遗传 ›› 2020, Vol. 42 ›› Issue (9): 847-857.doi: 10.16288/j.yczz.20-045
朱医高1,2, 李军1,2, 逄越1,2(), 李庆伟1,2()
收稿日期:
2020-02-20
修回日期:
2020-06-28
出版日期:
2020-09-20
发布日期:
2020-08-17
通讯作者:
逄越,李庆伟
E-mail:pangyue01@163.com;liqw@263.net
作者简介:
朱医高,在读硕士研究生,专业方向:微生物学。E-mail: 基金资助:
Yigao Zhu1,2, Jun Li1,2, Yue Pang1,2(), Qingwei Li1,2()
Received:
2020-02-20
Revised:
2020-06-28
Online:
2020-09-20
Published:
2020-08-17
Contact:
Pang Yue,Li Qingwei
E-mail:pangyue01@163.com;liqw@263.net
Supported by:
摘要:
七鳃鳗是现存的无颌类脊椎动物代表之一,距今已有5亿多年的历史,素有“活化石”之称。古老的七鳃鳗凭借独特的功能特征和进化地位吸引了众多学者的注意:在免疫系统方面,七鳃鳗具有不同于有颌类脊椎动物的适应性免疫系统和免疫分子;基于进化地位,七鳃鳗作为一种重要的发育进化模式动物可以解析脊椎动物进化保守性和衍生的特点,七鳃鳗大脑皮层为哺乳动物大脑皮层的进化提供蓝图; 在疾病研究中,七鳃鳗作为脊髓损伤功能再生和胆道闭锁病理模型取得了阶段性成果。本文结合国内外相关报道,详细介绍了七鳃鳗的免疫分子、发育进化以及生理结构的研究进展,以期为深入开展七鳃鳗在动物遗传发育和生物医学领域的研究产生积极地推动作用。
朱医高, 李军, 逄越, 李庆伟. 七鳃鳗:生物进化和疾病研究的重要模式动物[J]. 遗传, 2020, 42(9): 847-857.
Yigao Zhu, Jun Li, Yue Pang, Qingwei Li. Lamprey: an important animal model of evolution and disease research[J]. Hereditas(Beijing), 2020, 42(9): 847-857.
[1] | Li QW, Liu X. Lamprey research of China. Beijing: Science Press, 2011, 1-3. |
李庆伟, 刘欣 . 中国七鳃鳗研究. 北京: 科学出版社, 2011, 1-3. | |
[2] | Maitland PS, Renaud CB, Quintella BR, Close DA, Docker MF. Conservation of native lampreys. In: Docker MF eds. Lampreys: biology, conservation and control. Vol 1. Netherlands: Springer Publishing, 2015, 375-428. |
[3] | Gai ZK, Zhu M. Evolutionary history of agnathans and their fossil records in China. Shanghai: Science Press, 2017,12. |
盖志琨, 朱敏 . 无颌类演化史与中国化石记录. 上海: 上海科学技术出版社, 2017,12. | |
[4] | Potter IC, Gill HS, Renaud CB, Haoucher D. The taxonomy, phylogeny, and distribution of lampreys. In: Docker MF eds. Lampreys: biology, conservation and control. Vol 1. Netherlands: Springer Publishing, 2015, 35-71. |
[5] | Morii M, Mezaki Y, Yoshikawa K, Miura M, Imai K, Hebiguchi T, Watanabe R, Asanuma Y, Yoshino H, Senoo H. How do lampreys avoid cholestasis after bile duct degeneration? I How do lampreys avoid cholestasis after bile duct degeneration, Lucagioli S, eds. Cholestasis. England: IntechOpen Publishing, 2012, 81-98. |
[6] |
Barany A, Shaughnessy CA, Fuentes J, Mancera JM, McCormick SD, . Osmoregulatory role of the intestine in the sea lamprey (Petromyzon marinus). Am J Physiol Regul Integr Comp Physiol, 2020,318(2):R410-R417.
doi: 10.1152/ajpregu.00033.2019 pmid: 31747320 |
[7] |
Kujawa R, Fopp-Bayat D, Cejko BI, Kucharczyk D, Glińska-Lewczuk K, Obolewski K, Biegaj M . Rearing river lamprey Lampetra fluviatilis (L.) larvae under controlled conditions as a tool for restitution of endangered populations. Aquacult Int, 2017,26(1):27-36.
doi: 10.1007/s10499-017-0190-6 |
[8] |
Scott AM, Zhang Z, Jia L, Li K, Zhang QH, Dexheimer T, Ellsworth E, Ren JF, Chung-Davidson YW, Zu Y, Neubig RR, Li WM . Spermine in semen of male sea lamprey acts as a sex pheromone. PLoS Biol, 2019,17(7):e3000332.
doi: 10.1371/journal.pbio.3000332 pmid: 31287811 |
[9] |
Sorensen PW, Fine JM, Dvornikovs V, Jeffrey CS, Shao F, Wang JZ, Vrieze LA, Anderson KR, Hoye TR . Mixture of new sulfated steroids functions as a migratory pheromone in the sea lamprey. Nat Chem Biol, 2005,1(6):324-328.
doi: 10.1038/nchembio739 pmid: 16408070 |
[10] |
Nikitina N, Bronner-Fraser M, Sauka-Spengler T,. The sea lamprey Petromyzon marinus: a model for evolutionary and developmental biology. Cold Spring Harb Protoc, 2009, 2009(1): pdb.emo113.
doi: 10.1101/pdb.prot5117 pmid: 20147012 |
[11] |
Wu FF, Ma N, Chen LY, Su P, Li QW . Cloning and expression of VLRB of Lampetra japonica and generation of the corresponding monoclonal antibodies. Hereditas (Beijing), 2012,34(4):465-471.
doi: 10.3724/SP.J.1005.2012.00465 |
吴芬芳, 马宁, 陈立勇, 苏鹏, 李庆伟 . 日本七鳃鳗(Lampetra japonica)VLRB的克隆表达及单克隆抗体制备. 遗传, 2012,34(4):465-471.
doi: 10.3724/SP.J.1005.2012.00465 |
|
[12] | Liu X, Zhang J, Zhao CH, Li TS, Wang JH, Li QW . The identification and verification of species-specific microRNAs and their precursors in Lampetra japonica. Hereditas (Beijing), 2015,37(3):283-291. |
刘欣, 张洁, 赵春晖, 李铁松, 王继红, 李庆伟 . 日本七鳃鳗物种特异性microRNAs及其前体识别与验证. 遗传, 2015,37(3):283-291. | |
[13] | Liu X, Song XY, Zhang XP, Han YL, Zhu T, Xiao R, Li QW . Genetic basis of immune response of lymphocyte- like cells in the mucosal immune system of Lampetra japonica. Hereditas(Beijing), 2015,37(11):1149-1159. |
刘欣, 宋雪萤, 张晓萍, 韩英伦, 朱婷, 肖蓉, 李庆伟 . 七鳃鳗鳃黏膜免疫系统类淋巴细胞免疫应答遗传基础. 遗传, 2015,37(11):1149-1159. | |
[14] | Li X, Qu CM, Han YL, Liu X, Li QW . Identification, recombinant expression and immunological study of Lja-SHP2 in Lampetra japonica. Hereditas(Beijing), 2020,42(2):183-193. |
李歆, 渠成名, 韩英伦, 刘欣, 李庆伟 . 七鳃鳗Lja-SHP2分子鉴定、重组表达及免疫学研究. 遗传, 2020,42(2):183-193. | |
[15] |
Kardamakis AA, Pérez-Fernández J, Grillner S . Spatiotemporal interplay between multisensory excitation and recruited inhibition in the lamprey optic tectum. eLife, 2016,5:e16472.
doi: 10.7554/eLife.16472 pmid: 27635636 |
[16] |
von Twickel A, Kowatschew D, Saltürk M, Schauer M, Robertson B, Korsching S, Walkowiak W, Grillner S, Pérez-Fernández J . Individual dopaminergic neurons of lamprey SNc/VTA project to both the striatum and optic tectum but restrict co-release of glutamate to striatum only. Curr Biol, 2019,29(4):677-685.
doi: 10.1016/j.cub.2019.01.004 pmid: 30713108 |
[17] |
Kasahara M . Variable lymphocyte receptors: A current overview. Results Probl Cell Differ, 2015,57:175-192.
doi: 10.1007/978-3-319-20819-0_8 pmid: 26537382 |
[18] |
Zhang HX, Ravi V, Tay BH, Tohari S, Pillai NE, Prasad A, Lin Q, Brenner S, Venkatesh B . Lampreys, the jawless vertebrates, contain only two ParaHox gene clusters. Proc Natl Acad Sci USA, 2017,114(34):9146-9151.
doi: 10.1073/pnas.1704457114 pmid: 28784804 |
[19] |
Pascual-Anaya J, Sato I, Sugahara F, Higuchi S, Paps J, Ren YD, Takagi W, Ruiz-Villalba A, Ota KG, Wang W, Kuratani S . Hagfish and lamprey Hox genes reveal conservation of temporal colinearity in vertebrates. Nat Ecol Evol, 2018,2(5):859-866.
doi: 10.1038/s41559-018-0526-2 pmid: 29610468 |
[20] |
Suzuki DG, Grillner S . The stepwise development of the lamprey visual system and its evolutionary implications. Biol Rev Camb Philos Soc, 2018,93(3):1461-1477.
doi: 10.1111/brv.12403 pmid: 29488315 |
[21] |
Han BW, Herrin BR, Cooper MD, Wilson IA . Antigen recognition by variable lymphocyte receptors. Science, 2008,321(5897):1834-1837.
doi: 10.1126/science.1162484 pmid: 18818359 |
[22] | Fain GL . Lamprey vision: Photoreceptors and organization of the retina. Semin Cell Dev Biol, 2019, 9: S1084-9521(19) 30258-7. |
[23] |
Smith JJ, Kuraku S, Holt C, Sauka-Spengler T, Jiang N, Campbell MS, Yandell MD, Manousaki T, Meyer A, Bloom OE, Morgan JR, Buxbaum JD, Sachidanandam R, Sims C, Garruss AS, Cook M, Krumlauf R, Wiedemann LM, Sower SA, Decatur WA, Hall JA, Amemiya CT, Saha NR, Buckley KM, Rast JP, Das S, Hirano M, McCurley N, Guo P, Rohner N, Tabin CJ, Piccinelli P, Elgar G, Ruffier M, Aken BL, Searle SM, Muffato M, Pignatelli M, Herrero J, Jones M, Brown CT, Chung-Davidson YW, Nanlohy KG, Libants SV, Yeh CY, McCauley DW, Langeland JA, Pancer Z, Fritzsch B, de Jong PJ, Zhu BL, Fulton LL, Theising B, Flicek P, Bronner ME, Warren WC, Clifton SW, Wilson RK, Li WM. Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nat Genet, 2013,45(4):415-421e2.
doi: 10.1038/ng.2568 pmid: 23435085 |
[24] |
Mccauley DW, Docker MF, Steve W, Li WM . Lampreys as diverse model organisms in the genomics era. Bioscience. 2015,65(11):1046-1056.
doi: 10.1093/biosci/biv139 pmid: 26951616 |
[25] |
Rodicio MC, Barreiro-Iglesias A . Lampreys as an animal model in regeneration studies after spinal cord injury. Rev Neurol, 2012,55(3):157-166.
pmid: 22825976 |
[26] |
Youson JH . Biliary atresia in lampreys. Adv Vet Sci Comp Med, 1993,37:197-255.
pmid: 8273515 |
[27] |
Pancer Z, Mayer WE, Klein J, Cooper MD . Prototypic T cell receptor and CD4-like coreceptor are expressed by lymphocytes in the agnathan sea lamprey. Proc Natl Acad Sci USA, 2004,101(36):13273-13278.
doi: 10.1073/pnas.0405529101 pmid: 15328402 |
[28] |
Guo P, Hirano M, Herrin BR, Li JX, Yu CL, Sadlonova A, Cooper MD . Dual nature of the adaptive immune system in lampreys. Nature, 2009,459(7248):796-801.
doi: 10.1038/nature08068 pmid: 19474790 |
[29] |
Alder MN, Herrin BR, Sadlonova A, Stockard CR, Grizzle WE, Gartland LA, Gartland GL, Boydston JA, Turnbough CL Jr, Cooper MD . Antibody responses of variable lymphocyte receptors in the lamprey. Nat Immunol, 2008,9(3):319-327.
doi: 10.1038/ni1562 pmid: 18246071 |
[30] |
Kasahara M . Variable lymphocyte receptors: A current overview. Results Probl Cell Differ, 2015,57:175-192.
doi: 10.1007/978-3-319-20819-0_8 pmid: 26537382 |
[31] |
Alder MN, Rogozin IB, Iyer LM, Glazko GV, Cooper MD, Pancer Z . Diversity and function of adaptive immune receptors in a jawless vertebrate. Science, 2005,310(5756):1970-1973.
doi: 10.1126/science.1119420 pmid: 16373579 |
[32] |
Kim HM, Oh SC, Lim KJ, Kasamatsu J, Heo JY, Park BS, Lee H, Yoo OJ, Kasahara M, Lee JO . Structural diversity of the hagfish variable lymphocyte receptors. J Biol Chem, 2007,282(9):6726-6732.
doi: 10.1074/jbc.M608471200 pmid: 17192264 |
[33] |
Herrin BR, Alder MN, Roux KH, Sina C, Ehrhardt GR, Boydston JA, Turnbough CL Jr, Cooper MD . Structure and specificity of lamprey monoclonal antibodies. Proc Natl Acad Sci USA, 2008,105(6):2040-2045.
doi: 10.1073/pnas.0711619105 pmid: 18238899 |
[34] |
Boehm T, McCurley N, Sutoh Y, Schorpp M, Kasahara M, Cooper MD. VLR-based adaptive immunity. Annu Rev Immunol, 2012,30(1):203-220.
doi: 10.1146/annurev-immunol-020711-075038 |
[35] |
Hirano M, Guo P, McCurley N, Schorpp M, Das S, Boehm T, Cooper MD,. Evolutionary implications of a third lymphocyte lineage in lampreys. Nature, 2013,501(7467):435-438.
doi: 10.1038/nature12467 |
[36] |
Tasumi S, Velikovsky CA, Xu G, Gai SA, Wittrup KD, Flajnik MF, Mariuzza RA, Pancer Z . High-affinity lamprey VLRA and VLRB monoclonal antibodies. Proc Natl Acad Sci USA, 2009,106(31):12891-12896.
doi: 10.1073/pnas.0904443106 pmid: 19625627 |
[37] |
Das S, Sutoh Y, Cancro MP, Rast JP, Han Q, Bommakanti G, Cooper MD, Hirano M . Ancient BCMA-like genes herald B Cell regulation in lampreys. J Immunol, 2019,203(11):2909-2916.
doi: 10.4049/jimmunol.1900026 pmid: 31666307 |
[38] |
Liang J, Liu X, Wu FF, Li QW . Progress of adaptive immunity system of agnathan vertebrate. Hereditas (Beijing), 2009,31(10):969-976.
doi: 10.3724/SP.J.1005.2009.00969 |
梁佼, 刘欣, 吴芬芳, 李庆伟 . 无颌类脊椎动物适应性免疫系统的研究进展. 遗传, 2009,31(10):969-976.
doi: 10.3724/SP.J.1005.2009.00969 |
|
[39] | Liu CJ, Huang HF, Ma F, Liu X, Li QW . The evolution of adaptive immunity system of agnathan vertebrates. Hereditas(Beijing), 2008,30(1):13-19. |
刘岑杰, 黄惠芳, 马飞, 刘欣, 李庆伟 . 无颌类脊椎动物适应性免疫系统的进化. 遗传, 2008,30(1):13-19. | |
[40] |
Kawai T, Akira S . Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity, 2011,34(5):637-650.
doi: 10.1016/j.immuni.2011.05.006 |
[41] |
Liu Q, Ding JL . The molecular mechanisms of TLR- signaling cooperation in cytokine regulation. Immunol Cell Biol, 2016,94(6):538-542.
doi: 10.1038/icb.2016.18 pmid: 26860369 |
[42] |
Wu FF, Chen LY, Liu X, Wang HY, Su P, Han YL, Feng B, Qiao X, Zhao J, Ma N, Liu HJ, Zheng Z, Li QW . Lamprey variable lymphocyte receptors mediate complement- dependent cytotoxicity. J Immunol, 2013,190(3):922-930.
doi: 10.4049/jimmunol.1200876 pmid: 23293356 |
[43] |
Han YL, Pang Y, Yu T, Xiao R, Shi BY, Su P, Liu X, Li QW . Lamprey serum can kill HeLa and NB4 tumor cells. Acta Biochim Biophys Sin (Shanghai), 2014,46(7):623-626.
doi: 10.1093/abbs/gmu039 |
[44] |
Pang Y, Wang SY, Ba W, Li QW . Cell secretion from the adult lamprey supraneural body tissues possesses cytocidal activity against tumor cells. Springerplus, 2015,4:569.
doi: 10.1186/s40064-015-1270-6 pmid: 26543704 |
[45] |
Pang Y, Li CZ, Wang YS, Ba W, Yu T, Pei GY, Bi D, Liang HF, Pan X, Zhu T, Gou M, Han YL, Li QW . A novel protein derived from lamprey supraneural body tissue with efficient cytocidal actions against tumor cells. Cell Commun Signal, 2017,15(1):42.
doi: 10.1186/s12964-017-0198-6 pmid: 29037260 |
[46] |
Chi XY, Su P, Bi D, Tai Z, Li YY, Pang Y, Li QW . Lamprey immune protein-1 (LIP-1) from Lampetra japonica induces cell cycle arrest and cell death in HeLa cells. Fish Shellfish Immunol, 2018,75:295-300.
doi: 10.1016/j.fsi.2018.01.052 pmid: 29410138 |
[47] |
Pang Y, Gou M, Yang K, Lu JL, Han YL, Teng HM, Li CZ, Wang HN, Liu CG, Zhang KJ, Yang YL, Li QW . Crystal structure of a cytocidal protein from lamprey and its mechanism of action in the selective killing of cancer cells. Cell Commun Signal, 2019,17(1):54.
doi: 10.1186/s12964-019-0358-y pmid: 31133022 |
[48] |
Smith JJ, Baker C, Eichler EE, Amemiya CT . Genetic consequences of programmed genome rearrangement. Curr Biol, 2012,22(16):1524-1529.
doi: 10.1016/j.cub.2012.06.028 |
[49] |
Timoshevskiy VA, Herdy JR, Keinath MC, Smith JJ . Cellular and molecular features of developmentally programmed genome rearrangement in a vertebrate (sea lamprey: Petromyzon marinus). PLoS Genet, 2016,12(6):e1006103.
doi: 10.1371/journal.pgen.1006103 pmid: 27341395 |
[50] |
Smith JJ, Timoshevskaya N, Ye CX, Holt C, Keinath MC, Parker HJ, Cook ME, Hess JE, Narum SR, Lamanna F, Kaessmann H, Timoshevskiy VA, Waterbury CKM, Saraceno C, Wiedemann LM, Robb SMC, Baker C, Eichler EE, Hockman D, Sauka-Spengler T, Yandell M, Krumlauf R, Elgar G, Amemiya CT . The sea lamprey germline genome provides insights into programmed genome rearrangement and vertebrate evolution. Nat Genet, 2018,50(2):270-277.
doi: 10.1038/s41588-017-0036-1 pmid: 29358652 |
[51] |
Wald G, Riggs A . The hemoglobin of the sea lamprey, Petromyzon marinus. J Gen Physiol, 1951,35(1):45-53.
doi: 10.1085/jgp.35.1.45 pmid: 14873920 |
[52] |
Doolittle RF, Surgenor DM . Blood coagulation in fish. Am J Physiol, 1962,203:964-970.
doi: 10.1152/ajplegacy.1962.203.5.964 pmid: 22103034 |
[53] |
Hanumanthaiah R, Day K, Jagadeeswaran P . Comprehensive analysis of blood coagulation pathways in teleostei: evolution of coagulation factor genes and identification of zebrafish factor VIIi. Blood Cells Mol Dis, 2002,29(1):57-68.
doi: 10.1006/bcmd.2002.0534 pmid: 12482404 |
[54] |
Doolittle RF . Bioinformatic characterization of genes and proteins involved in blood clotting in lampreys. J Mol Evol, 2015,81(3-4):121-130.
doi: 10.1007/s00239-015-9701-0 pmid: 26437661 |
[55] |
Dahn RD, Davis MC, Pappano WN, Shubin NH . Sonic hedgehog function in chondrichthyan fins and the evolution of appendage patterning. Nature, 2007,445(7125):311-3114.
doi: 10.1038/nature05436 pmid: 17187056 |
[56] |
Lettice LA, Heaney SJ, Purdie LA, Li L, de Beer P, Oostra BA, Goode D, Elgar G, Hill RE, de Graaff E. A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum Mol Genet, 2003,12(14):1725-1735.
doi: 10.1093/hmg/ddg180 pmid: 12837695 |
[57] |
Sagai T, Hosoya M, Mizushina Y, Tamura M, Shiroishi T . Elimination of a long-range cis-regulatory module causes complete loss of limb-specific Shh expression and truncation of the mouse limb. Development, 2005,132(4):797-803.
doi: 10.1242/dev.01613 pmid: 15677727 |
[58] |
Zhu YG, Pang Y, Li QW . Molecular evolution of the tnfr gene family and expression profiles in response to pathogens in lamprey(Lethenteron reissneri). Fish Shellfish Immunol, 2020,96:336-349.
doi: 10.1016/j.fsi.2019.11.037 pmid: 31759079 |
[59] |
Murakami Y, Kuratani S . Brain segmentation and trigeminal projections in the lamprey; with reference to vertebrate brain evolution. Brain Res Bull, 2008,75(2-4):218-224.
doi: 10.1016/j.brainresbull.2007.10.057 pmid: 18331874 |
[60] |
Nieuwenhuys R . The brain of the lamprey in a comparative perspective. Ann N Y Acad Sci, 1977,299:97-145.
doi: 10.1111/j.1749-6632.1977.tb41902.x pmid: 280225 |
[61] | Strominger NL, Demarest RJ, Laemle LB. Noback's human nervous system. 7nd ed. America: Humana Press, 2012, 429-451. |
[62] |
Shipp S . Structure and function of the cerebral cortex. Curr Biol, 2007,17(12):R443-R449.
doi: 10.1016/j.cub.2007.03.044 pmid: 17580069 |
[63] |
Suryanarayana SM, Pérez-Fernández J, Robertson B, Grillner S . The evolutionary origin of visual and somatosensory representation in the vertebrate pallium. Nat Ecol Evol, 2020,4(4):639-651.
doi: 10.1038/s41559-020-1137-2 pmid: 32203472 |
[64] |
Lemon RN . Descending pathways in motor control. Annu Rev Neurosci, 2008,31:195-218.
doi: 10.1146/annurev.neuro.31.060407.125547 pmid: 18558853 |
[65] |
Ocaña FM, Suryanarayana SM, Saitoh K, Kardamakis AA, Capantini L, Robertson B, Grillner S . The lamprey pallium provides a blueprint of the mammalian motor projections from cortex. Curr Biol, 2015,25(4):413-423.
doi: 10.1016/j.cub.2014.12.013 pmid: 25619762 |
[66] |
Suryanarayana SM, Robertson B, Wallén P, Grillner S . The lamprey pallium provides a blueprint of the mammalian layered cortex. Curr Biol, 2017,27(21):3264-3277.
doi: 10.1016/j.cub.2017.09.034 pmid: 29056451 |
[67] |
Robertson B, Auclair F, Ménard A, Grillner S, Dubuc R . GABA distribution in lamprey is phylogenetically conserved. J Comp Neurol, 2007,503(1):47-63.
doi: 10.1002/cne.21348 pmid: 17480011 |
[68] | Ulinski PS. The cerebral cortex of reptiles. In: Jones EG, Peters A, eds. Cerebral cortex. New York: Plenum, 1990, 139-216. |
[69] |
Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C . Interneurons of the neocortical inhibitory system. Nat Rev Neurosci, 2004,5(10):793-807.
doi: 10.1038/nrn1519 pmid: 15378039 |
[70] |
Holmes D . Spinal-cord injury: spurring regrowth. Nature, 2017,552(7684):S49.
doi: 10.1038/d41586-017-07550-9 pmid: 32080444 |
[71] |
Romaus-Sanjurjo D, Rodicio MC, Barreiro-Iglesias A . Gamma-aminobutyric acid (GABA) promotes recovery from spinal cord injury in lampreys: role of GABA receptors and perspective on the translation to mammals. Neural Regen Res, 2019,14(10):1695-1696.
doi: 10.4103/1673-5374.257515 pmid: 31169176 |
[72] |
Fernández-López B, Valle-Maroto SM, Barreiro-Iglesias A, Rodicio MC . Neuronal release and successful astrocyte uptake of aminoacidergic neurotransmitters after spinal cord injury in lampreys. Glia, 2014,62(8):1254-1269.
doi: 10.1002/glia.22678 |
[73] |
Herman PE, Papatheodorou A, Bryant SA, Waterbury CKM, Herdy JR, Arcese AA, Buxbaum JD, Smith JJ, Morgan JR, Bloom O . Highly conserved molecular pathways, including Wnt signaling, promote functional recovery from spinal cord injury in lampreys. Sci Rep, 2018,8(1):742.
doi: 10.1038/s41598-017-18757-1 pmid: 29335507 |
[74] |
Romaus-Sanjurjo D, Ledo-García R, Fernández-López B, Hanslik K, Morgan JR, Barreiro-Iglesias A, Rodicio MC . GABA promotes survival and axonal regeneration in identifiable descending neurons after spinal cord injury in larval lampreys. Cell Death Dis, 2018,9(6):663.
doi: 10.1038/s41419-018-0704-9 pmid: 29950557 |
[75] |
Sobrido-Cameán D, Fernández-López B, Pereiro N, Lafuente A, Rodicio MC, Barreiro-Iglesias A . Taurine promotes axonal regeneration after a complete spinal cord injury in lampreys. J Neurotrauma, 2020,37(6):899-903.
doi: 10.1089/neu.2019.6604 pmid: 31469029 |
[76] |
Youson JH, Sidon EW . Lamprey biliary atresia: first model system for the human condition? Experientia, 1978,34(8):1084-1086.
doi: 10.1007/BF01915363 pmid: 700037 |
[77] |
Chung-Davidson YW, Ren J, Yeh CY, Bussy U, Huerta B, Davidson PJ, Whyard S, Li WM . TGF-β signaling plays a pivotal role during developmental biliary atresia in sea lamprey (Petromyzon marinus). Hepatol Commun, 2019,4(2):219-234.
doi: 10.1002/hep4.1461 pmid: 32025607 |
[78] |
Peek WD, Sidon EW, Youson JH, Fisher MM . Fine structure of the liver in the larval lamprey, Petromyzon marinus L.; hepatocytes and sinusoids. Am J Anat, 1979,156(2):231-250.
doi: 10.1002/aja.1001560205 pmid: 506952 |
[79] |
Chung-Davidson YW, Yeh CY, Li WM . The sea lamprey as an etiological model for biliary atresia. Biomed Res Int, 2015,2015:832943.
doi: 10.1155/2015/832943 pmid: 26101777 |
[80] |
Cameron RG, Blendis LM, Neuman MG . Accumulation of macrophages in primary sclerosing cholangitis. Clin Biochem, 2001,34(3):195-201.
doi: 10.1016/S0009-9120(01)00215-6 |
[81] |
Attie AD, Scherer PE . Adipocyte metabolism and obesity. J Lipid Res, 2009,50(Suppl.):S395-S399.
doi: 10.1194/jlr.R800057-JLR200 |
[82] |
Cannon B, Nedergaard J . Brown adipose tissue: function and physiological significance. Physiol Rev, 2004,84(1):277-359.
doi: 10.1152/physrev.00015.2003 pmid: 14715917 |
[83] |
Fenzl A, Kiefer FW . Brown adipose tissue and thermogenesis. Horm Mol Biol Clin Investig, 2014,19(1):25-37.
doi: 10.1515/hmbci-2014-0022 pmid: 25390014 |
[84] |
Chung-Davidson YW, Priess MC, Yeh CY, Brant CO, Johnson NS, Li K, Nanlohy KG, Bryan MB, Brown CT, Choi J, Li WM . A thermogenic secondary sexual character in male sea lamprey. J Exp Biol, 2013,216(14):2702-2712.
doi: 10.1242/jeb.085746 |
[85] |
Heaton GM, Wagenvoord RJ, Kemp A Jr, Nicholls DG . Brown-adipose-tissue mitochondria: photoaffinity labelling of the regulatory site of energy dissipation. Eur J Biochem, 1978,82(2):515-521.
doi: 10.1111/j.1432-1033.1978.tb12045.x pmid: 624284 |
[86] |
Yoneshiro T, Aita S, Matsushita M, Kayahara T, Kameya T, Kawai Y, Iwanaga T, Saito M . Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Invest, 2013,123(8):3404-3408.
doi: 10.1172/JCI67803 |
[87] |
Townsend KL, Tseng YH . Brown fat fuel utilization and thermogenesis. Trends Endocrinol Metab, 2014,25(4):168-177.
doi: 10.1016/j.tem.2013.12.004 pmid: 24389130 |
[88] |
van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ . Cold-activated brown adipose tissue in healthy men. N Engl J Med, 2009,360(15):1500-1508.
doi: 10.1056/NEJMoa0808718 pmid: 19357405 |
[89] |
Bornfeldt KE, Tabas I . Insulin resistance, hyperglycemia, and atherosclerosis. Cell Metab, 2011,14(5):575-585.
doi: 10.1016/j.cmet.2011.07.015 |
[90] |
Montanari T, Pošćić N, Colitti M . Factors involved in white-to-brown adipose tissue conversion and in thermogenesis: a review. Obes Rev, 2017,18(5):495-513.
doi: 10.1111/obr.12520 pmid: 28187240 |
[91] |
Kumar S, Hedges SB . A molecular timescale for vertebrate evolution. Nature, 1998,392(6679):917-920.
doi: 10.1038/31927 pmid: 9582070 |
[1] | 高菲, 王煜, 杜嘉祥, 杜旭光, 赵建国, 潘登科, 吴森, 赵要风. 遗传修饰猪模型在生物医学及农业领域研究进展及应用[J]. 遗传, 2023, 45(1): 6-28. |
[2] | 姜明亮, 郎红, 李晓楠, 祖野, 赵靖, 彭沈凌, 刘振, 战宗祥, 朴钟云. 植物孤基因研究进展[J]. 遗传, 2022, 44(8): 682-694. |
[3] | 杨恒, 逄越, 李庆伟. 七鳃鳗胆道闭锁过程中胆汁酸耐受机制研究进展[J]. 遗传, 2022, 44(1): 59-67. |
[4] | 巴恒星, 胡鹏飞, 李春义. 鹿科动物基因组学研究进展[J]. 遗传, 2021, 43(4): 308-322. |
[5] | 吕孟冈, 刘艾嘉, 李庆伟, 苏鹏. RHR转录因子家族起源、功能以及进化机制的研究进展[J]. 遗传, 2021, 43(3): 215-225. |
[6] | 章誉兴, 吴宏, 于黎. 哺乳动物毛色调控机制及其适应性进化研究进展[J]. 遗传, 2021, 43(2): 118-133. |
[7] | 罗鑫, 宿兵. 三维基因组分析点亮人类大脑进化之谜[J]. 遗传, 2021, 43(2): 105-107. |
[8] | 胡风越, 王克剑. STEME系统:一种助力体内定向进化的新工具[J]. 遗传, 2020, 42(3): 231-235. |
[9] | 唐连超, 谷峰. CRISPR-Cas基因编辑系统升级:聚焦Cas蛋白和PAM[J]. 遗传, 2020, 42(3): 236-249. |
[10] | 梅志超, 位竹君, 于佳慧, 冀凤丹, 解莉楠. 多组学关联分析揭示表观等位基因在拟南芥环境适应性进化中的作用及机制[J]. 遗传, 2020, 42(3): 321-331. |
[11] | 李歆, 渠成名, 韩英伦, 刘欣, 李庆伟. 七鳃鳗Lja-SHP2分子鉴定、重组表达及免疫学研究[J]. 遗传, 2020, 42(2): 183-193. |
[12] | 彭威, 冯蒙洁, 陈皓, 韩宝瑜. 双翅目昆虫基因组研究进展[J]. 遗传, 2020, 42(11): 1093-1109. |
[13] | 何超,沈文龙,李平,张彦,曾晶,殷作明,赵志虎. Alu元件在染色质三维结构层次上的生物信息学分析[J]. 遗传, 2019, 41(3): 254-261. |
[14] | 孟玉,杨若林. 基于基因家族大小的比较研究脊椎动物的适应性进化[J]. 遗传, 2019, 41(2): 158-174. |
[15] | 黄耀强,李国玲,杨化强,吴珍芳. 基因编辑猪在生物医学研究中的应用[J]. 遗传, 2018, 40(8): 632-646. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: