[1] Gelbart ME, Kuroda MI. Drosophila dosage compensation: a complex voyage to the X chromosome. Development, 2009, 136(9): 1399-1410.[2] Ruiz MF, Esteban MR, Doñoro C, Goday C, Sánchez L. Evolution of dosage compensation in Diptera: the gene maleless implements dosage compensation in Drosophila (Brachycera suborder) but its homolog in Sciara (Nematocera suborder) appears to play no role in dosage compensation. Genetics, 2000, 156(4): 1853-1865.[3] Charlesworth B. The evolution of chromosomal sex determination and dosage compensation. Curr Biol, 1996, 6(2): 149-162.[4] Lucchesi JC, Kelly WG, Panning B. Chromatin remodeling in dosage compensation. Annu Rev Genet, 2005, 39: 615-651.[5] Lucchesi JC. Dosage compensation in flies and worms: the ups and downs of X-chromosome regulation. Curr Opin Genet Dev, 1998, 8(2): 179-184.[6] Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, Grompe M, Tonlorenzi R, Willard HF. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature, 1991, 349(6304): 38-44.[7] 徐丰, 金由辛. RNA与X染色体失活的后成调节. 生命的化学, 1999, 19(2): 51-53.[8] Heard E, Rougeulle C, Arnaud D, Avner P, Allis CD, Spector DL. Methylation of histone H3 at Lys-9 is an early mark on the X chromosome during X inactivation. Cell, 2001, 107(6): 727-738.[9] Pannuti A, Lucchesi JC. Recycling to remodel: evolution of dosage-compensation complexes. Curr Opin Genet Dev, 2000, 10(6): 644-650.[10] Smith ER, Cayrou C, Huang R, Lane WS, Côté J, Lucchesi JC. A human protein complex homologous to the Drosophila MSL complex is responsible for the majority of histone H4 acetylation at lysine 16. Mol Cell Biol, 2005, 25(21): 9175-9188.[11] Liu WB, Zhang Y, Miao XX, Huang YP. Identification and phylogeny of five male-specific lethal genes in the silkworm Bombyx mori. Entomol Res, 2008, 38(S1): S48-S56.[12] Angelopoulou R, Lavranos G, Manolakou P. Regulatory RNAs and chromatin modification in dosage compensation: a continuous path from flies to humans. Reprod Biol Endocrinol, 2008, 6: 12.[13] Smith ER, Pannuti A, Gu WG, Steurnagel A, Cook RG, Allis CD, Lucchesi JC. The Drosophila MSL complex acetylates histone H4 at lysine 16, a chromatin modification linked to dosage compensation. Mol Cell Biol, 2000, 20(1): 312-318.[14] Morales V, Regnard C, Izzo A, Vetter I, Becker PB. The MRG domain mediates the functional integration of MSL3 into the dosage compensation complex. Mol Cell Biol, 2005, 25(14): 5947-5954.[15] Fauth T, Müller-Planitz F, König C, Straub T, Becker PB. The DNA binding CXC domain of MSL2 is required for faithful targeting the dosage compensation complex to the X chromosome. Nucleic Acids Res, 2010, 38(10): 3209-3221.[16] Gelbart ME, Larschan E, Peng SY, Park PJ, Kuroda MI. Drosophila MSL complex globally acetylates H4K16 on the male X chromosome for dosage compensation. Nat Struct Mol Biol, 2009, 16(8): 825-832.[17] Scott MJ, Pan LL, Cleland SB, Knox AL, Heinrich J. MSL1 plays a central role in assembly of the MSL complex, essential for dosage compensation in Drosophila. EMBO J, 2000, 19(1): 144-155.[18] Kadlec J, Hallacli E, Lipp M, Holz H, Sanchez-Weatherby J, Cusack S, Akhtar A. Structural basis for MOF and MSL3 recruitment into the dosage compensation complex by MSL1. Nat Struct Mol Biol, 2011, 18(2): 142-150.[19] Morales V, Straub T, Neumann MF, Mengus G, Akhtar A, Becker PB. Functional integration of the histone acetyltransferase MOF into the dosage compensation complex. EMBO J, 2004, 23(11): 2258-2268.[20] Li F, Parry DAD, Scott MJ. The amino-terminal region of Drosophila MSL1 contains basic, glycine-rich, and leucine zipper-like mot |