[1] Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309(5735): 741–745.
[2] Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J. Control of tillering in rice. Nature, 2003, 422(6932): 618–621.
[3] Song XJ, Huang W, Shi M, Zhu M.Z, Lin HX. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007, 39(5): 623–630.
[4] Zhang J, Zheng N, Zhou P. Exploring the functional com-plexity of cellular proteins by protein knockout. Proc Natl Acad Sci USA, 2003, 100 (24): 14127–14132.
[5] Stockwell BR. Chemical genetics: ligand-based discovery of gene function. Nat Rev Genet, 2000, 1(2): 116–125.
[6] Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346 (6287): 818–822.
[7] Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ. Selection of single-stranded DNA molecules that bind and in-hibit human thrombin. Nature, 1992, 355 (6360): 564–566.
[8] Binkowski BF, Miller RA, Belshaw PJ. Ligand-regulated peptides: a general approach for modulating protein-pe- ptide interactions with small molecules. Chem Biol, 2005, 12 (7): 847–855.
[9] Baines I, Colas P. Peptide aptamers as guides for small-molecule drug discovery. Drug Discov Today, 2006, 11(7/8): 334–341.
[10] Hoppe-Seyler F, Crnkovic-Mertens I, Tomai E, Butz K. Peptide aptamers: specific inhibitors of protein function. Curr Mol Med, 2004, 4(5): 529–538.
[11] Hoppe-Seyler F, Butz K. Peptide aptamers: powerful new tools for molecular medicine. J Mol Med, 2000, 78(8): 426–430.
[12] James W. Nucleic acid and polypeptide aptamers: a pow-erful approach to ligand discovery. Curr Opin Pharmacol, 2001, 1(5): 540–546.
[13] Sullenger BA, Gilboa E. Emerging clinical applications of RNA. Nature, 2002, 418 (6894): 252–258.
[14] Ng EW, Shima DT, Calias P, Cunningham ET, Guyer DR, Adamis AP. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov, 2006, 5(2): 123–132.
[15] Colas P, Cohen B, Jessen T, Grishina I, McCoy J, Brent R. Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2. Nature, 1996, 380 (6574): 548–550.
[16] Geyer CR, Colman-Lerner A, Brent R. “Mutagenesis” by peptide aptamers identifies genetic network members and pathway connections. Proc Natl Acad Sci USA, 1999, 96(15): 8567–8572.
[17] Norman TC, Smith DL, Sorger PK, IMG SRC, O’Rourke SM, Hughes TR, Roberts CJ, Friend SH, Fields S, Murray AW. Genetic selection of peptide inhibitors of biological pathways. Science, 1999, 285(5427): 591–595.
[18] Tomai E, Butz K, Lohrey C, von Weizsacker F, Zentgraf H, Hoppe-Seyler F. Peptide aptamer-mediated inhibition of target proteins by sequestration into aggresomes. J Biol Chem, 2006, 281(30): 21345–21352.
[19] Kolonin MG, Finley RL. Targeting cyclin-dependent kinases in Drosophila with peptide aptamers. Proc Natl Acad Sci USA, 1998, 95(24): 14266–14271.
[20] Blum JH, Dove SL, Hochschild A, Mekalanos JJ. Isolation of peptide aptamers that inhibit intracellular processes. Proc Natl Acad Sci USA, 2000, 97(5): 2241–2246.
[21] Lopez-Ochoa L, Ramirez-Prado J, Hanley-Bowdoin L. Peptide aptamers that bind to a geminivirus replication protein interfere with viral replication in plant cells. J Virol, 2006, 80(12): 5841–5853.
[22] Lopez-Ochoa L, Hanley-Bowdoin L |