu JL. A Pid3 allele from rice cultivar Gumei2 confers resistance to Magnaporthe oryzae. J Genet Genomics , 2011, 38(5): 209-216. [53] L, Wu JZ, Chen CX, Wu WH, He XY, Lin F, Wang L, Ashikawa I, Matsumoto T, Wang L, Pan QH. The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor Appl Genet , 2012, 125(5): 1047-1055. [54] S, Yamamoto SI, Mizobuchi R, Yamanouchi U, Ono K, Kitazawa N, Yasuda N, Fujita Y, Nguyen TTT, Koizumi S, Sugimoto K, Matsumoto T, Yano M. Multiple functional polymorphisms in a single disease resistance gene in rice enhance durable resistance to blast. Scientific Reports , 2014, 4,doi:10.1038/srep04550. [55] S, Sweigard JA, Valent B. The PWL host specificity gene family in the blast fungus Magnaporthe grisea. Mol Plant Microbe Interact , 1995, 8(6): 939-948. [56] JA, Carroll AM, Kang S, Farrall L, Chumley FG, Valent B. Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell , 1995, 7(8): 1221-1233. [57] MJ, Farrall L, Sweigard JA, Chumley FG, Valent B. A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell , 2000, 12(11): 2019-2032. [58] W, Wang BH, Wu J, Lu GD, Hu YJ, Zhang X, Zhang ZG, Zhao Q, Feng Q, Zhang HY, Wang ZY, Wang GL,Han B, Wang ZH,Zhou B. The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Mol Plant Microbe Interact , 2009, 22(4): 411-420. [59] S, Matsui K, Kito H, Otsuka K, Ashizawa T, Yasuda N, Fukiya S, Sato J, Hirayae K, Fujita Y, Nakajima T,Tomita F,Sone T. Molecular cloning and characterization of the AVR‐Pia locus from a Japanese field isolate of Magnaporthe oryzae. Mol Plant Pathol , 2009, 10(3): 361-374. [60] K, Saitoh H, Fujisawa S, Kanzaki H, Matsumura H, Yoshida K, Tosa Y, Chuma I, Takano Y, Win J, Kamoun S, Terauchi R. Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. Plant Cell , 2009, 21(5): 1573-1591. [61] SA. The ins and outs of host recognition of Ma g naporthe oryzae // Genomics of Disease Stadler Genetics Symposia Series. New York: Springer, 2008: 199-216. [62] S, Thilliez G, Ribot C, Chalvon V, Michel C, Jauneau A, Rivas S, Alaux L, Kanzaki H, Okuyama Y, Morel JB, Fournier E, Tharreau D, Terauchi R, Kroj T. The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1- CO39 by direct binding. Plant Cell , 2013, 25(4): 1463-1481. [63] HU, Fudal I, Dioh W, Tharreau D, Notteghem JL, Lebrun MH. A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. Plant Cell , 2004, 16(9): 2499-2513. [64] JW, Tang M, Zhu X, Wang H, Jeon JS, Han SS, Zhou B. Cloning of AvrPi9 by genome gomparison of a pair of putative wild and mutant strains: an important step toward the understanding of the mechanism underlying the broad-spectrum resistance mediated by the rice blast resistance gene Pi9. International Rice Blast Conference. Jeju, korea2013 [65] YQ, Zhou B, Naqvi NI. A secreted effector confers avirulence towards Pi9-mediated broad-spectrum blast resistance. International Rice Blast Conference. Jeju, Korea2013. [66] YL, McAdams SA, Bryan GT, Hershey HP, Valent B. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J , 2000, 19(15): 4004-4014. [67] H, Yoshida K, Saitoh H, Fujisaki K, Hirabuchi A, Alaux L, Fournier E, Tharreau D, Terauchi R. Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. Plant J , 2012, 72(6): 894-907. [68] CH, Chen S, Shirsekar G, Zhou B, Khang CH, Songkumarn P, Afzal AJ, Ning Y, Wang R, Bellizzi M,Valent B, Wang GL. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 Ubiquitin Ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice. Plant Cell , 2012, 24(11): 4748-4762. [69] XH, Zhao Y, Wei XH, Li CY, Wang AH, Zhao Q, Li WJ, Guo YN, Deng LW, Zhu CR, Fan DL, Lu YQ, Weng QJ, Liu KY, Zhou TY, Jing YF, Si LZ, Dong GJ, Huang T, Lu TT, Feng Q, Qian Q, Li JY, Han B. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet , 2012, 44(1): 32-39. [70] XH, Lu TT, Han B. Resequencing rice genomes: an emerging new era of rice genomics. Trends Genet , 2013, 29(4): 225-232. [71] KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR, Oropeza-Rosas MA, Zwonitzer JC, Kresovich S, McMullen MD, Ware D, Balint-Kurti PJ, Holland JB. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet , 2011, 43(2): 163-168. [72] F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet , 2011, 43(2): 159-162. [73] XH, Wei XH, Sang T, Zhao Q, Feng Q, Zhao Y, Li CY, Zhu CR, Lu TT, Zhang ZW, Li M, Fan DL, Guo YL, Wang AH, Wang L, Deng LW, Li WJ, Lu YQ, Weng QJ, Liu KY, Huang Tao, Zhou TY, Jing YF, Li Wei, Lin Zhang, Buckler ES, Qian Q, Zhang QF, Li JY, Han B. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet , 2010, 42(11): 961-967. [74] K, Tung CW, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ, Islam MR, Reynolds A, Mezey J, McClung AM, Bustamante CD, McCouch SR. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa . Nat Commun , 2011, 2: 467,doi:10.1038/ncomms1467. [75] THE, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics , 2001, 157(4): 1819-1829. [76] HD, Villanueva B, Bijma P, Woolliams JA. Inbreeding in genome‐wide selection. J Anim Breed Genet , 2007, 124(6): 369-376. [77] H, Zhang Y, Wang Y, Xiao Y, Wang D, Bellizzi M, Qu S, Korniliev P, Mezey JG, LiuW, Wang Z, Yan S, Li Z, Leung H, McCouch S, Wang GL. Molecular dissection of the complex genetic architecture of rice immunity to the blast fungus Magnaporthe oryzae using genome-wide association study. International Rice Blast Conference. Jeju, Korea2013. [78] M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF. Targeting DNA double-strand breaks with TAL effector nucleases. Gene t ics , 2010, 186(2): 757-761. [79] AJ, Voytas DF. TAL effectors: customizable proteins for DNA targeting. Science , 2011, 333(6051): 1843-1846. [80] T, Liu B, Spalding MH, Weeks DP, Yang B. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol , 2012, 30(5): 390-392. [81] E. The CRISPR craze. Science , 2013, 341(6148): 833-836. [82] T, Gersbach CA, Barbas III CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol , 2013, 31(7): 397-405. [83] H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell , 2013, 153(4): 910-918. [84] CX, Liu JY, Yu ZS, Zhang B, Gao GJ, Jiao RJ. TALEN or Cas9-rapid, efficient and specific choices for genome modifications. J Genet Genomics , 2013, 40(6): 281-289. [85] D, Gay A, Lacomme C, Shaw J, Ridout C, Douc-hkov D, Hensel G, Kumlehn J, Schweizer P. HIGS: host- induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell , 2010, 22(9): 3130-3141. [86] CC, Dean RA. Host-induced gene silencing: a tool for understanding fungal host interaction and for developing novel disease control strategies. Mol Plant Pathol , 2012, 13(5): 519-529. [87] MY, Wang XL, Wang GL. Development of a host- induced gene silencing system to engineer resistant trans-genic rice to the rice blast fungus Magnaporthe oryzae . International Rice Blast Conference. Jeju, Korea2013. [88] 吴智丹, 张磊, 刘凤权, 邵敏. 水稻稻瘟病菌诱导表达启动子OsQ16p的克隆与功能分析. 作物学报, 2012, 38(6): 980-987. [89] GL, Mackill DJ, Bonman JM, McCouch SR, Cha-mpoux MC, Nelson RJ. RFLP mapping of genes confer-ring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics , 1994, 136(4): 1421-1434. [90] H, Hayashi N, Matsushita A, Xinqiong L, Nakayama A, Sugano S, Jiang CJ, Takatsuji H. Blast resistance of CC-NB-LRR protein Pb1 is mediated by WRKY45 through protein-protein interaction. Proc Natl Acad Sci USA , 2013, 110(23): 9577-9582. [91] S, Xu JR. Effectors and effector delivery in Magnaporthe oryzae . PLoS Pathog , 2014, 10(1): e1003826。 |
[1] | 张桂权. 基于SSSL文库的水稻设计育种平台[J]. 遗传, 2019, 41(8): 754-760. |
[2] | 刘次桃, 王威, 毛毕刚, 储成才. 水稻耐低温逆境研究:分子生理机制及育种展望[J]. 遗传, 2018, 40(3): 171-185. |
[3] | 杨德卫, 郑向华, 程朝平, 叶宁, 黄凤凰, 叶新福. 基于CSSLs群体定位和图位克隆水稻长芒基因GAD1-2[J]. 遗传, 2018, 40(12): 1101-1111. |
[4] | 辛高伟, 胡熙璕, 王克剑, 王兴春. Cas9蛋白变体VQR高效识别水稻NGAC前间区序列邻近基序[J]. 遗传, 2018, 40(12): 1112-1119. |
[5] | 吴比, 胡伟, 邢永忠. 中国水稻遗传育种历程与展望[J]. 遗传, 2018, 40(10): 841-857. |
[6] | 李佳,刘运华,张余,陈晨,余霞,余舜武. 干旱对水稻生物钟基因和干旱胁迫响应基因每日节律性变化的影响[J]. 遗传, 2017, 39(9): 837-846. |
[7] | 韩晓斌, 徐冉, 段朋根, 于海跃, 罗越华, 李云海. 水稻斑点叶突变体spl101和spl102的筛选及候选基因鉴定[J]. 遗传, 2017, 39(4): 346-353. |
[8] | 唐丽, 李曜魁, 张丹, 毛毕刚, 吕启明, 胡远艺, 韶也, 彭彦, 赵炳然, 夏石头. 基于基因组编辑技术的水稻靶向突变特征及遗传分析[J]. 遗传, 2016, 38(8): 746-755. |
[9] | 武迪, 黄林周, 高谨, 王永红. 植物重力反应的分子调控机制[J]. 遗传, 2016, 38(7): 589-602. |
[10] | 孔德艳, 陈守俊, 周立国, 高欢, 罗利军, 刘灶长. 水稻开花光周期调控相关基因研究进展[J]. 遗传, 2016, 38(6): 532-542. |
[11] | 李莉云,史佳楠,杨烁,孙财强,刘国振. 基于转录特征的水稻WRKY转录因子功能注释[J]. 遗传, 2016, 38(2): 126-136. |
[12] | 张红宇, 崔晓云, 侯飞雪, 王一伊, 吴挺开, 刘禹彤, 杨定乾, 张洪凯, 傅瑶, 张向阳, 李文丽, 吴先军. 水稻基因组加倍对籽粒大小调控基因表达的影响[J]. 遗传, 2016, 38(12): 1102-1111. |
[13] | 宋海冰, 汪斌, 陈壬杰, 郑小雅, 于世波, 兰涛. 水稻“光身”突变体glr3的遗传分析及基因定位[J]. 遗传, 2016, 38(11): 1012-1019. |
[14] | 胡运高, 郭连安, 杨国涛, 钦鹏, 范存留, 彭友林, 严维, 何航, 李仕贵. 直立密穗基因DEP2-1388的遗传分析及在杂交稻中的育种利用[J]. 遗传, 2016, 38(1): 72-81. |
[15] | 储黄伟, 牛付安, 程灿, 周继华, 王新其, 罗小金, 袁勤, 曹黎明. 杂交粳稻花优14及其亲本孕穗期剑叶的基因表达谱芯片分析[J]. 遗传, 2015, 37(9): 932-938. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: