遗传 ›› 2025, Vol. 47 ›› Issue (2): 200-210.doi: 10.16288/j.yczz.24-165
收稿日期:
2024-06-06
修回日期:
2024-08-02
出版日期:
2025-02-20
发布日期:
2024-08-21
通讯作者:
陈小舒,教授,博士生导师,研究方向:分子进化。E-mail: chenxshu3@mail.sysu.edu.cn基金资助:
Received:
2024-06-06
Revised:
2024-08-02
Published:
2025-02-20
Online:
2024-08-21
Supported by:
摘要:
性染色体的起源与演化是生物学领域长期关注的研究方向,动物界研究最多的两种性染色体系统是XY系统和ZW系统。Y/W染色体退化导致性连锁基因沉默和缺失,与常染色体基因以及同配型(XX/ZZ)的性连锁基因相比,异配型(XY/ZW)的性连锁基因剂量减少。针对性染色体与常染色体的剂量失衡问题,目前已经提出了多种模型解释剂量补偿的进化机制。基于性染色体剂量效应研究的复杂性,本文首先总结了哺乳动物的转录组、蛋白质组、单倍体、单细胞等多个角度的研究结果,随后在多物种中总结了性染色体剂量效应在多个系统发育分支情况,最后归纳了剂量效应的理论模型以及研究展望。
陈小舒, 陈家璧. 动物性染色体剂量补偿[J]. 遗传, 2025, 47(2): 200-210.
Xiaoshu Chen, Jiabi Chen. Dosage compensation of sex chromosomes in animals[J]. Hereditas(Beijing), 2025, 47(2): 200-210.
表1
动物中性染色体剂量效应的S∶AA比率"
物种 | 所有基因 | 一对一同源物基因 | ||
---|---|---|---|---|
S∶AA比率 | 是否存在剂量补偿 | S∶AA比率 | 是否存在剂量补偿 | |
人类(Homo sapiens) | 0.52* | 否 | 0.55* | 否 |
黑猩猩(Pan troglodytes) | 0.60 | 否 | 0.42* | 否 |
大猩猩(Gorilla gorilla) | 0.56* | 否 | 0.34 | 否 |
苏门答腊猩猩(Pongo abelii) | 0.46 | 否 | - | - |
猕猴(Macaca mulatta) | 0.46* | 否 | 0.43* | 否 |
狒狒(Papio anubis) | 0.58 | 否 | 0.53* | 否 |
绿猴(Chlorocebus sabaeus) | 0.61* | 否 | 0.58 | 否 |
狨猴(Callithrix jacchus) | 0.53* | 否 | 0.41* | 否 |
小鼠(Mus musculus) | 0.47* | 否 | 0.55* | 否 |
家鼠(Rattus norvegicus) | 0.56* | 否 | 0.40* | 否 |
兔(Oryctolagus cuniculus) | 0.37 | 否 | - | - |
羊(Ovis aries) | 0.59 | 否 | 0.55* | 否 |
牛(Bos taurus) | 0.49* | 否 | 0.42* | 否 |
猪(Sus scrofa) | 0.75 | 否 | 0.68* | 否 |
狗(Canis familiaris) | 0.53* | 否 | 0.40 | 否 |
猫(Felis catus) | 0.54* | 否 | 0.48* | 否 |
马(Equus caballus) | 0.54* | 否 | 0.40* | 否 |
负鼠(Monodelphis domestica) | 0.95# | 是 | 0.47* | 否 |
斑胸草雀(Taeniopygia guttata) | 0.63* | 否 | - | - |
火鸡(Meleagris gallopavo) | 0.55* | 否 | 0.45* | 否 |
家鸡(Gallus gallus) | 0.44* | 否 | 0.67* | 否 |
青鳉(Oryzias latipes) | 0.85 | 是 | 1.06# | 是 |
三棘刺鱼(Gastrosteus acureatus) | 0.80# | 是 | 0.91# | 是 |
疟蚊(Anopheles gambiae) | 1.00# | 是 | 0.98# | 是 |
非洲果蝇(Drosophila yakuba) | 0.92# | 是 | 1.05# | 是 |
黑腹果蝇(Drosophila melanogaster) | 1.06# | 是 | 1.04# | 是 |
拟果蝇(Drosophila simulans) | 0.93# | 是 | - | - |
[1] | Smith JM. The Evolution of Sex. Vol.4. Cambridge University Press, 1978. |
[2] |
Ezaz T, Stiglec R, Veyrunes F, Marshall Graves JA. Relationships between vertebrate ZW and XY sex chromosome systems. Curr Biol, 2006, 16(17): R736-743.
doi: 10.1016/j.cub.2006.08.021 pmid: 16950100 |
[3] |
Naurin S, Hansson B, Bensch S, Hasselquist D. Why does dosage compensation differ between XY and ZW taxa? Trends Genet, 2010, 26(1): 15-20.
doi: 10.1016/j.tig.2009.11.006 pmid: 19963300 |
[4] | Papp B, Pál C, Hurst LD. Dosage sensitivity and the evolution of gene families in yeast. Nature, 2003, 424(6945): 194-197. |
[5] |
Pessia E, Makino T, Bailly-Bechet M, McLysaght A, Marais GA. Mammalian X chromosome inactivation evolved as a dosage-compensation mechanism for dosage-sensitive genes on the X chromosome. Proc Natl Acad Sci USA, 2012, 109(14): 5346-5351.
doi: 10.1073/pnas.1116763109 pmid: 22392987 |
[6] |
Pessia E, Engelstadter J, Marais GA. The evolution of X chromosome inactivation in mammals: the demise of Ohno's hypothesis? Cell Mol Life Sci, 2014, 71(8): 1383-1394.
doi: 10.1007/s00018-013-1499-6 pmid: 24173285 |
[7] |
Charlesworth B. Model for evolution of Y chromosomes and dosage compensation. Proc Natl Acad Sci USA, 1978, 75(11): 5618-5622.
doi: 10.1073/pnas.75.11.5618 pmid: 281711 |
[8] |
Charlesworth B. The evolution of chromosomal sex determination and dosage compensation. Curr Biol, 1996, 6(2): 149-162.
doi: 10.1016/s0960-9822(02)00448-7 pmid: 8673462 |
[9] |
Straub T, Becker PB. Dosage compensation: the beginning and end of generalization. Nat Rev Genet, 2007, 8(1): 47.
pmid: 17173057 |
[10] | Ohno S. Sex Chromosomes and Sex-Linked Genes. Springer-Verlag Berlin, 1967. |
[11] |
Payer B, Lee J. X chromosome dosage compensation: how mammals keep the balance. Annu Rev Genet, 2008, 42: 733-772.
doi: 10.1146/annurev.genet.42.110807.091711 pmid: 18729722 |
[12] |
Nguyen DK, Disteche CM. Dosage compensation of the active X chromosome in mammals. Nat Genet, 2006, 38(1): 47-53.
doi: 10.1038/ng1705 pmid: 16341221 |
[13] |
Xiong YY, Chen XS, Chen ZD, Wang XZ, Shi SH, Wang XQ, Zhang JZ, He XL. RNA sequencing shows no dosage compensation of the active X-chromosome. Nat Genet, 2010, 42(12): 1043-1047.
doi: 10.1038/ng.711 pmid: 21102464 |
[14] |
Chen XS, Zhang JZ. The X to autosome expression ratio in haploid and diploid human embryonic stem cells. Mol Biol Evol, 2016, 33(12): 3104-3107.
pmid: 27593371 |
[15] | Julien P, Brawand D, Soumillon M, Necsulea A, Liechti A, Schütz F, Daish T, Grützner F, Kaessmann H. Mechanisms and evolutionary patterns of mammalian and avian dosage compensation. PLoS Biol, 2012, 10(5): e1001328. |
[16] |
Chen XS, Zhang JZ. No X-chromosome dosage compensation in human proteomes. Mol Biol Evol, 2015, 32(6): 1456-1460.
doi: 10.1093/molbev/msv036 pmid: 25697342 |
[17] |
Marin R, Cortez D, Lamanna F, Pradeepa MM, Leushkin E, Julien P, Liechti A, Halbert J, Brüning T, Mössinger K, Trefzer T, Conrad C, Kerver HN, Wade J, Tschopp P, Kaessmann H. Convergent origination of a Drosophila-like dosage compensation mechanism in a reptile lineage. Genome Res, 2017, 27(12): 1974-1987.
doi: 10.1101/gr.223727.117 pmid: 29133310 |
[18] |
Lin FQ, Xing K, Zhang JZ, He XL. Expression reduction in mammalian X chromosome evolution refutes Ohno's hypothesis of dosage compensation. Proc Natl Acad Sci USA, 2012, 109(29): 11752-11757.
doi: 10.1073/pnas.1201816109 pmid: 22753487 |
[19] | He XL, Chen XS, Xiong YY, Chen ZD, Wang XZ, Shi SH, Wang XQ, Zhang JZ. He et al. reply. Nat Genet, 2011, 43(12): 1171. |
[20] |
Jue NK, Murphy MB, Kasowitz SD, Qureshi SM, Obergfell CJ, Elsisi S, Foley RJ, O'Neill RJ, O'Neill MJ. Determination of dosage compensation of the mammalian X chromosome by RNA-seq is dependent on analytical approach. BMC Genomics, 2013, 14: 150.
doi: 10.1186/1471-2164-14-150 pmid: 23497106 |
[21] | Vicoso B, Bachtrog D. Numerous transitions of sex chromosomes in Diptera. PLoS Biol, 2015, 13(4): e1002078. |
[22] | Nozawa M, Fukuda N, Ikeo K, Gojobori T. Tissue- and stage-dependent dosage compensation on the neo-X chromosome in Drosophila pseudoobscura. Mol Biol Evol, 2014, 31(3): 614-624. |
[23] |
Jiang XF, Biedler JK, Qi YM, Hall AB, Tu ZJ. Complete dosage compensation in anopheles stephensi and the evolution of sex-biased genes in mosquitoes. Genome Biol Evol, 2015, 7(7): 1914-1924.
doi: 10.1093/gbe/evv115 pmid: 26078263 |
[24] | Joshi SS, Meller VH. Satellite repeats identify X chromatin for dosage compensation in Drosophila melanogaster males. Curr Biol, 2017, 27(10): 1393-1402.e2. |
[25] |
Ellegren H, Hultin-Rosenberg L, Brunström B, Dencker L, Kultima K, Scholz B. Faced with inequality: chicken do not have a general dosage compensation of sex-linked genes. BMC Biology, 2007, 5: 40.
pmid: 17883843 |
[26] |
Itoh Y, Melamed E, Yang X, Kampf K, Wang S, Yehya N, Van Nas A, Replogle K, Band MR, Clayton DF, Schadt EE, Lusis AJ, Arnold AP. Dosage compensation is less effective in birds than in mammals. J Biol, 2007, 6(1): 2.
doi: 10.1186/jbiol53 pmid: 17352797 |
[27] |
Wolf JB, Bryk J. General lack of global dosage compensation in ZZ/ZW systems? Broadening the perspective with RNA-seq. BMC Genomics, 2011, 12: 91.
doi: 10.1186/1471-2164-12-91 pmid: 21284834 |
[28] |
Naurin S, Hansson B, Hasselquist D, Kim YH, Bensch S. The sex-biased brain: sexual dimorphism in gene expression in two species of songbirds. BMC Genomics, 2011, 12: 37.
doi: 10.1186/1471-2164-12-37 pmid: 21235773 |
[29] |
Wright AE, Zimmer F, Harrison PW, Mank JE. Conservation of regional variation in sex-specific sex chromosome regulation. Genetics, 2015, 201(2): 587-598.
doi: 10.1534/genetics.115.179234 pmid: 26245831 |
[30] | Chen H-C, Martinez JP, Zorita E, Meyerhans A, Filion GJ. Position effects influence HIV latency reversal. Nat Struct Mol Biol, 2017, 24(1): 47. |
[31] | Wheeler BS, Anderson E, Frøkjær-Jensen C, Bian Q, Jorgensen E, Meyer BJ. Chromosome-wide mechanisms to decouple gene expression from gene dose during sex-chromosome evolution. Elife, 2016, 5: e17365. |
[32] |
White MA, Kitano J, Peichel CL. Purifying selection maintains dosage-sensitive genes during degeneration of the threespine stickleback Y chromosome. Mol Biol Evol, 2015, 32(8): 1981-1995.
doi: 10.1093/molbev/msv078 pmid: 25818858 |
[33] |
Mank JE. Sex chromosome dosage compensation: definitely not for everyone. Trends Genet, 2013, 29(12): 677-683.
doi: 10.1016/j.tig.2013.07.005 pmid: 23953923 |
[34] |
Mullon C, Wright AE, Reuter M, Pomiankowski A, Mank JE. Evolution of dosage compensation under sexual selection differs between X and Z chromosomes. Nat Commun, 2015, 6: 7720.
doi: 10.1038/ncomms8720 pmid: 26212613 |
[35] | Lucchesi JC. The relationship between gene dosage, gene expression, and sex in Drosophila. Dev Genet, 1982, 3(4): 275-282. |
[36] |
Gupta V, Parisi M, Sturgill D, Nuttall R, Doctolero M, Dudko OK, Malley JD, Eastman PS, Oliver B. Global analysis of X-chromosome dosage compensation. J Biol, 2006, 5(1): 3.
pmid: 16507155 |
[37] |
Rugarli EI, Adler DA, Borsani G, Tsuchiya K, Franco B, Hauge X, Disteche C, Chapman V, Ballabio A. Different chromosomal localization of the Clcn4 gene in Mus spretus and C57BL/6J mice. Nat Genet, 1995, 10(4): 466-471.
doi: 10.1038/ng0895-466 pmid: 7670496 |
[38] |
Adler DA, Rugarli EI, Lingenfelter PA, Tsuchiya K, Poslinski D, Liggitt HD, Chapman VM, Elliott RW, Ballabio A Disteche CM. Evidence of evolutionary up-regulation of the single active X chromosome in mammals based on Clc4 expression levels in Mus spretus and Mus musculus. Proc Natl Acad Sci USA, 1997, 94(17): 9244-9248.
doi: 10.1073/pnas.94.17.9244 pmid: 9256467 |
[39] | Furlan G, Galupa R. Mechanisms of choice in X-chromosome inactivation. Cells, 2022, 11(3): 535. |
[40] |
Lin H, Halsall JA, Antczak P, O'Neill LP, Falciani F, Turner BM. Relative overexpression of X-linked genes in mouse embryonic stem cells is consistent with Ohno's hypothesis. Nat Genet, 2011, 43(12): 1169-1170.
doi: 10.1038/ng.992 pmid: 22120049 |
[41] |
Kharchenko PV, Xi RB, Park PJ. Evidence for dosage compensation between the X chromosome and autosomes in mammals. Nat Genet, 2011, 43(12): 1167-1169.
doi: 10.1038/ng.991 pmid: 22120048 |
[42] | Deng XX, Hiatt JB, Nguyen DK, Ercan S, Sturgill D, Hillier LW, Schlesinger F, Davis CA, Reinke VJ, Gingeras TR, Shendure J, Waterston RH, Oliver B, Lieb JD, Disteche CM. Evidence for compensatory upregulation of expressed X-linked genes in mammals, Caenorhabditis elegans and Drosophila melanogaster. Nat Genet, 2011, 43(12): 1179-1185. |
[43] |
Chen JB, Wang MH, He XL, Yang J-R, Chen XS. The evolution of sex chromosome dosage compensation in animals. J Genet Genomics, 2020, 47(11): 681-693.
doi: 10.1016/j.jgg.2020.10.005 pmid: 33579636 |
[44] |
Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet, 2012, 13(4): 227-232.
doi: 10.1038/nrg3185 pmid: 22411467 |
[45] | Sagi I, Chia G, Golan-Lev T, Peretz M, Weissbein U, Sui LN, Sauer MV, Yanuka O, Egli D, Benvenisty N. Derivation and differentiation of haploid human embryonic stem cells. Nature, 2016, 532(7597): 107-111. |
[46] | Yang J-R, Chen XS. Dosage sensitivity of X-linked genes in human embryonic single cells. BMC Genomics, 2019, 20(1): 42. |
[47] |
Petropoulos S, Edsgärd D, Reinius B, Deng QL, Panula SP, Codeluppi S, Plaza Reyes A, Linnarsson S, Sandberg R, Lanner F. Single-cell RNA-seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell, 2016, 165(4): 1012-1026.
doi: 10.1016/j.cell.2016.03.023 pmid: 27062923 |
[48] |
Kærn M, Elston TC, Blake WJ, Collins JJ. Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet, 2005, 6(6): 451-464.
pmid: 15883588 |
[49] | Newman JRS, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, DeRisi JL, Weissman JS. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature, 2006, 441(7095): 840-846. |
[50] | Yin SY, Wang P, Deng WJ, Zheng HC, Hu LD, Hurst LD, Kong XY. Dosage compensation on the active X chromosome minimizes transcriptional noise of X-linked genes in mammals. Genome Biol, 2009, 10(7): R74. |
[51] |
Sun D, Maney DL, Layman TS, Chatterjee P, Yi SV. Regional epigenetic differentiation of the Z chromosome between sexes in a female heterogametic system. Genome Res, 2019, 29(10): 1673-1684.
doi: 10.1101/gr.248641.119 pmid: 31548356 |
[52] | Kitano J, Ansai S, Takehana Y, Yamamoto Y. Diversity and convergence of sex-determination mechanisms in teleost fish. Annu Rev Anim Biosci, 2024, 12: 233-259. |
[53] |
Kondo M, Hornung U, Nanda I, Imai S, Sasaki T, Shimizu A, Asakawa S, Hori H, Schmid M, Shimizu N, Schartl M. Genomic organization of the sex-determining and adjacent regions of the sex chromosomes of medaka. Genome Res, 2006, 16(7): 815-826.
pmid: 16751340 |
[54] |
Schultheiß R, Viitaniemi HM, Leder EH. Spatial dynamics of evolving dosage compensation in a young sex chromosome system. Genome Biol Evol, 2015, 7(2): 581-590.
doi: 10.1093/gbe/evv013 pmid: 25618140 |
[55] |
Hopkins BR, Kopp A. Evolution of sexual development and sexual dimorphism in insects. Curr Opin Genet Dev, 2021, 69: 129-139.
doi: 10.1016/j.gde.2021.02.011 pmid: 33848958 |
[56] | Shevelyov YY, Ulianov SV, Gelfand MS, Belyakin SN, Razin SV. Dosage compensation in Drosophila: its canonical and non-canonical mechanisms. Int J Mol Sci, 2022, 23(18): 10976. |
[57] | Wang J, Santiago E, Caballero A. Prediction and estimation of effective population size. Heredity(Edinb), 2016, 117(4): 193-206. |
[58] |
Bergero R, Charlesworth D. Preservation of the Y transcriptome in a 10-million-year-old plant sex chromosome system. Curr Biol, 2011, 21(17): 1470-1474.
doi: 10.1016/j.cub.2011.07.032 pmid: 21889891 |
[59] |
Graves JAM. Sex chromosome specialization and degeneration in mammals. Cell, 2006, 124(5): 901-914.
pmid: 16530039 |
[60] |
Bar-Even A, Paulsson J, Maheshri N, Carmi M, O'Shea E, Pilpel Y, Barkai N. Noise in protein expression scales with natural protein abundance. Nat Genet, 2006, 38(6): 636-643.
pmid: 16715097 |
[61] | Potrzebowski L, Vinckenbosch N, Marques AC, Chalmel F, Jégou B, Kaessmann H. Chromosomal gene movements reflect the recent origin and biology of therian sex chromosomes. PLoS Biol, 2008, 6(4): e80. |
[62] | Hurst LD, Ghanbarian AT, Forrest ARR, FANTOM consortium, Huminiecki L. The constrained maximal expression level owing to haploidy shapes gene content on the mammalian X chromosome. PLoS Biol, 2015, 13(12): e1002315. |
[1] | 刘靖, 周琦. 脊椎动物染色体在序列和空间构象的演化[J]. 遗传, 2025, 47(2): 183-199. |
[2] | 李书粉,李莎,邓传良,卢龙斗,高武军. 转座子在植物XY性染色体起源与演化过程中的作用[J]. 遗传, 2015, 37(2): 157-164. |
[3] | 王艳允,陈梅,李斌. X染色体的剂量补偿机制[J]. 遗传, 2012, 34(8): 977-984. |
[4] | 孙敏秋,林鹏,陈芸,王艺磊,张子平. 剂量补偿和MSL复合物研究进展[J]. 遗传, 2012, 34(5): 533-544. |
[5] | 高武军,谢璐,邓传良,卢龙斗. 重复序列及异染色质化在植物性染色体重组抑制中的作用[J]. 遗传, 2010, 32(1): 25-30. |
[6] | 程汉华,周荣家. 早期胚胎的发育选择: 性别决定[J]. 遗传, 2007, 29(2): 145-145―149. |
[7] | 戴鑫,曾晓茂,陈彬,王跃招. 六种麻蜥核型的研究[J]. 遗传, 2004, 26(5): 669-675. |
[8] | 朱必才,高建国,张子峰,张永,高俊芳,侯进慧. 中国遗传学会科普工作会议在京召开[J]. 遗传, 2003, 5(5): 517-520. |
[9] | 刘永章,吴雪昌,金龙金,董杰影. 应用双色荧光原位杂交技术检测克氏综合征[J]. 遗传, 2003, 25(3): 271-275. |
[10] | 陆建英,陈雪银,黄英,任兆瑞. 核型异常的两性畸形山羊2例报告[J]. 遗传, 2003, 25(2): 160-162. |
[11] | 何梅,李懋学. 银杏雌株染色体Ag-NOR的研究[J]. 遗传, 1996, 18(3): 3-5. |
[12] | 陈宏,邱怀,詹铁生,贾敬肖. 中国四品种黄牛性染色体多态性的研究[J]. 遗传, 1993, 15(4): 14-17. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: