[1] Bove J, Kim CY, Gibson CA, Assmann SM. Characteriza-tion of wound-responsive RNA-binding proteins and their splice variants in Arabidopsis. Plant Mol Biol, 2008, 67(1–2): 71–88.
[2] Fusaro AF, Bocca SN, Ramos RL, Barroco RM, Magioli C, Jorge VC, Coutinho TC, Rangel-Lima CM, De Rycke R, Inze D, Inze D, Engler G, Sachetto-Martins G. AtGRP2, a cold-induced nucleo-cytoplasmic RNA-binding protein, has a role in flower and seed development. Planta, 2007, 225(6): 1339–1351.
[3] Nakaminami K, Karlson DT, Imai R. Functional conser-vation of cold shock domains in bacteria and higher plants. Proc Natl Acad Sci USA, 2006, 103(26): 10122–10127.
[4] Palusa SG, Ali GS, Reddy AS. Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-rich proteins: regulation by hormones and stresses. Plant J, 2007, 49(6): 1091–1107.
[5] Fedoroff NV. RNA-binding proteins in plants: the tip of an iceberg? Curr Opin Plant Biol, 2002, 5(5): 452–459.
[6] Rochaix JD. Posttranscriptional control of chloroplast gene expression. From RNA to photosynthetic complex. Plant Physiol, 2001, 125(1): 142–144.
[7] Gomez J, Sanchez-Martinez D, Stiefel V, Rigau J, Puigdomenech P, Pages M. A gene induced by the plant hormone abscisic acid in response to water stress encodes a glycine-rich protein. Nature, 1988, 334(6179): 262–264.
[8] 杜光伟, 周严, 袁建刚, 强伯勤. RRM RNA 结合蛋白的结构与功能. 生物化学与生物物理进展, 1999, 26(4): 305–330.
[9] Query CC, Bentley RC, Keene JD. A common RNA rec-ognition motif identified within a defined U1 RNA bind-ing domain of the 70K U1 snRNP protein. Cell, 1989, 57(1): 89–101.
[10] Lorkovic ZJ, Barta A. Genome analysis: RNA recognition motif (RRM) and K homology (KH) domain RNA-binding proteins from the flowering plant Arabidopsis thaliana. Nucleic Acids Res, 2002, 30(3): 623–635.
[11] Condit CM. Developmental expression and localization of petunia glycine-rich protein. Plant Cell, 1993, 5(3): 277–288.
[12] Keller B, Sauer N, Lamb CJ. Glycine-rich cell wall pro-teins in bean: gene structure and association of the protein with the vascular system. EMBO J, 1988, 7(12): 3625–3633.
[13] Liu ZZ, Wang JL, Huang X, Xu WH, Liu ZM, Fang RX. The promoter of a rice glycine-rich protein gene, Osgrp-2 confers vascular-specific expression in transgenic plants. Planta, 2003, 216(5): 824–833.
[14] Sakuta C, Satoh S. Vascular tissue-specific gene expres-sion of xylem sap glycine-rich proteins in root and their localization in the walls of meraxylem vessels in cucumber. Plant Cell Physiol, 2000, 41(5): 627–638.
[15] Sakuta C, Oda A, Yamakawa S, Satoh S. Root-specific expression of genes for novel glycine-cich proteins cloned by use of an antiserum against xylem sap proteins of cu-cumber. Plant Cell Physilo, 1998, 39(12): 1330–1336.
[16] Sachetto-Martins G, Franco L, de Oliveira D. Plant gly-cine-rich proteins: a family or just proteins with a common motif. Bioch Biophys Acta, 2000, 1492(1): 1–14.
[17] Nomata T, Kabeya Y, Sato N. Cloning and characterization of glycine-rich RNA-binding protein cDNAs in the moss physcomitrella patens. Plant Cell Physiol, 2004, 45(1): 48–56.
[18] Kim YO, Kim JS, Kang H. Cold-inducible zinc fin-ger-containing glycine-rich RNA-binding protein contrib-utes to the enhancement of freezing tolerance in Arabi-dopsis thaliana. Plant J, 2005, 42(6): 890–900.
[19] Stephen JR, Dent KC, Finch-Savage WE. A cDNA en-coding a cold-induced glycine-rich RNA binding protein from Prunus avium expressed in embryonic axes. Gene, 2003, 320: 177–183.
[20] Kwak KJ, Kim YO, Kang H. Characterization of trans-genic Arabidopsis plants overexpressing GR-RBP4 under high salinity, dehydration, or cold stress. J Exp Bot, 2005, 56(421): 3007–3016.
[21] Wang YC, Ma H, Liu GF, Zhang DW, Ban QY, Zhang GD, Xu CX, Yang CP. Generation and analysis of expressed sequence tags from a NaHCO3-treated Limonium bicolor cDNA library. Plant Physio Biochem, 2008, 46 (11): 977–986.
[22] 萨姆布鲁克 J, 拉塞尔 DW, 黄培堂译. 分子克隆实验指南(第三版). 北京: 科学出版社, 2002.
[23] 王玉成, 张国栋, 姜静. 一种适用范围广的总RNA提取方法. 植物研究, 2006, 26(1): 84–87.
[24] Thomashow MF. Plant cold acclimation: freezing toler-ance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 571–599.
[25] Xiong L, Schumaker KS, Zhu JK. Cell signaling during cold, drought, and salt stress. Plant Cell, 2002, 14(Suppl.): S165–183.
[26] Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol, 2000, 51: 463–499.
[27] 邵宏波, 梁宗锁, 邵明安. 转基因生物体对生态环境的影响及其发展趋向. 农业工程学报, 2005, 21(Z1): 195–200.
[28] Shinozuka H, Hisano H, Yoneyama S, Shimamoto Y, Jones ES, Forster JW, Yamada T, Kanazawa A. Gene expression and genetic mapping analyses of a perennial ryegrass gly-cine-rich RNA-binding protein gene suggest a role in cold adaptation. Mol Gen Genomics, 2006, 275(4): 399–408.
[29] Lee M, Kim KP, Kim B, Hahn JS, Hong CB. Flooding stress-induced glycine-rich RNA-binding protein from Nicotiana tabacum. Mol Cells, 2009, 27(1): 47–54.
[30] 唐亚雄. 利用裂殖酵母体系, 拟南芥盐胁迫应答相关基因的克隆、鉴定及转基因分析[学位论文]. 四川大学, 2002.
[31] Kim YO, Kim JS, Kang H. Cold-inducible zinc ?nger-containing glycine-rich RNA-binding protein con-tributes to the enhancement of freezing tolerance in Arabidopsis thaliana. Plant J, 2005, 42(6): 890–900.
[32] Kim JS, Park SJ, Kwak KJ, Kim YO, Kim JY, Song J, Jang B, Jung CH, Kang H. Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Es-cherichia coli. Nucleic Acids Res, 2007, 35(2): 506–516.
[33] Kim Y, OKang H. The Role of a zinc finger-containing glycine-rich RNA-binding protein during the cold adapta-tion process in Arabidopsis thaliana. Plant Cell Physiol, 2006, 47(6): 793–798.
[34] Sahi CA, garwal M, Singh A, Grover A. Molecular char-acterization of a novel isoform of rice (Oryza sativa L.) glycine rich-RNA binding protein and evidence for its in-volvement in high temperature stress response. Plant Sci, 2007, 173(2): 144–155.
[35] 董霞, 李文正, 黄夸克, 兰建强, 李正风, 刘世贵. 水杨酸对烟草GRPs基因表达的影响. 吉首大学学报, 2008, 29(2): 86–91.
[36] Posas F, Chambers JR, Heyman JA, Hoeffler JP, de Nadal E, Ariño J. The transcriptional response of yeast to saline stress. J Biol Chem, 2000, 275(23): 17249–17255.
[37] Rausellz A, Kanhonouz R, Yenush L, Serrano R, Ros R. The translation initiation factor eIF1A is an important de-terminant in the tolerance to NaCl stress in yeast and plants. Plant J, 2003, 34(3): 257–267.
[38] Shao HB, Chu LY, Jaleel CA, Manivannan P, Pan-neerselvam R, Shao MA. Understanding water deficit stress-induced changes in the basic metabolism of higher plants-biotechnologically and sustainably improving ag-riculture and the ecoenvironment in arid regions of the globe. Crit Rev Biotechnol, 2009, 29(2): 131–151.
[39] Shao HB, Chu LY, Shao MA. Calcium as a versatile plant signal transducer under soil water stress. BioEssays, 2008, 30(7): 634–641.
[40] Zhang ZB, Shao HB, Xu P, Hu MY, Song WY, Hu XJ. Focus on agricultural biotechnology: Prospective for bio-water sav-ing theories and their applications in the semi-arid and arid areas. African J Biotech, 2009, 8 (12): 2779–2789. |