遗传 ›› 2024, Vol. 46 ›› Issue (5): 387-397.doi: 10.16288/j.yczz.23-317
收稿日期:
2023-12-22
修回日期:
2024-03-15
出版日期:
2024-04-28
发布日期:
2024-04-28
通讯作者:
逄越
E-mail:sunmingjiehhh@163.com;pangyue01@163.com
作者简介:
孙明洁,硕士研究生,专业方向:细胞生物学。E-mail: sunmingjiehhh@163.com
基金资助:
Mingjie Sun1,2(), Jiali Lu1,2, Yue Pang1,2()
Received:
2023-12-22
Revised:
2024-03-15
Published:
2024-04-28
Online:
2024-04-28
Contact:
Yue Pang
E-mail:sunmingjiehhh@163.com;pangyue01@163.com
Supported by:
摘要:
七鳃鳗历经5亿年的进化历程,所处的自然环境具有低温及铁含量较高等特点,且在变态发育过程中组织结构和生命机制已经发展出其独特的适应性的进化方式,这为人们进一步研究生命起源和进化提供了新的方向。铁是人体必需的营养素之一,在代谢过程中发挥重要的作用,但当过量时可能导致铁中毒。七鳃鳗体内游离铁含量很高,如变态前幼体的血清铁浓度是人类正常男性的149倍,幼体肝中的铁含量约是人类正常含量的2~3倍。七鳃鳗具有完备的生物化学系统耐受体内高浓度的游离铁,铁稳态的重要基因如转铁蛋白、铁蛋白重链、超氧化物歧化酶等基因高表达,提升了铁转运、铁储存及抗氧化能力。七鳃鳗具有IRE/IRP调控系统,是适应组织内高铁环境的重要保护机制。此外,七鳃鳗在变态发育过程中逐渐形成口腔腺,成为独特的铁代谢器官。本文主要介绍了七鳃鳗各组织铁的分布及适应体内高铁含量的潜在机制,为后续寻找调控铁代谢分子机制提供理论基础。
孙明洁, 卢佳丽, 逄越. 七鳃鳗——铁代谢研究的极佳模型[J]. 遗传, 2024, 46(5): 387-397.
Mingjie Sun, Jiali Lu, Yue Pang. Lamprey——an excellent model for iron metabolism[J]. Hereditas(Beijing), 2024, 46(5): 387-397.
表1
七鳃鳗不同发育阶段体内铁沉积表达部位变化"
铁沉积部位 | 变态前(幼体) | 变态后(成体) | 铁沉积原因 |
---|---|---|---|
皮肤 | 除尾部外,所有体区的背侧和外侧表皮均有铁沉积,但腹侧表皮未见铁沉积。表皮的粘液细胞含有铁蛋白颗粒[ | 铁蛋白颗粒在表层细胞中更为丰富,粘液细胞中铁以铁蛋白的形式存在[ | 粘液细胞中的铁与体色素沉着有关,这可能代表了一种潜在的铁排泄途径[ |
肾 | 前肾小管的上皮细胞和管腔内含有高浓度的铁。近端小管以铁血黄素的形式储存铁,后肾中未检测到铁的积累[ | 近端小管以铁蛋白储存铁[ | 变态前幼鱼的血液中含有大量的铁,血浆在肾小球中过滤,含铁的蛋白被吸收到变态前幼鱼的近端小管,以铁血黄素的形式储存阻止铁的毒性。在变态后幼鱼中,其血液中的铁浓度降低,肝脏起着过滤血液的作用,近端小管主要以铁蛋白储存铁[ |
肝脏 | 七鳃鳗幼鱼少数肝细胞存在低浓度的铁。胆总管周围的结缔组织中存在铁[ | 肝细胞的溶酶体和细胞质基质中富含铁。铁蛋白颗粒在胞质基质和多形态的致密小体中大量存在。含铁血黄素在变态末期占肝脏中非血红素铁的比例越来越大[ | 在七鳃鳗变态前幼鱼中,存在功能正常的胆道,七鳃鳗通过胆汁清除肠道中的铁。在整个变态过程中,铁蛋白铁是肝脏中主要的非血红素铁成分,有利于调节铁的流动性。变态末期铁血黄素比例增加,减轻高浓度铁对机体造成的损伤[ |
肠道 | 肠沟顶端的上皮和后肠远端区域的粘膜细胞中含铁水平较高,吸收细胞中也存在铁[ | 吸收细胞细胞质基质中观察到微量的铁蛋白颗粒[ | 后肠粘膜细胞内铁的存在可能是铁摄取过多以及由于体内铁储存充足而缺乏向血管转移的结果,也可能反映了金属从血浆沉积到粘膜细胞以消除铁的目的。吸收细胞中的铁也被认为可能起到了消除铁的作用[ |
[1] | Forey P, Janvier P. Agnathans and the origin of jawed vertebrates. Nature, 1993, 361(6408): 129-134. |
[2] | 朱元鼎, 孟庆闻. 中国动物志圆口纲软骨鱼纲. 北京: 科学出版社, 2001, 251-253. |
[3] | Li J, Dong YJ, Han YL, Liu X, Song T, Xu L, Pang Y, Li QW. Mathematical analysis of effects of morphometric attribute on body weight of Lampetra morii and Lampetra japonica. Acta Oceanol Sin Chin Ed, 2017, 39(4): 61-71. |
李军, 董彦娇, 韩英伦, 刘欣, 宋涛, 徐磊, 逄越, 李庆伟. 东北七鳃鳗和日本七鳃鳗成体形态性状对体质量的影响分析. 海洋学报, 2017, 39(4): 61-71. | |
[4] | Nikitina N, Bronner-Fraser M, Sauka-Spengler T. The sea lamprey Petromyzon marinus: a model for evolutionary and developmental biology. Cold Spring Harb Protoc, 2009, 4(1): pdb.emo113. |
[5] | Chen X, Li JB, Kang R, Klionsky DJ, Tang DL. Ferroptosis: machinery and regulation. Autophagy, 2021, 17(9): 2054-2081. |
[6] |
Hall SJ, Youson JH. Distribution of ferric iron in larval lampreys, Petromyzon marinus L. Histol Histopathol, 1988, 3(1): 7-20.
pmid: 2980211 |
[7] | Zhang D.Construction of iron metabolism model and effect of iron on lipid metabolism in lamprey[Dissertation]. Liaoning Normal University, 2023. |
张铎.七鳃鳗铁代谢模型的构建及铁对脂代谢影响研究[学位论文]. 辽宁师范大学, 2023. | |
[8] | Chang MM, Wu FX, Miao D, Zhang JY. Discovery of fossil lamprey larva from the Lower Cretaceous reveals its three-phased life cycle. Proc Natl Acad Sci USA, 2014, 111(43): 15486-15490. |
[9] | Shan XR, Zhao WJ, Lin XH, Chen Y, Li Q, Zhu M, Gai ZK. The correlations of the lower red beds of early telychian (Llandovery, Silurian) in china from the palaeoichthyological evidence. Journal of Stratigraphy, 2022, 46(2): 138-153. |
山显任, 赵文金, 林翔鸿, 陈阳, 李强, 朱敏, 盖志琨. 中国志留纪兰多维列世特列奇早期下红层对比之古鱼类化石证据. 地层学杂志, 2022, 46(2): 138-153. | |
[10] | Iancu TC, Shiloh H. Morphologic observations in iron overload: an update. Adv Exp Med Biol, 1994, 356(26): 255-265. |
[11] |
Kurz T, Terman A, Gustafsson B, Brunk UT. Lysosomes in iron metabolism, ageing and apoptosis. Histochem Cell Biol, 2008, 129(4): 389-406.
doi: 10.1007/s00418-008-0394-y pmid: 18259769 |
[12] | Bartsch H, Nair J. Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: role of lipid peroxidation, DNA damage, and repair. Langenbecks Arch Surg, 2006, 391(5): 499-510. |
[13] | Manzon R, Youson J, Holmes J. Lamprey metamorphosis. In: Docker M, Conservation and Control.eds. Lampreys: Biology, Fish & Fisheries Series, 2015, 37(25):139-214. |
[14] | Rogers PA, Glenn AR, Potter IC. The bacterial flora of the gut contents and environment of larval lampreys. Acta Zoologica, 1980, 61(1): 23-27. |
[15] | Youson JH. The biology of metamorphosis in sea lampreys: endocrine, environmental, and physiological cues and events, and their potential application to lamprey control. J Great Lakes Res, 2003, 29(1): 26-49 |
[16] | Potter IC, Hilliard RW, Bird DJ. Metamorphosis in the Southern Hemisphere lamprey, Geotria australis. J Zool, 1980, 190(3): 405-430. |
[17] | Beamish RJ. Adult biology of the River Lamprey (Lampetra ayresi) and the Pacific Lamprey (Lampetra tridentate) from the Pacific Coast of Canada. Can J Fish Aquat Sci, 1980, 37(11): 1906-1923. |
[18] | Hardisty MW, Potter IC. The general biology of adult lampreys. Academic Press, 1971, 1(30): 127-206. |
[19] |
Sidon EW, Youson JH.Morphological changes in the liver of the sea lamprey, Petromyzon marinus L., during metamorphosis: I. Atresia of the bile ducts. J Morphol, 1983, 177(1): 109-124.
pmid: 6620389 |
[20] | Macey DJ, Potter IC. Concentrations of non-haem iron in ammocoetes of species representing the three extant lamprey families. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 1986, 84(1): 77-79. |
[21] |
Tsioros KK, Youson JH. Intracellular distribution of iron (and associated elements) in various cell types of larvae and juveniles of the sea lamprey (Petromyzon marinus). Tissue Cell, 1997, 29(2): 137-162.
pmid: 18627815 |
[22] |
Youson JH, Sargent PA. Iron deposition in the integument of lampreys. Anat Rec, 1984, 209(4): 461-468.
pmid: 6476417 |
[23] | Kolesnikova EE. Anatomical and physiological peculiarities of the heart in jawless and jawed Fish. J Evol Biochem Phys, 2021, 57(2):185-207. |
[24] | Youson JH, McMillan DB. The opisthonephric kidney of the sea lamprey of the Great Lakes, Petromyzon marinus L. I. The renal corpuscle. Am J Anat, 1970, 127(3):207-213. |
[25] |
Ooi EC, Youson JH. Growth of the opisthonephric kidney during larval life in the anadromous sea lamprey, Petromyzon marinus L. Can J Zool, 1976, 54(9): 1449-1458.
pmid: 987841 |
[26] | Torrey TW. The absorption of colloidal carbon from the body cavity of ammocoetes. A study of the structure and function of the larval kidneys and blood forming tissues. Morph, 1938, 63(1): 163-179. |
[27] | Peek WD, Sidon EW, Youson JH, Fisher MM. Fine structure of the liver in the larval lamprey, Petromyzon marinus L.; hepatocytes and sinusoids. Am J Anat, 1979, 156(2): 231-250. |
[28] |
Smalley SR, Macey DJ, Potter IC. Changes in the amount of nonhaem iron in the plasma, whole body, and selected organs during the postlarval life of the lamprey Geotria australis. J Exp Zool, 1986, 237(2): 149-157.
pmid: 3950561 |
[29] |
Hansen SJ, Youson JH. Morphology of the epithelium in the alimentary tract of the larval lamprey, Petromyzon marinus L. J Morphol, 1978, 155(2): 193-217.
doi: 10.1002/jmor.1051550206 pmid: 30231596 |
[30] | Youson JH, Cheung R. Distribution of ferric iron in juveniles of the lamprey Petromyzon marinus L. Can J Zoo1, 1987, 65(7): 1833-1841. |
[31] |
Rovainen CM, Lemcoe GE, Peterson A. Structure and chemistry of glucose-producing cells in meningeal tissue of the lamprey. Brain Res, 1971, 30(1): 99-118.
pmid: 4398393 |
[32] | Youson JH, Lee J, Potter IC. The distribution of fat in larval, metamorphosing, and young adult anadromous sea lampreys, Petromyzon marinus L. Can J Zool, 1979, 57(1): 237-246. |
[33] |
Macey DJ, Webb J, Potter IC. Iron levels and major iron binding proteins in the plasma of ammocoetes and adults of the southern hemisphere lamprey geotria australis gray. Comparative Biochemistry and Physiology Part A: Physiology, 1982, 72(2): 307-312.
pmid: 6125303 |
[34] | Hall SJ, Youson JH. Distribution of radioiron in larval lampreys, Petromyzon marinus L., following administration of 55ferrous citrate. Canadian J Zool, 1990, 68(9): 1839-1856. |
[35] | Youson JH, Sargent PA, Barrett A. Serum iron concentration and other blood parameters during the life cycle of the sea lamprey, Petromyzon marinus L. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 1987, 88(2): 325-330. |
[36] | Weintraub LR, Demis DJ, Conrad ME, Crosby WH. Iron excretion by the skin. Selective localization of iron-59 in epithelial cells. Am J Pathol, 1965, 46(1): 121-127. |
[37] |
Langille RM, Youson JH. Morphology of the intestine of prefeeding and feeding adult lampreys, Petromyzon marinus (L): The mucosa of the posterior intestine and hindgut. J Morphol, 1984, 182(2): 137-152.
doi: 10.1002/jmor.1051820203 pmid: 30029567 |
[38] |
Youson JH, Sargent PA, Sidon EW. Iron loading in the livers of metamorphosing lampreys, Petromyzon marinus L. Cell Tissue Res, 1983, 234(1): 109-124.
pmid: 6640610 |
[39] | Bird DJ, Potter IC. Proximate body composition of the larval, metamorphosing and downstream migrant stages in the life cycle of the Southern Hemisphere lamprey, Geotria australis. Environ Biol Fish, 1981, 6(1): 285-297. |
[40] | Deugnier Y, Turlin B. The pathology of hepatic iron overload. In: Anderson G, McLaren G, eds. Iron Physiology and Pathophysiology in Humans. Nutrition and Health, 2011, 345-355. |
[41] |
Ganz T, Nemeth E. Iron homeostasis in host defence and inflammation. Nat Rev Immunol, 2015, 15(8): 500-510.
doi: 10.1038/nri3863 pmid: 26160612 |
[42] | Gammella E, Correnti M, Cairo G, Recalcati S. Iron availability in tissue microenvironment: the key role of ferroportin. Int J Mol Sci, 2021, 22(6): 2986. |
[43] |
Torti SV, Torti FM. Iron and cancer: more ore to be mined. Nat Rev Cancer, 2013, 13(5): 342-355.
doi: 10.1038/nrc3495 pmid: 23594855 |
[44] |
Hentze MW, Muckenthaler MU, Galy B, Camaschella C. Two to tango: regulation of mammalian iron metabolism. Cell, 2010, 142(1): 24-38.
doi: 10.1016/j.cell.2010.06.028 pmid: 20603012 |
[45] | Webster RO, Pollara B. Isolation and partial characterization of transferiin in the sea lamprey, Petromyzon marinus. Comp Biochem Physiol, 1969, 30(3): 509-527. |
[46] | Harris LR, Macey DJ, Potter IC, Cake MH. Hepatic molecular conversion and detoxification of ferritin iron in adult lampreys (Geotria australis), following natural and induced iron loading. Biochem J, 1995, 305(3): 975-980. |
[47] |
Andersen O, Pantopoulos K, Kao HT, Muckenthaler M, Youson JH, Pieribone V. Regulation of iron metabolism in the sanguivore lamprey Lampetra fluviatilis--molecular cloning of two ferritin subunits and two iron-regulatory proteins (IRP) reveals evolutionary conservation of the iron-regulatory element (IRE)/IRP regulatory system. Eur J Biochem, 1998, 254(2): 223-229.
pmid: 9660174 |
[48] |
Dixon SJ, Stockwell BR. The role of iron and reactive oxygen species in cell death. Nat Chem Biol, 2014, 10(1): 9-17.
doi: 10.1038/nchembio.1416 pmid: 24346035 |
[49] |
Cheung EC, Vousden KH. The role of ROS in tumour development and progression. Nat Rev Cancer, 2022, 22(5): 280-297.
doi: 10.1038/s41568-021-00435-0 pmid: 35102280 |
[50] |
Harris LR, Cake MH, Macey DJ, Potter IC. An increase in the concentration of hepatic iron during the metamorphosis of the lamprey Geotria australis is accompanied by increased superoxide dismutase activity. Fish Physiol Biochem, 1990, 8(6): 451-457.
doi: 10.1007/BF00003401 pmid: 24221031 |
[51] |
Macey DJ, Cake MH, Potter IC. Exceptional iron concentrations in larval lampreys (Geotria australis) and the activities of superoxide radical detoxifying enzymes. Biochem J, 1988, 252(1): 167-172.
doi: 10.1042/bj2520167 pmid: 3421899 |
[52] | Huang BW, Xin LS, Liu JL, Bai CM, Wang CM. The mechanism of fish iron-withholding and pathogens competing to acquire iron. Chin J Prev Vet Med, 2018, 40(8): 756-760. |
黄博闻, 辛鲁生, 刘金兰, 白昌明, 王崇明. 鱼类铁限制及相关病原竞争获取铁离子机制研究进展. 中国预防兽医学报, 2018, 40(8): 756-760. | |
[53] | Ding ZJ, Zhao XH, Su LN, Zhou FJ, Chen N, Wu JJ, Fu XQ, Wu F, Wang WM, Liu H. The Megalobrama amblycephala transferrin and transferrin receptor genes: molecular cloning, characterization and expression during early development and after Aeromonas hydrophila infection. Dev Comp Immunol, 2015, 49(2): 290-297. |
[54] | Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt SJ, Moynihan J, Paw BH, Drejer A, Barut B, Zapata A, Law TC, Brugnara C, Lux SE, Pinkus GS, Pinkus JL, Kingsley PD, Palis J, Fleming MD, Andrews NC, Zon LI. Positional cloning of zebrafish ferroportinl identifies a conserved vertebrate iron exporter. Nature, 2000, 403(6771): 776-781. |
[55] | Yang YB, Fu XQ, Chen BX, Wang WM, Liu H. Effect of Aeromonas hydiophila infection on iron metabolism in megalobrama amblycephala liver. J Huazhong Agric Univ, 2015, 34(4): 97-101. |
杨永波, 扶晓琴, 陈柏湘, 王卫民, 刘红. 嗜水气单胞菌感染对团头鲂肝脏铁代谢的影响. 华中农业大学学报, 2015, 34(4): 97-101. |
[1] | 杨恒, 逄越, 李庆伟. 七鳃鳗胆道闭锁过程中胆汁酸耐受机制研究进展[J]. 遗传, 2022, 44(1): 59-67. |
[2] | 朱医高, 李军, 逄越, 李庆伟. 七鳃鳗:生物进化和疾病研究的重要模式动物[J]. 遗传, 2020, 42(9): 847-857. |
[3] | 李歆, 渠成名, 韩英伦, 刘欣, 李庆伟. 七鳃鳗Lja-SHP2分子鉴定、重组表达及免疫学研究[J]. 遗传, 2020, 42(2): 183-193. |
[4] | 刘欣, 张洁, 赵春晖, 李铁松, 王继红, 李庆伟. 日本七鳃鳗物种特异性microRNAs及其前体识别与验证[J]. 遗传, 2015, 37(3): 283-291. |
[5] | 刘欣,宋雪萤,张晓萍,韩英伦,朱婷,肖蓉,李庆伟. 七鳃鳗鳃黏膜免疫系统类淋巴细胞免疫应答遗传基础[J]. 遗传, 2015, 37(11): 1149-1159. |
[6] | 吴芬芳,马宁,陈立勇,苏鹏,李庆伟. 日本七鳃鳗(Lampetra japonica)VLRB的克隆表达及单克隆抗体制备[J]. 遗传, 2012, 34(4): 465-471. |
[7] | 曹家树. 基于生物适应进化原理论证生物进化的动力[J]. 遗传, 2010, 32(8): 791-798. |
[8] | 金萍,张玮玮,黄惠芳,马飞 . 日本七鳃鳗(Lampetra japonica)Lyb基因的克隆与分析[J]. 遗传, 2008, 30(12): 1597-1602. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: