[1] Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309(5735): 741–745.
[2] Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J. Control of tillering in rice. Nature, 2003, 422(6932): 618–621.
[3] Song XJ, Huang W, Shi M, Zhu M.Z, Lin HX. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007, 39(5): 623–630.
[4] Zhang J, Zheng N, Zhou P. Exploring the functional com-plexity of cellular proteins by protein knockout. Proc Natl Acad Sci USA, 2003, 100 (24): 14127–14132.
[5] Stockwell BR. Chemical genetics: ligand-based discovery of gene function. Nat Rev Genet, 2000, 1(2): 116–125.
[6] Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346 (6287): 818–822.
[7] Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ. Selection of single-stranded DNA molecules that bind and in-hibit human thrombin. Nature, 1992, 355 (6360): 564–566.
[8] Binkowski BF, Miller RA, Belshaw PJ. Ligand-regulated peptides: a general approach for modulating protein-pe- ptide interactions with small molecules. Chem Biol, 2005, 12 (7): 847–855.
[9] Baines I, Colas P. Peptide aptamers as guides for small-molecule drug discovery. Drug Discov Today, 2006, 11(7/8): 334–341.
[10] Hoppe-Seyler F, Crnkovic-Mertens I, Tomai E, Butz K. Peptide aptamers: specific inhibitors of protein function. Curr Mol Med, 2004, 4(5): 529–538.
[11] Hoppe-Seyler F, Butz K. Peptide aptamers: powerful new tools for molecular medicine. J Mol Med, 2000, 78(8): 426–430.
[12] James W. Nucleic acid and polypeptide aptamers: a pow-erful approach to ligand discovery. Curr Opin Pharmacol, 2001, 1(5): 540–546.
[13] Sullenger BA, Gilboa E. Emerging clinical applications of RNA. Nature, 2002, 418 (6894): 252–258.
[14] Ng EW, Shima DT, Calias P, Cunningham ET, Guyer DR, Adamis AP. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov, 2006, 5(2): 123–132.
[15] Colas P, Cohen B, Jessen T, Grishina I, McCoy J, Brent R. Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2. Nature, 1996, 380 (6574): 548–550.
[16] Geyer CR, Colman-Lerner A, Brent R. “Mutagenesis” by peptide aptamers identifies genetic network members and pathway connections. Proc Natl Acad Sci USA, 1999, 96(15): 8567–8572.
[17] Norman TC, Smith DL, Sorger PK, IMG SRC, O’Rourke SM, Hughes TR, Roberts CJ, Friend SH, Fields S, Murray AW. Genetic selection of peptide inhibitors of biological pathways. Science, 1999, 285(5427): 591–595.
[18] Tomai E, Butz K, Lohrey C, von Weizsacker F, Zentgraf H, Hoppe-Seyler F. Peptide aptamer-mediated inhibition of target proteins by sequestration into aggresomes. J Biol Chem, 2006, 281(30): 21345–21352.
[19] Kolonin MG, Finley RL. Targeting cyclin-dependent kinases in Drosophila with peptide aptamers. Proc Natl Acad Sci USA, 1998, 95(24): 14266–14271.
[20] Blum JH, Dove SL, Hochschild A, Mekalanos JJ. Isolation of peptide aptamers that inhibit intracellular processes. Proc Natl Acad Sci USA, 2000, 97(5): 2241–2246.
[21] Lopez-Ochoa L, Ramirez-Prado J, Hanley-Bowdoin L. Peptide aptamers that bind to a geminivirus replication protein interfere with viral replication in plant cells. J Virol, 2006, 80(12): 5841–5853.
[22] Lopez-Ochoa L, Hanley-Bowdoin L. Use of peptide ap-tamers for broad-based geminivirus disease resistance. Bot Plant Biol, 2007, (www.2007.botanyconference.org).
[23] Rudolph C, Schreier PH, Uhrig JF. Peptide-mediated broad-spectrum plant resistance to tospoviruses. Proc Natl Acad Sci USA, 2003, 100(8): 4429–4434.
[24] He CY, Sommer H, Grosardt B, Huijser P, Saedler H. PFMAGO, a MAGO NASHI-like factor, interacts with the MADS-box protein MPF2 from Physalis floridana. Mol Biol Evol, 2007, 24(5): 1229–1241.
[25] 袁隆平. 杂交水稻超高产育种. 杂交水稻, 1997, 12(6): 1–6.
[26] 谢建坤, 陈庆隆,万勇. 水稻细胞质雄性不育育性恢复遗传机理研究进展. 江西农业学报, 2003, 15(2): 30–38.
[27] Kataoka N, Diem MD, Kim VN, Yong J, Dreyfuss G. Ma-goh, a human homolog of Drosophila mago nashi protein, is a component of the splicing-dependent exon-exon junc-tion complex. EMBO J, 2001, 20(22): 6424–6433.
[28] Lau CK, Diem MD, Dreyfuss G, Van Duyne GD. Structure of the Y14-Magoh core of the exon junction complex. Curr Biol, 2003, 13(11): 933–941.
[29] Kawano T, Kataoka N, Dreyfuss G, Sakamoto H. Ce-Y14 and MAG-1, components of the exon-exon junction com-plex, are required for embryogenesis and germline sexual switching in Caenorhabditis elegans. Mech Dev, 2004, 121(1): 27–35.
[30] Le Hir H, Gatfield D, Braun IC, Forler D, Izaurralde E. The protein Mago provides a link between splicing and mRNA localization. EMBO Rep, 2001, 2(12): 1119–1124.
[31] Fribourg S, Gatfield D, Izaurralde E, Conti E. A novel mode of RBD-protein recognition in the Y14-Mago com-plex. Nat Struct Biol, 2003, 10(6): 433–439.
[32] Boswell RE, Prout ME, Steichen JC. Mutations in a newly identified Drosophila melanogaster gene, mago nashi, disrupt germ cell formation and result in the formation of mirrorimage symmetrical double abdomen embryos. Development, 1991, 113(1): 373–384.
[33] Newmark PA, Boswell RE. The mago nashi locus encodes an essential product required for germ plasm assembly in Drosophila. Development, 1994, 120(5): 1303–1313.
[34] Mohr SE, Dillon ST, Boswell RE. The RNA-binding pro-tein Tsunagi interacts with Mago Nashi to establish polar-ity and localize oskar mRNA during Drosophila oogenesis. Genes Dev, 2001, 15(21): 2886–2899.
[35] Li W, Boswell R, Wood WB. mag-1, a homolog of Dro-sophila mago nashi, regulates hermaphrodite germ-line sex determination in Caenorhabditis elegans. Dev Biol, 2000, 218(2): 172–182.
[36] Johnson MA, von Besser K, Zhou Q, Smith E, Aux G, Patton D, Levin JZ, Preuss D. Arabidopsis hapless muta-tions define essential gametophytic functions. Genetics, 2004, 68(2): 971–982.
[37] Pagnussat GC, Yu HJ, Ngo QA, Rajani S, Mayalagu S, Johnson CS, Capron A, Xie LF, Ye D, Sundaresan V. Ge-netic and molecular identification of genes required for female gametophyte development and function in Arabi-dopsis. Development, 2005, 132(3): 603–614.
[38] He CY, Saedler H. Heterotopic expression of MPF2 is the key to the evolution of the Chinese lantern of Physalis, a morphological novelty in Solanaceae. Proc Natl Acad Sci USA, 2005, 102 (16): 5797–5784.
[39] van der Weele CM, Tsai C-W, Wolniak SM. Mago nashi is essential for spermatogenesis in Marsilea. Mol Biol Cell, 2007, 18: 3711–3722.
[40] Park N-I, Yeung EC, Muench DG. Mago Nashi is involved in meristem organization, pollen formation, and seed de-velopment in Arabidopsis. Plant Sci, 2009, 176: 461–469.
[41] Uhrig JF. Response to Prins: broad virus resistance in transgenic plants. Trends Biotechnol, 2003, 21: 376–377.
[42] 陈茂, 叶恭银, 李毅, 姚洪渭, 胡萃. 水稻矮缩病毒基因组及毒粒三维结构的研究进展. 植物保护学报, 2005, 32(2): 207–213.
[43] 邓召花, 张飞云. 水稻条纹病毒研究进展. 生锛际跬ū? 2006, C00(增刊): 45–49.
[44] 朱廷恒, 宋凤鸣, 郑重. 水稻抗病基因工程研究进展. 农业生物技术学报, 2004, 12(2): 212–218.
[45] 赵学敏. 植物抗病毒基因工程研究进展. 现代农业科技, 2008, 16: 317–318.
[46] 王永军, 东方阳, 王修强, 杨雅麟, 喻德跃, 盖钧镒, 吴晓雷, 贺超英, 张劲松, 陈受宜. 大豆5个花叶病毒株系抗性基因的定位. 遗传学报, 2004, 31(1): 87–90.
[47] He CY, Zhang ZY, Chen SY. Isolation and characterization of soybean resistance gene analogs. Chin Sci Bull, 2001, 46(23): 1984–1988.
[48] He CY, Zhang JS, Chen SY. A new soybean gene encoding a proline-rich protein is regulated by salicylic acid, an endogenous circadian rhythm and by various stresses. Theor Appl Genet, 2002, 104(6–7): 1125–1131.
[49] He CY, Tian AG, Zhang JS, Zhang ZY, Gai JY, Chen SY. Isolation and characterization of a full-length resistance gene homolog from soybean. Theor Appl Genet, 2003, 106(5): 786–793.
[50] Wang BJ, Wang YJ, Wang Q, Luo GZ, Zhang ZG, He CY, He SJ, Zhang JS, Gai JY, Chen SY. Characterization of an NBS-LRR resistance gene homologue from soybean. J Plant Physiol, 2004, 161(7): 815–822.
[51] Abedi MR, Caponigro G, Kamb A. Green fluorescent pro-tein as a scaffold for intracellular presentation of peptides. Nucleic Acids Res, 1998, 26(2): 623–630.
[52] Peelle B, Lorens J, Li W, Bogenberger J, Payan DG, Anderson DC. Intracellular protein scaffold-mediated dis-play of random peptide libraries for phenotypic screens in mammalian cells. Chem Biol, 2001, 8(5): 521–534. |