遗传 ›› 2024, Vol. 46 ›› Issue (5): 373-386.doi: 10.16288/j.yczz.23-282
唐恒磊1(), 郑树涛1, 李友2,3(), 钟望涛1,3()
收稿日期:
2024-01-03
修回日期:
2024-03-28
出版日期:
2024-04-24
发布日期:
2024-04-24
通讯作者:
李友,钟望涛
E-mail:734435653@qq.com;youli805@163.com;zhongwangtao512@aliyun.com
作者简介:
唐恒磊,硕士研究生,专业方向:神经病学。E-mail: 734435653@qq.com
基金资助:
Henglei Tang1(), Shutao Zheng1, You Li2,3(), Wangtao Zhong1,3()
Received:
2024-01-03
Revised:
2024-03-28
Published:
2024-04-24
Online:
2024-04-24
Contact:
You Li, Wangtao Zhong
E-mail:734435653@qq.com;youli805@163.com;zhongwangtao512@aliyun.com
Supported by:
摘要:
心源性卒中是缺血性脑卒中的重要病因之一,表现出病情重、预后差和复发率高的特点。在遗传学研究中已经有相当多与心源性卒中相关的基因被鉴定,这些易感基因在疾病风险预测及危险因素评估的潜力也陆续被发掘。本文从全基因组关联研究、拷贝数变异研究、全基因组测序研究等方面综述了心源性卒中遗传学研究的相关进展,并介绍了其遗传数据集在多基因风险评分、孟德尔随机化的应用,旨在为将来深入研究心源性卒中的遗传发生机制提供借鉴和参考。
唐恒磊, 郑树涛, 李友, 钟望涛. 心源性卒中的遗传学研究进展[J]. 遗传, 2024, 46(5): 373-386.
Henglei Tang, Shutao Zheng, You Li, Wangtao Zhong. Research progress on genetics in cardioembolic stroke[J]. Hereditas(Beijing), 2024, 46(5): 373-386.
表1
通过全基因组关联研究鉴定的影响心源性卒中风险的基因变异"
基因 | 染色体位置 | 基因位点 | 卒中亚型 | 风险等位基因 | 人群 | 参考文献 |
---|---|---|---|---|---|---|
PITX2 | 4q25 | rs13143308 | CES | T | 多种人群 | [ |
rs6847935 | AS、AIS、CES | T | 多种人群 | [ | ||
rs2100192 | CES | C | 欧洲 | [ | ||
rs6847935 | CES | T | 欧洲 | [ | ||
rs11724242 | CES | G | 欧洲 | [ | ||
rs17042098 | CES | A | 欧洲 | [ | ||
ZFHX3 | 16q22 | rs12932445 | CES | C | 多种人群 | [ |
rs235917 | AS、AIS、CES | A | 多种人群 | [ | ||
rs2106261 | CES | T | 欧洲 | [ | ||
ABO | 9q34 | rs635634 | AIS、LAS、CES | T | 多种人群 | [ |
rs649129 | AS、AIS、CES、LAS | T | 多种人群 | [ | ||
FGA | 4q31 | rs6825454 | AIS | C | 多种人群 | [ |
rs6536024 | AS、AIS、CES | C | 多种人群 | [ | ||
SH3PXD2A | 10q24 | rs2295786 | AS、SVS | A | 多种人群 | [ |
rs55983834 | AIS、AS、CES、SVS | C | 多种人群 | [ | ||
rs12415501 | CES | T | 欧洲 | [ | ||
rs1015037 | CES | T | 欧洲 | [ | ||
NKX2-5 | 5q35 | rs6891174 | CES | A | 多种人群 | [ |
rs6891790 | CES | T | 欧洲 | [ | ||
RGS7 | 1q43 | rs146390073 | CES | T | 欧洲 | [ |
RWDD3 | 1p21.3 | rs71654444 | CES | A | 印度 | [ |
KLHDC4 | 16q24.2 | rs9936995 | CES | T | 印度 | [ |
PRRX1 | 1q24.2 | rs680084 | CES | G | 多种人群 | [ |
F11 | 4q35.2 | rs4444878 | CES、AIS | A | 多种人群 | [ |
DEFB1 | 8p23.1 | rs2738158 | CES | G | 多种人群 | [ |
TRIM36 | 5q22.3 | rs4487484 | CES | T | 欧洲 | [ |
RBM20 | 10q25.2 | rs10749053 | CES | T | 欧洲 | [ |
NCOR2 | 12q24.31 | rs11057583 | CES | A | 欧洲 | [ |
POLR2A | 17p13.1 | rs11078685 | CES | C | 欧洲 | [ |
RPRML | 17q21.32 | rs2316757 | AS、CES | A | 欧洲 | [ |
CAV1 | 7q31.2 | rs3807989 | CES | A | 欧洲 | [ |
ESR2 | 14q23.2 | rs2738413 | CES | A | 欧洲 | [ |
GORAB | 1q24.2 | rs680084 | CES | A | 欧洲 | [ |
IGF1R | 15q26.3 | rs6598541 | CES | A | 欧洲 | [ |
NEURL1 | 10q24.33 | rs11598047 | CES | A | 欧洲 | [ |
WIPF1 | 2q31.1 | rs56181519 | CES | T | 欧洲 | [ |
ZEB2 | 2q22.3 | rs13010313 | CES | T | 欧洲 | [ |
KIAA1755 | 20q11.23 | rs3746471 | CES | A | 欧洲 | [ |
表2
心源性卒中相关的拷贝数变异及涉及的基因"
CNV区域 | 类型 | 相关基因 | 参考文献 |
---|---|---|---|
1p36.32-1p36.33 | 缺失 | MIR6723、OR4F16、FAM87B、LINC00115、LINC01128、FAM41C、SAMD11、NOC2L、KLHL17、PLEKHN1、PERM1、HES4、ISG15、AGRN、RNF223、C1orf159、LINC01342、MIR200B、MIR200A、MIR429、TTLL10、TNFRSF18、TNFRSF4、SDF4、B3GALT6、FAM132A、UBE2J2、SCNN1D、ACAP3、MIR6726、PUSL1、INTS11、MIR6727、CPTP、TAS1R3、DVL1、MIR6808、MXRA8、AURKAIP1、CCNL2、LOC148413、MRPL20、ANKRD65、TMEM88B、LINC01770、VWA1、ATAD3C、ATAD3B、ATAD3A、TMEM240、SSU72、FNDC10、MIB2、MMP23B、CDK11B、SLC35E2B、MMP23A、CDK11A、SLC35E2、NADK、GNB1、CALML6、TMEM52、CFAP74、GABRD、PRKCZ、FAAP20、SKI | [ |
5p15.33 | 缺失 | PLEKHG4B、LRRC14B、CCDC127、SDHA、HRAT5、PDCD6、AHRR、EXOC3-AS1、EXOC3、PP7080、SLC9A3、MIR4456、CEP72、TPPP、ZDHHC11、BRD9、TRIP13、NKD2、SLC12A7、MIR4635、CTD-3080P12.3、SLC6A19、SLC6A18、TERT、MIR4457、CLPTM1L、LINC01511、SLC6A3、LPCAT1、MIR6075、SDHAP3、MIR4277、MRPL36、NDUFS6、LINC02116、IRX4、CTD-2194D22.4 | [ |
8q24.3 | 缺失 | GPIHBP1、ZFP41、GLI4、MINCR、ZNF696、TOP1MT、RHPN1-AS1、RHPN1、MAFA-AS1、MAFA、ZC3H3、GSDMD | [ |
19p13.3 | 缺失 | MOB3A、IZUMO4、AP3D1、DOT1L、PLEKHJ1、MIR1227、MIR6789、SF3A2、AMH、MIR4321、JSRP1、OAZ1、C19orf35、LINGO3、LSM7、SPPL2B、TMPRSS9、TIMM13、LMNB2、MIR7108、LINC01775、GADD45B、GNG7 | [ |
14q11.2 | 扩增 | TRAV38-2DV8、TRDC、TRDV3 | [ |
[1] |
Feigin VL, Brainin M, Norrving B, Martins S, Sacco RL, Hacke W, Fisher M, Pandian J, Lindsay R. World stroke organization (WSO): global stroke fact sheet 2022. Int J Stroke, 2022, 17(1): 18-29.
doi: 10.1177/17474930211065917 pmid: 34986727 |
[2] | Escudero-Martínez I, Morales-Caba L, Segura T. Atrial fibrillation and stroke: a review and new insights. Trends Cardiovasc Med, 2023, 33(1): 23-29. |
[3] |
Bjerkreim AT, Khanevski AN, Thomassen L, Selvik HA, Waje-Andreassen U, Naess H, Logallo N. Five-year readmission and mortality differ by ischemic stroke subtype. J Neurol Sci, 2019, 403: 31-37.
doi: S0022-510X(19)30267-9 pmid: 31185434 |
[4] | Manolio TA. Genomewide association studies and assessment of the risk of disease. N Engl J Med, 2010, 363(2): 166-176. |
[5] |
Abdellaoui A, Yengo L, Verweij KJH, Visscher PM. 15 years of GWAS discovery: realizing the promise. Am J Hum Genet, 2023, 110(2): 179-194.
doi: 10.1016/j.ajhg.2022.12.011 pmid: 36634672 |
[6] | Malik R, Chauhan G, Traylor M, Sargurupremraj M, Okada Y, Mishra A, Rutten-Jacobs L, Giese AK, van der Laan SW, Gretarsdottir S, Anderson CD, Chong M, Adams HHH; Ago T, Almgren P, Amouyel P, Ay H, Bartz TM, Benavente OR, Bevan S, Boncoraglio GB, Brown RD Jr, Butterworth AS, Carrera C, Carty CL, Chasman DI, Chen WM, Cole JW, Correa A, Cotlarciuc I, Cruchaga C, Danesh J, DeStefano AL, den Hoed M, Duan Q, Engelter ST, Falcone GJ, Gottesman RF, Grewal RP, Gudnason V, Gustafsson S, Haessler J, Harris TB, Hassan A, Havulinna AS, Heckbert SR, Holliday EG, Howard G, Hsu FC, Hyacinth HI, Ikram MA, Ingelsson E, Irvin MR, Jian XQ, Jiménez-Conde J, Johnson JA, Jukema JW, Kanai M, Keene KL, Kissela BM, Kleindorfer DO, Kooperberg C, Kubo M, Lange LA, Langefeld CD, Langenberg C, Launer LJ, Lee JM, Lemmens R, Leys D, Lewis CM, Lin WY, Lindgren AG, Lorentzen E, Magnusson PK, Maguire J, Manichaikul A, McArdle PF, Meschia JF, Mitchell BD, Mosley TH, Nalls MA, Ninomiya T, O'Donnell MJ, Psaty BM, Pulit SL, Rannikmäe K, Reiner AP, Rexrode KM, Rice K, Rich SS, Ridker PM, Rost NS, Rothwell PM, Rotter JI, Rundek T, Sacco RL, Sakaue S, Sale MM, Salomaa V, Sapkota BR, Schmidt R, Schmidt CO, Schminke U, Sharma P, Slowik A, Sudlow CLM, Tanislav C, Tatlisumak T, Taylor KD, Thijs VNS, Thorleifsson G, Thorsteinsdottir U, Tiedt S, Trompet S, Tzourio C, van Duijn CM, Walters M, Wareham NJ, Wassertheil-Smoller S, Wilson JG, Wiggins KL, Yang Q, Yusuf S, AFGen Consortium, Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium, International Genomics of Blood Pressure (iGEN-BP) Consortium, INVENT Consortium, STARNET, Bis JC, Pastinen T, Ruusalepp A, Schadt EE, Koplev S, Björkegren JLM, Codoni V, Civelek M, Smith NL, Trégouët DA, Christophersen IE, Roselli C, Lubitz SA, Ellinor PT, Tai ES, Kooner JS, Kato N, He J, van der Harst P, Elliott P, Chambers JC, Takeuchi F, Johnson AD, BioBank Japan Cooperative Hospital Group, COMPASS Consortium, EPIC-CVD Consortium, EPIC-InterAct Consortium, International Stroke Genetics Consortium (ISGC), METASTROKE Consortium, Neurology Working Group of the CHARGE Consortium, NINDS Stroke Genetics Network (SiGN), UK Young Lacunar DNA Study, MEGASTROKE Consortium, Sanghera DK, Melander O, Jern C, Strbian D, Fernandez-Cadenas I, Longstreth WT Jr, Rolfs A, Hata J, Woo D, Rosand J, Pare G, Hopewell JC, Saleheen D, Stefansson K, Worrall BB, Kittner SJ, Seshadri S, Fornage M, Markus HS, Howson JMM, Kamatani Y, Debette S, Dichgans M,Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat Genet, 2018, 50(4): 524-537. |
[7] | Keene KL, Hyacinth HI, Bis JC, Kittner SJ, Mitchell BD, Cheng YC, Pare G, Chong M, O'Donnell M, Meschia JF, Chen WM, Sale MM, Rich SS, Nalls MA, Zonderman AB, Evans MK, Wilson JG, Correa A, Markus HS, Traylor M, Lewis CM, Carty CL, Reiner A, Haessler J, Langefeld CD, Gottesman R, Mosley TH, Woo D, Yaffe K, Liu YM, Longstreth WT, Psaty BM, Kooperberg C, Lange LA, Sacco R, Rundek T, Lee JM, Cruchaga C, Furie KL, Arnett DK, Benavente OR, Grewal RP, Peddareddygari LR, Dichgans M, Malik R, Worrall BB, Fornage M, COMPASS SiGN, and METASTROKE Consortia. Genome-wide association study meta-analysis of stroke in 22000 individuals of african descent identifies novel associations with stroke. Stroke, 2020, 51(8): 2454-2463. |
[8] |
Kumar A, Chauhan G, Sharma S, Dabla S, Sylaja PN, Chaudhary N, Gupta S, Agrawal CS, Anand KS, Srivastava AK, Vibha D, Sagar R, Raj R, Maheshwari A, Vivekanandhan S, Kaul B, Raghavan S, Gorthi SP, Mohania D, Kaushik S, Yadav RK, Hazarika A, Sharma P, Prasad K. Association of sumoylation pathway genes with stroke in a genome-wide association study in India. Neurology, 2021, 97(4): e345-e356.
doi: 10.1212/WNL.0000000000012258 pmid: 34031191 |
[9] | Mishra A, Malik R, Hachiya T, Jürgenson T, Namba S, Posner DC, Kamanu FK, Koido M, Le Grand Q, Shi MY, He YY, Georgakis MK, Caro I, Krebs K, Liaw YC, Vaura FC, Lin K, Winsvold BS, Srinivasasainagendra V, Parodi L, Bae HJ, Chauhan G, Chong MR, Tomppo L, Akinyemi R, Roshchupkin GV, Habib N, Jee YH, Thomassen JQ, Abedi V, Cárcel-Márquez J, Nygaard M, Leonard HL, Yang CJ, Yonova-Doing E, Knol MJ, Lewis AJ, Judy RL, Ago T, Amouye P, Armstrong ND, Bakker MK, Bartz TM, Bennett DA, Bis JC, Bordes C, Børte S, Cain A, Ridker PM, Cho K, Chen ZM, Cruchaga C, Cole JW, de Jager PL, de Cid R, Endres M, Ferreira LE, Geerlings MI, Gasca NC, Gudnason V, Hata J, He J, Heath AK, Ho YL, Havulinna AS, Hopewell JC, Hyacinth HI, Inouye M, Jacob MA, Jeon CE, Jern C, Kamouchi M, Keene KL, Kitazono T, Kittner SJ, Konuma T, Kumar A, Lacaze P, Launer LJ, Lee KJ, Lepik K, Li J, Li LM, Manichaikul A, Markus HS, Marston NA, Meitinger T, Mitchell BD, Montellano FA, Morisaki T, Mosley TH, Nalls MA, Nordestgaard BG, O'Donnell MJ, Okada Y, Onland-Moret NC, Ovbiagele B, Peters A, Psaty BM, Rich SS, Rosand J, Sabatine MS, Sacco RL, Saleheen D, Sandset EC, Salomaa V, Sargurupremraj M, Sasaki M, Satizabal CL, Schmidt CO, Shimizu A, Smith NL, Sloane KL, Sutoh Y, Sun YV, Tanno K, Tiedt S, Tatlisumak T, Torres-Aguila NP, Tiwari HK, Trégouët DA, Trompet S, Tuladhar AM, Tybjærg-Hansen A, van Vugt M, Vibo R, Verma SS, Wiggins KL, Wennberg P, Woo D, Wilson PWF, Xu HC, Yang Q, Yoon K, COMPASS Consortium, INVENT Consortium, Dutch Parelsnoer Initiative (PSI) Cerebrovascular Disease Study Group, Estonian Biobank, PRECISE4Q Consortium, FinnGen Consortium, NINDS Stroke Genetics Network (SiGN), MEGASTROKE Consortium, SIREN Consortium, China Kadoorie Biobank Collaborative Group, VA Million Veteran Program, International Stroke Genetics Consortium (ISGC), Biobank Japan, CHARGE Consortium, GIGASTROKE Consortium, Millwood IY, Gieger C, Ninomiya T, Grabe HJ, Jukema JW, Rissanen IL, Strbian D, Kim YJ, Chen PH, Mayerhofer E, Howson JMM, Irvin MR, Adams H, Wassertheil-Smoller S, Christensen K, Ikram MA, Rundek T, Worrall BB, Lathrop GM, Riaz M, Simonsick EM, Kõrv J, França PHC, Zand R, Prasad K, Frikke-Schmidt R, de Leeuw FE, Liman T, Haeusler KG, Ruigrok YM, Heuschmann PU, Longstreth WT, Jung KJ, Bastarache L, Paré G, Damrauer SM, Chasman DI, Rotter JI, Anderson CD, Zwart JA, Niiranen TJ, Fornage M, Liaw YP, Seshadri S, Fernández-Cadenas I, Walters RG, Ruff CT, Owolabi MO, Huffman JE, Milani L, Kamatani Y, Dichgans M, Debette S. Stroke genetics informs drug discovery and risk prediction across ancestries. Nature, 2022, 611(7934): 115-123. |
[10] | Cárcel-Márquez J, Muiño E, Gallego-Fabrega C, Cullell N, Lledós M, Llucià-Carol L, Sobrino T, Campos F, Castillo J, Freijo M, Arenillas JF, Obach V, Álvarez-Sabín J, Molina CA, Ribó M, Jiménez-Conde J, Roquer J, Muñoz-Narbona L, Lopez-Cancio E, Millán M, Diaz-Navarro R, Vives- Bauza C, Serrano-Heras G, Segura T, Ibañez L, Heitsch L, Delgado P, Dhar R, Krupinski J, Delgado-Mederos R, Prats-Sánchez L, Camps-Renom P, Blay N, Sumoy L, de Cid R, Montaner J, Cruchaga C, Lee JM, Martí-Fàbregas J, Férnandez-Cadenas I. A polygenic risk score based on a cardioembolic stroke multitrait analysis improves a clinical prediction model for this stroke subtype. Front Cardiovasc Med, 2022, 9: 940696. |
[11] | Okubo Y, Nakano Y, Ochi H, Onohara Y, Tokuyama T, Motoda C, Amioka M, Hironobe N, Okamura S, Ikeuchi Y, Miyauchi S, Chayama K, Kihara Y. Predicting atrial fibrillation using a combination of genetic risk score and clinical risk factors. Heart Rhythm, 2020, 17(5): 699-705. |
[12] | Jiang YY, Li JL, Liu LY, Zhou GQ, Mo DC, Jiang DD, Luo M. Association between polymorphisms in ABO gene and stroke patients with small artery occlusion in southern Chinese Han population. Gene, 2021, 769: 145211. |
[13] | Jang AY, Seo J, Park YM, Shin YH, Lee J, Oh PC, Kang WC, Chung WJ, Moon J. ABO blood type is associated with thrombotic risk in patients with nonvalvular atrial fibrillation. J Clin Med, 2022, 11(11): 3064. |
[14] |
Asselta R, Duga S, Tenchini ML. The molecular basis of quantitative fibrinogen disorders. J Thromb Haemost, 2006, 4(10): 2115-2129.
doi: 10.1111/j.1538-7836.2006.02094.x pmid: 16999847 |
[15] | Hur WS, Paul DS, Bouck EG, Negrón OA, Mwiza JM, Poole LG, Cline-Fedewa HM, Clark EG, Juang LJ, Leung J, Kastrup CJ, Ugarova TP, Wolberg AS, Luyendyk JP, Bergmeier W, Flick MJ. Hypofibrinogenemia with preserved hemostasis and protection from thrombosis in mice with an FGA truncation mutation. Blood, 2022, 139(9): 1374-1388. |
[16] |
Yang XX, Sasano T, Ebana Y, Takeuchi JK, Ihara K, Yamazoe M, Furukawa T. Functional role of the l396r mutation of TKS5 identified by an exome-wide association study in atrial fibrillation. Circ J, 2020, 84(12): 2148-2157.
doi: 10.1253/circj.CJ-20-0101 pmid: 33087629 |
[17] | Yang YJ, Knol MJ, Wang RQ, Mishra A, Liu D, Luciano M, Teumer A, Armstrong N, Bis JC, Jhun MA, Li S, Adams HHH, Aziz NA, Bastin ME, Bourgey M, Brody JA, Frenzel S, Gottesman RF, Hosten N, Hou LF, Kardia SLR, Lohner V, Marquis P, Maniega SM, Satizabal CL, Sorond FA, Valdés Hernández MC, van Duijn CM, Vernooij MW, Wittfeld K, Yang Q, Zhao W, Boerwinkle E, Levy D, Deary IJ, Jiang JY, Mather KA, Mosley TH, Psaty BM, Sachdev PS, Smith JA, Sotoodehnia N, DeCarli CS, Breteler MMB, Ikram MA, Grabe HJ, Wardlaw J, Longstreth WT, Launer LJ, Seshadri S, Debette S, Fornage M. Epigenetic and integrative cross-omics analyses of cerebral white matter hyperintensities on MRI. Brain, 2023, 146(2): 492-506. |
[18] |
Ihara K, Sasano T, Hiraoka Y, Togo-Ohno M, Soejima Y, Sawabe M, Tsuchiya M, Ogawa H, Furukawa T, Kuroyanagi H. A missense mutation in the RSRSP stretch of RBM20 causes dilated cardiomyopathy and atrial fibrillation in mice. Sci Rep, 2020, 10(1): 17894.
doi: 10.1038/s41598-020-74800-8 pmid: 33110103 |
[19] |
Biben C, Weber R, Kesteven S, Stanley E, McDonald L, Elliott DA, Barnett L, Köentgen F, Robb L, Feneley M, Harvey RP.Cardiac septal and valvular dysmorphogenesis in mice heterozygous for mutations in the homeobox gene NKX2-5. Circ Res, 2000, 87(10): 888-895.
pmid: 11073884 |
[20] |
Elgendy AY, Saver JL, Amin Z, Boudoulas KD, Carroll JD, Elgendy IY, Grunwald IQ, Gertz ZM, Hijazi ZM, Horlick EM, Kasner SE, Kent DM, Kumar P, Kavinsky CJ, Liebeskind DS, Lutsep H, Mojadidi MK, Messé SR, Mas JL, Mattle HP, Meier B, Mahmoud A, Mahmoud AN, Nietlispach F, Patel NK, Rhodes JF, Reisman M, Sommer RJ, Sievert H, Søndergaard L, Zaman MO, Thaler D, Tobis JM. Proposal for updated nomenclature and classification of potential causative mechanism in patent foramen ovale-associated stroke. JAMA Neurol, 2020, 77(7): 878-886.
doi: 10.1001/jamaneurol.2020.0458 pmid: 32282016 |
[21] | Rigatelli G, Zuin M, Bilato C. Atrial septal aneurysm contribution to the risk of cryptogenic stroke in patients with patent foramen ovale: a brief updated systematic review and meta-analysis. Trends Cardiovasc Med, 2023, 33(6): 329-333. |
[22] | Guo XJ, Qiu XB, Wang J, Guo YH, Yang CX, Li L, Gao RF, Ke ZP, Di RM, Sun YM, Xu YJ, Yang YQ. PRRX1 loss-of-function mutations underlying familial atrial fibrillation. J Am Heart Assoc, 2021, 10(23): e023517. |
[23] | Tavares V, Assis J, Pinto R, Freitas-Silva M, Medeiros R. Venous thromboembolism-related genetic determinant F11 rs4253417 is a potential prognostic factor in ischaemic stroke. Mol Cell Probes, 2023, 70: 101917. |
[24] | Ząbczyk MT, Hanarz M, Malinowski KP, Pociask E, Butenas S, Gajos G, Undas A. Active FXI can independently predict ischemic stroke in anticoagulated atrial fibrillation patients: a cohort study. Thromb Haemost, 2022, 122(8): 1397-1406. |
[25] |
Abbasi W, French CE, Rockowitz S, Kenna MA, Eliot Shearer A. Evaluation of copy number variants for genetic hearing loss: a review of current approaches and recent findings. Hum Genet, 2021, 141(3-4): 387-400.
doi: 10.1007/s00439-021-02365-1 pmid: 34811589 |
[26] | Hsieh CS, Huang PS, Chang SN, Wu CK, Hwang JJ, Chuang EY, Tsai CT. Genome-wide copy number variation association study of atrial fibrillation related thromboembolic stroke. J Clin Med, 2019, 8(3): 332. |
[27] | Huang PS, Cheng JF, Li GW, Chuang EY, Chen JJ, Chiu FC, Wu CK, Wang YC, Hwang JJ, Tsai CT. Copy number variation of gasdermin d gene is associated with atrial fibrillation-related thromboembolic stroke. Europace, 2023, 25(5): euad103. |
[28] | Rosenquist R, Cuppen E, Buettner R, Caldas C, Dreau H, Elemento O, Frederix G, Grimmond S, Haferlach T, Jobanputra V, Meggendorfer M, Mullighan CG, Wordsworth S, Schuh A. Clinical utility of whole-genome sequencing in precision oncology. Semin Cancer Biol, 2022, 84: 32-39. |
[29] | Kuksa PP, Greenfest-Allen E, Cifello J, Ionita M, Wang H, Nicaretta H, Cheng PL, Lee WP, Wang LS, Leung YY. Scalable approaches for functional analyses of whole- genome sequencing non-coding variants. Hum Mol Genet, 2022, 31(R1): R62-R72. |
[30] |
Cheng S, Xu Z, Liu Y, Lin JX, Jiang Y, Wang YL, Meng X, Wang AX, Huang XY, Wang ZM, Chen GH, Wu SD, Jia ZC, Chen YM, Qiu XR, Wu J, Song BB, Ji WZ, An ZP, Xue WJ, Zhao LL, Geng Y, Li HY, Li H, Wang YJ. Whole genome sequencing of 10k patients with acute ischaemic stroke or transient ischaemic attack: design, methods and baseline patient characteristics. Stroke Vasc Neurol, 2021, 6(2): 291-297.
doi: 10.1136/svn-2020-000664 pmid: 33443231 |
[31] |
Cheng S, Xu Z, Bian SZ, Chen X, Shi YF, Li YR, Duan YY, Liu Y, Lin JX, Jiang Y, Jing J, Li ZX, Wang YL, Meng X, Liu YO, Fang MY, Jin X, Xu X, Wang J, Wang CL, Li H, Liu SY, Wang YJ. The STROMICS genome study: deep whole-genome sequencing and analysis of 10k Chinese patients with ischemic stroke reveal complex genetic and phenotypic interplay. Cell Discov, 2023, 9(1): 75.
doi: 10.1038/s41421-023-00582-8 pmid: 37479695 |
[32] | Hu Y, Haessler JW, Manansala R, Wiggins KL, Moscati A, Beiser A, Heard-Costa NL, Sarnowski C, Raffield LM, Chung J, Marini S, Anderson CD, Rosand J, Xu HC, Sun X, Kelly TN, Wong QN, Lange LA, Rotter JI, Correa A, Vasan RS, Seshadri S, Rich SS, Do R, Loos RJF, Longstreth WT Jr, Bis JC, Psaty BM, Tirschwell DL, Assimes TL, Silver B, Liu SM, Jackson R, Wassertheil- Smoller S, Mitchell BD, Fornage M, Auer PL, Reiner AP, Kooperberg C. Whole-genome sequencing association analyses of stroke and its subtypes in ancestrally diverse populations from trans-omics for precision medicine project. Stroke, 2022, 53(3): 875-885. |
[33] |
Lambert SA, Abraham G, Inouye M. Towards clinical utility of polygenic risk scores. Hum Mol Genet, 2019, 28(R2): R133-R142.
doi: 10.1093/hmg/ddz187 |
[34] | Li J, Abedi V, Zand R. Dissecting polygenic etiology of ischemic stroke in the era of precision medicine. J Clin Med, 2022, 11(20): 5980. |
[35] |
Cui QM, Liu FC, Li JX, Niu XG, Liu ZY, Shen C, Hu DS, Huang KY, Chen SF, Cao J, Liu XQ, Yu L, Lu FH, Wu XP, Zhao LC, Huang JF, Li Y, Hu ZB, Shen HB, Gu DF, Lu XF. Integrating polygenic and clinical risks to improve stroke risk stratification in prospective Chinese cohorts. Sci China Life Sci, 2023, 66(7): 1626-1635.
doi: 10.1007/s11427-022-2280-3 pmid: 36881318 |
[36] | O’Sullivan JW, Shcherbina A, Justesen JM, Turakhia M, Perez M, Wand H, Tcheandjieu C, Clarke SL, Rivas MA, Ashley EA. Combining clinical and polygenic risk improves stroke prediction among individuals with atrial fibrillation. Circ Genom Precis Med, 2021, 14(3): e003168. |
[37] | Li J, Chaudhary DP, Khan A, Griessenauer C, Carey DJ, Zand R, Abedi V. Polygenic risk scores augment stroke subtyping. Neurol Genet, 2021, 7(2): e560. |
[38] | Pulit SL, Weng LC, McArdle PF, Trinquart L, Choi SH, Mitchell BD, Rosand J, Benjamin EJ, Ellinor PT, Kittner SJ, Lubitz SA, Anderson CD. Atrial fibrillation genetic risk differentiates cardioembolic stroke from other stroke subtypes. Neurol Genet, 2018, 4(6): e293. |
[39] |
Miyazawa K, Ito K, Ito M, Zou ZN, Kubota M, Nomura S, Matsunaga H, Koyama S, Ieki H, Akiyama M, Koike Y, Kurosawa R, Yoshida H, Ozaki K, Onouchi Y, BioBank Japan Project, Takahashi A, Matsuda K, Murakami Y, Aburatani H, Kubo M, Momozawa Y, Terao C, Oki S, Akazawa H, Kamatani Y, Komuro I. Cross-ancestry genome-wide analysis of atrial fibrillation unveils disease biology and enables cardioembolic risk prediction. Nat Genet, 2023, 55(2): 187-197.
doi: 10.1038/s41588-022-01284-9 pmid: 36653681 |
[40] |
Weng LC, Khurshid S, Gunn S, Trinquart L, Lunetta KL, Xu HC, NINDS Stroke Genetics Network, Benjamin EJ, Ellinor PT, Anderson CD, Lubitz SA. Clinical and genetic atrial fibrillation risk and discrimination of cardioembolic from noncardioembolic stroke. Stroke, 2023, 54(7): 1777-1785.
doi: 10.1161/STROKEAHA.122.041533 pmid: 37363945 |
[41] |
Zheng J, Baird D, Borges MC, Bowden J, Hemani G, Haycock P, Evans DM, Smith GD. Recent developments in mendelian randomization studies. Curr Epidemiol Rep, 2017, 4(4): 330-345.
doi: 10.1007/s40471-017-0128-6 pmid: 29226067 |
[42] |
Dichgans M, Pulit SL, Rosand J. Stroke genetics: discovery, biology, and clinical applications. Lancet Neurol, 2019, 18(6): 587-599.
doi: S1474-4422(19)30043-2 pmid: 30975520 |
[43] | Fill J, Fokina A, Klappacher G. Genetically determined atrial fibrillation and risk of stroke: a mendelian randomization study. Eur Heart J, 2020, 41(Supplement 2). |
[44] |
Tian DY, Zhang LJ, Zhuang ZH, Huang T, Fan DS. A mendelian randomization analysis of the relationship between cardioembolic risk factors and ischemic stroke. Sci Rep, 2021, 11(1): 14583.
doi: 10.1038/s41598-021-93979-y pmid: 34272412 |
[45] | Hu MJ, Tan JS, Yang JG, Gao XJ, Yang YJ. Use of mendelian randomization to evaluate the effect of atrial fibrillation on cardiovascular diseases and cardiac death. ESC Heart Fail, 2023, 10(1): 628-636. |
[46] | Lin ZT, Xue HR, Pan W. Combining mendelian randomization and network deconvolution for inference of causal networks with GWAS summary data. PLoS Genet, 2023, 19(5): e1010762. |
[47] | Zhang LY, Liu WS, Sun WX, Wang X, Tian MK, Pei LL, Liu K, Liang J, Zhou L, Lu J, Ning MM, Buonanno FS, Xu YM, Song B. Heart failure and ischemic stroke: a bidirectional and multivariable mendelian randomization study. Front Genet, 2021, 12: 771044. |
[48] | Li Q, Yan SJ, Li Y, Kang H, Zhu HD, Lv CZ. Mendelian randomization study of heart failure and stroke subtypes. Front Cardiovasc Med, 2022, 9: 844733. |
[49] |
Sun WX, Zhang LY, Liu WS, Tian MK, Wang X, Liang J, Wang YY, Ding L, Pei LL, Lu J, Xu YM, Song B. Stroke and myocardial infarction: a bidirectional mendelian randomization study. Int J Gen Med, 2021, 14: 9537-9545.
doi: 10.2147/IJGM.S337681 pmid: 34916835 |
[50] | Leng YM, Li YL, Wang J, Deng P, Z Wang W, Wu JJ, Wang WJ, Weng CY. Sepsis as an independent risk factor in atrial fibrillation and cardioembolic stroke. Front Endocrinol (Lausanne), 2023, 14: 1056274. |
[51] | Georgakis MK, Gill D, Webb AJS, Evangelou E, Elliott P, Sudlow CLM, Dehghan A, Malik R, Tzoulaki I, Dichgans M. Genetically determined blood pressure, antihypertensive drug classes, and risk of stroke subtypes. Neurology, 2020, 95(4): e353-e361. |
[52] | Larsson SC, Traylor M, Burgess S, Boncoraglio GB, Jern C, Michaëlsson K, Markus HS, MEGASTROKE project of the International Stroke Genetics Consortium. Serum magnesium and calcium levels in relation to ischemic stroke: mendelian randomization study. Neurology, 2019, 92(9): e944-e950. |
[53] | Wang YN, Jia YM, Xu QY, Wang RR, Sun LL, Guo DX, Shi MY, Yang PN, Wang Y, Liu FH, Zhang YH, Zhu ZB. Association between myeloperoxidase and the risks of ischemic stroke, heart failure, and atrial fibrillation: a mendelian randomization study. Nut Metab Cardiovasc Dis, 2023, 33(1): 210-218. |
[54] | Liu DD, Deng Y, Wang J, Chen YN, Yu J, Tan BY, Wang MM. Genetically predicted cardiac troponin I concentrations and risk of stroke and atrial fibrillation. J Stroke Cerebrovasc Dis, 2022, 31(3): 106267. |
[55] |
Chen H, Sun XG, Zhuo CG, Zhao JQ, Zu AH, Wang QQ, Zheng LR. Cardiac troponin I and risk of stroke: a mendelian randomization study. Int J Gen Med, 2022, 15: 1575-1582.
doi: 10.2147/IJGM.S351034 pmid: 35210829 |
[56] |
Sajeev JK, Kalman JM, Dewey H, Cooke JC, Teh AW. The atrium and embolic stroke: myopathy not atrial fibrillation as the requisite determinant? JACC Clin Electrophysiol, 2020, 6(3): 251-261.
doi: S2405-500X(19)31029-1 pmid: 32192674 |
[57] | Dong HY, Chen H, Hidru TH, Xia YL, Yang XL. Sinus node dysfunction and stroke risk: a systematic review and meta-analysis. BMJ Open, 2023, 13(11): e076499. |
[58] | Dong HY, Zhang Y, Sun DX, Wang GP, Zhang QL, Hidru TH, Yang YH, Wang SH, Wei YS, Liu F, Zhang JP, Xia YL, Yang XL. Refining prediction of stroke in sinus node dysfunction patients without atrial fibrillation using a P-combined score: a multi-centre study. Eur J Prev Cardiol, 2024, 31(5): 507-518. |
[1] | 李以格, 张丹丹. 后GWAS时代结直肠癌致病SNP功能机制的研究进展[J]. 遗传, 2021, 43(3): 203-214. |
[2] | 钱国清. 慢性阻塞性肺疾病全基因组关联研究进展[J]. 遗传, 2020, 42(9): 832-846. |
[3] | 曹岚, 李志强, 师咏勇, 刘赟. 端粒长度与2型糖尿病:孟德尔随机化研究与多基因风险评分分析[J]. 遗传, 2020, 42(9): 882-888. |
[4] | 梁文权,侯豫,赵存友. 精神分裂症相关单核苷酸多态性调控microRNA功能研究进展[J]. 遗传, 2019, 41(8): 677-685. |
[5] | 杨超, 杨瑞馥, 崔玉军. 细菌全基因组关联研究的方法与应用[J]. 遗传, 2018, 40(1): 57-65. |
[6] | 王钰嫣,王子兴,胡耀达,王蕾,李宁,张彪,韩伟,姜晶梅. 全基因组关联研究通路分析方法现状[J]. 遗传, 2017, 39(8): 707-716. |
[7] | 陈开旭, 王为兰, 张富春, 郑秀芬. 人类身高的遗传学研究进展[J]. 遗传, 2015, 37(8): 741-755. |
[8] | 王立, 徐颜美, 程竹君, 熊招平, 邓立彬. 胆固醇代谢紊乱的遗传学研究进展[J]. 遗传, 2014, 36(9): 857-863. |
[9] | 周家蓬 裴智勇 陈禹保 陈润生. 基于高通量测序的全基因组关联研究策略[J]. 遗传, 2014, 36(11): 1099-1111. |
[10] | 宋庆峰, 张红星, 马亦龙, 周钢桥. 复杂疾病的遗传易感基因区域的精细定位[J]. 遗传, 2014, 36(1): 2-10. |
[11] | 罗旭红 刘志芳 董长征. 基因水平的关联分析方法[J]. 遗传, 2013, 35(9): 1065-1071. |
[12] | 郑伟 季林丹 邢文华 涂巍巍 徐进. 肺结核全基因组关联研究进展[J]. 遗传, 2013, 35(7): 823-829. |
[13] | 许睿玮,严卫丽. 原发性高血压全基因组关联研究进展[J]. 遗传, 2012, 34(7): 793-809. |
[14] | 李俊燕,谭英姿,冯国鄞,贺林,周里钢,陆灏. 糖尿病肾病遗传学研究进展[J]. 遗传, 2012, 34(12): 1537-1544. |
[15] | 权晟,张学军. 全基因组关联研究的深度分析策略[J]. 遗传, 2011, 33(2): 100-108. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: