遗传 ›› 2021, Vol. 43 ›› Issue (4): 308-322.doi: 10.16288/j.yczz.20-362
收稿日期:
2020-10-28
修回日期:
2020-12-29
出版日期:
2021-04-20
发布日期:
2021-04-20
通讯作者:
巴恒星,李春义
E-mail:bahengxing@caas.cn;lichunyi1959@163.com
作者简介:
巴恒星,博士,研究员,研究方向:特种动物基因组学。E-mail: 基金资助:
Hengxing Ba1,2(), Pengfei Hu1,2, Chunyi Li1,2()
Received:
2020-10-28
Revised:
2020-12-29
Online:
2021-04-20
Published:
2021-04-20
Contact:
Ba Hengxing,Li Chunyi
E-mail:bahengxing@caas.cn;lichunyi1959@163.com
Supported by:
摘要:
鹿科动物是世界上最丰富的大型哺乳动物之一,在极北地区、热带地区和高海拔地区都有分布。中国占世界鹿科动物40%以上,是鹿科动物进化的主战场。鹿科动物除了具有反刍动物常见的独特表型特征外,更是进化出周期性再生新器官——鹿茸角。鹿科动物是研究生态学、行为学和进化生物学非常有价值的动物模型,特别是在研究哺乳动物器官再生方面具有重要科学价值。鹿基因组是系统阐述鹿的进化和演变,解析鹿科动物独特生物学性状的依据,对遗传资源保护和利用具有重要意义。目前,随着鹿科动物参考基因组的不断完善,在鹿基础科学研究上取得了诸多重要成果。本文详细综述了鹿科动物基因组学研究进展,主要包括鹿遗传变异数据、适应性进化分子基础、独特性状鹿茸角的起源进化关键基因和功能基因组学,以期为鹿科动物的深入研究奠定理论基础。
巴恒星, 胡鹏飞, 李春义. 鹿科动物基因组学研究进展[J]. 遗传, 2021, 43(4): 308-322.
Hengxing Ba, Pengfei Hu, Chunyi Li. Progress on deer genome research[J]. Hereditas(Beijing), 2021, 43(4): 308-322.
表1
鹿科动物16个参考基因组基本信息"
物种 | 发表时间 (年) | 测序/组装技术 | 基因组大小 (去除Gap后) (Gb) | 测序 深度(×) | Contig/ Scaffold N50 (kb/Mb) | Scaffolds 数量 |
---|---|---|---|---|---|---|
白尾鹿 (Odocoileus virginianus)a | 2011 | Illumina HiSeq/Allpath-lg | 2.38 (2.36) | 150 | 122.0/0.9 | 17,025 |
西方狍 (Capreolus capreolus)b | 2014 | Illumina HiSeq/SOAPdenovo | 2.78 (2.74) | 24 | 4.1/0.01 | 3,088,511 |
驯鹿 (Rangifer tarandus)[ | 2017 | Illumina HiSeq/SOAPdenovo | 2.64 (2.54) | 220 | 89.7/0.94 | 58,765 |
赤鹿 (Cervus elaphus)[ | 2017 | Illumina HiSeq/AllPaths | 3.40 (1.95) | 74 | 7.9/0.27 | 34,724 |
麋鹿 (Elaphurus davidianus)[ | 2017 | Illumina HiSeq/SOAPdenovo | 2.52 (2.46) | 82 | 32.7/3.0 | 46,381 |
豚鹿 (Axis porcinus)[ | 2018 | Illumina HiSeq/SOAPdenovo | 2.68 (2.64) | 197 | 172.8/20.6 | 136,093 |
黑尾鹿 (Odocoileus hemionus)[ | 2018 | Illumina HiSeq/BWA; SAMtools | 2.34 (2.34) | 25 | 113.3/0.8 | 838,758 |
小麂 (Muntiacus reevesi)[ | 2019 | Illumina HiSeq/Supernova; Hi-C | 2.58 (2.51) | 34 | 225.1/9.4 | 29,705 |
赤麂 (Muntiacus muntjak)[ | 2019 | Illumina HiSeq/SOAPdenovo | 2.57 (2.52) | 68 | 215.5/- | 25,651 |
白唇鹿 (Przewalskium albirostris)[ | 2019 | Illumina HiSeq/Platanus | 2.69 (2.64) | 214 | 39.6/3.8 | 171,874 |
獐 (Hydropotes inermis)[ | 2019 | Illumina HiSeq/Supernova | 2.53 (2.48) | 76 | 131.4/13.8 | 22,246 |
黑麂 (Muntiacus crinifrons)[ | 2019 | PacBio/FALCON | 2.68 (2.67) | 116 | 8.2/1.3 | 21,052 |
驼鹿 (Alces alces)c | 2019 | Illumina HiSeq/Supernova | 2,74 (2,54) | 35 | 131,8/4.1 | 48,219 |
东方狍 (Capreolus pygargu)[ | 2020 | Illumina HiSeq/Supernova | 2.61 (2,55) | 100 | -/6.6 | 92,100 |
塔里木马鹿 (Cervus elaphus yarkandensis)[ | 2020 | Illumina NextSeq/Supernova; Genetic maps | 2.60 (2.56) | 63 | 275.5/31.7 | 19,010 |
梅花鹿 (Cervus nippon)d | 2020 | PacBio/wtdbg2; Hi-C; Optical maps | 2.50 (2.50) | 58 | 23,600/78.8 | 588 |
表2
鹿科动物基因组变异资源"
物种 | 发表时间 (年) | 测序平台/方法 | 个体数量 | 标记类型 | 标记数量 |
---|---|---|---|---|---|
白尾鹿 (Odocoileus virginianus)[ | 2011 | Roche 454/简化基因组 | 16 | SNP | 13,734c |
白尾鹿 (Odocoileus virginianus)[ | 2012 | Illumina BovineSNP50 | 10 | SNP | 469a |
骡鹿 (Odocoileus hemionus)[ | 2012 | Illumina BovineSNP50 | 4 | SNP | 429a |
黑尾鹿 (Odocoileus hemionus)[ | 2012 | Illumina BovineSNP50 | 14 | SNP | 434a |
驯鹿 (Rangifer tarandus)[ | 2015 | Illumina BovineSNP50+OvineSNP50 | 4 | SNP | 4572+1471a |
赤鹿/马鹿 (Cervus elaphus)[ | 2015 | Illumina GAII-X/重测序 | 7 | SNP | 1.8×105c |
骡鹿 (Odocoileus hemionus)[ | 2016 | Illumina HiSeq2000/外显子捕获 | 7 | SNP | 23,204c |
梅花鹿 (Cervus nippon)[ | 2017 | Illumina HiSeq2500/双酶切简化基因组 | 42 | SNP | 96,188c |
梅花鹿 (Cervus nippon)[ | 2017 | Illumina Hiseq Xten/重测序 | 100 | SNP | 38,319,467c |
豚鹿 (Axis porcinus)[ | 2017 | Illumina HiSeq2500/酶切简化基因组 | 11 | SNP | 11,155c |
梅花鹿(Cervus nippon)/ 马鹿(Cervus elaphus)/F1[ | 2018 | Illumina HiSeq2500/双酶切简化基因组 | 30 | SNP | 2015b |
驼鹿 (Alces alces)[ | 2018 | Illumina HiSeq2500/酶切简化基因组 | 34 | SNP | 336c |
梅花鹿 (Cervus nippon)[ | 2018 | Applied Biosystems 3730/基因组 | 96 | SSR | 29a |
骡鹿(Odocoileus hemionus)/ 白尾鹿(Odocoileus virginianus)/F1/F2[ | 2019 | Illumina CervusSNP50 | 30 | SNP | 40b |
狍 (Capreolous capreolus)[ | 2019 | Illumina HiSeq2500/酶切简化基因组 | 250 | SNP | 83,893c |
梅花鹿 (Cervus nippon)[ | 2020 | PCR扩增 | 478 | Y-SNP | 9c |
梅花鹿 (Cervus nippon)[ | 2020 | Applied Biosystems 3730/转录组 | 140 | SSR | 29a |
赤鹿 (Cervus nippon)[ | 2020 | PCR扩增 | 123 | X-/Y-SSR | 10/5a |
[1] | 盛和林 . 中国鹿科动物. 生物学通报, 1992, ( 05):4-7. |
[2] |
Li CY, Yang FH, Sheppard A. Adult stem cells and mammalian epimorphic regeneration-insights from studying annual renewal of deer antlers. Curr Stem Cell Res Ther, 2009,4(3):237-251.
doi: 10.2174/157488809789057446 pmid: 19492976 |
[3] | Li ZP, Lin ZS, Ba HX, Chen L, Yang YF, Wang K, Qiu Q, Wang W, Li GY. Draft genome of the reindeer ( Rangifer tarandus). GigaScience, 2017,6(12):1-5. |
[4] | Ba HX, Cai ZX, Gao HY, Qin T, Liu WY, Xie LW, Zhang YL, Jing BY, Wang DT, Li CY. Chromosome- level genome assembly of tarim red deer, Cervus elaphus yarkandensis. Sci Data, 2020,7(1):187. |
[5] | Johnston SE, Huisman J, Ellis PA, Pemberton JM. A high-density linkage map reveals sexual dimorphism in recombination landscapes in red deer ( Cervus elaphus). G3 (Bethesda), 2017,7(8):2859-2870. |
[6] | Mudd AB, Bredeson JV, Baum R, Hockemeyer D, Rokhsar DS. Analysis of muntjac deer genome and chromatin architecture reveals rapid karyotype evolution. Commun Biol, 2020,3(1):480. |
[7] | Ludt CJ, Schroeder W, Rottmann O, Kuehn R. Mitochondrial DNA phylogeography of red deer ( Cervus elaphus). Mol Phylogenet Evol, 2004,31(3):1064-1083. |
[8] | Bana NÁ, Nyiri A, Nagy J, Frank K, Nagy T, Stéger V, Schiller M, Lakatos P, Sugár L, Horn P, Barta E, Orosz L. The red deer Cervus elaphus genome cerela1.0: Sequencing, annotating, genes, and chromosomes. Mol Genet Genomics, 2018,293(3):665-684. |
[9] | Zhang CZ, Chen L, Zhou Y, Wang K, Chemnick LG, Ryder OA, Wang W, Zhang GJ, Qiu Q. Draft genome of the milu ( Elaphurus davidianus). GigaScience, 2018,7(2). |
[10] |
Wang W, Yan HJ, Chen SY, Li ZZ, Yi J, Niu LL, Deng JP, Chen WG, Pu Y, Jia XB, Qu Y, Chen A, Zhong Y, Yu XM, Pang S, Huang WL, Han Y, Liu GJ, Yu JQ. The sequence and de novo assembly of hog deer genome. Sci Data, 2019,6:180305.
pmid: 30620341 |
[11] | Russell T, Cullingham C, Kommadath A, Stothard P, Herbst A, Coltman D. Development of a novel mule deer genomic assembly and species-diagnostic snp panel for assessing introgression in mule deer, white-tailed deer, and their interspecific hybrids. G3 (Bethesda), 2019,9(3):911-919. |
[12] | Chen L, Qiu Q, Jiang Y, Wang K, Lin ZS, Li ZP, Bibi F, Yang YZ, Wang JH, Nie WH, Su WT, Liu GC, Li QY, Fu WW, Pan XY, Liu C, Yang J, Zhang CZ, Yin Y, Wang Y, Zhao Y, Zhang C, Wang ZK, Qin YL, Liu W, Wang B, Ren YD, Zhang R, Zeng Y, da Fonseca RR, Wei B, Li R, Wan WT, Zhao RP, Zhu WB, Wang YT, Duan SC, Gao Y, Zhang YE, Chen CY, Hvilsom C, Epps CW, Chemnick LG, Dong Y, Mirarab S, Siegismund HR, Ryder OA, Gilbert MTP, Lewin HA, Zhang GJ, Heller R, Wang W. Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits. Science , 2019, 364(6446): eaav6202. |
[13] |
de Jong MJ, Li ZP, Qin YL, Quéméré E, Baker K, Wang W, Hoelzel AR. Demography and adaptation promoting evolutionary transitions in a mammalian genus that diversified during the pleistocene. Mol Ecol, 2020,29(15):2777-2792.
doi: 10.1111/mec.15450 pmid: 32306438 |
[14] | Wang Y, Zhang CZ, Wang NN, Li ZP, Heller R, Liu R, Zhao Y, Han JG, Pan XY, Zheng ZQ, Dai XQ, Chen C, Dou M, Peng SJ, Chen XQ, Liu J, Li M, Wang K, Liu C, Lin ZS, Chen L, Hao F, Zhu WB, Song CC, Zhao C, Zheng CL, Wang JM, Hu WS, Li CY, Yang H, Jiang L, Li GY, Liu MJ, Sonstegard TS, Zhang GJ, Jiang Y, Wang W, Qiu Q. Genetic basis of ruminant headgear and rapid antler regeneration. Science , 2019, 364(6446): eaav6335. |
[15] | Hassanin A, Delsuc F, Ropiquet A, Hammer C , Jansen van Vuuren B, Matthee C, Ruiz-Garcia M, Catzeflis F, Areskoug V, Nguyen TT, Couloux A. Pattern and timing of diversification of cetartiodactyla( mammalia, laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes. C R Biol, 2012,335(1):32-50. |
[16] |
Pitra C, Fickel J, Meijaard E, Groves PC. Evolution and phylogeny of old world deer. Mol Phylogenet Evol, 2004,33(3):880-895.
pmid: 15522810 |
[17] | Leberg P, Smith MH, Brisbin IL. The biology of deer. Springer New York, 1992. |
[18] | 王宗仁, 杜若甫 . 鹿科动物的染色体组型及其进化. 动物学报, 1983, ( 03):214-222. |
[19] | Ba HX, Jia BY, Wang GW, Yang YF, Kedem G, Li CY. Genome-wide snp discovery and analysis of genetic diversity in farmed sika deer ( Cervus nippon) in northeast china using double-digest restriction site-associated DNA sequencing. G3 (Bethesda), 2017,7(9):3169-3176. |
[20] | Ba HX, Li ZP, Yang YF, Li CY. Development of diagnostic snp markers to monitor hybridization between sika deer ( Cervus nippon) and wapiti( Cervus elaphus). G3 (Bethesda), 2018,8(7):2173-2179. |
[21] | Blåhed IM, Königsson H, Ericsson G, Spong G. Discovery of snps for individual identification by reduced representation sequencing of moose ( Alces alces). PLoS One, 2018,13(5):e0197364. |
[22] | Seabury CM, Bhattarai EK, Taylor JF, Viswanathan GG, Cooper SM, Davis DS, Dowd SE, Lockwood ML, Seabury PM. Genome-wide polymorphism and comparative analyses in the white-tailed deer ( Odocoileus virginianus): A model for conservation genomics. PLoS One, 2011,6(1):e15811. |
[23] | Wang W, Yan HJ, Yu JQ, Yi J, Qu Y, Fu MZ, Chen A, Tang H, Niu LL. Discovery of genome-widesnps by rad-seqand the genetic diversity of captive hog deer ( Axis porcinus). PLoS One, 2017,12(3):e0174299. |
[24] | Haynes GD, Latch EK. Identification of novel single nucleotide polymorphisms (snps) in deer ( Odocoileus spp.) using the bovinesnp50 beadchip. PLoS One, 2012,7(5):e36536. |
[25] |
Kharzinova VR, Sermyagin AA, Gladyr EA, Okhlopkov IM, Brem G, Zinovieva NA. A study of applicability of snp chips developed for bovine and ovine species to whole-genome analysis of reindeer rangifer tarandus. J Hered, 2015,106(6):758-761.
doi: 10.1093/jhered/esv081 pmid: 26447215 |
[26] | Powell JH, Amish SJ, Haynes GD, Luikart G, Latch EK. Candidate adaptive genes associated with lineage divergence: Identifying snps via next-generation targeted resequencing in mule deer ( Odocoileus hemionus). Mol Ecol Resour, 2016,16(5):1165-1172. |
[27] | Hu PF, Xu JP, Ai C, Shao XJ, Wang HL, Dong YM, Cui XZ, Yang FH, Xing XM . Screening weight related genes of velvet antlers by whole genome re-sequencing. Hereditas(Beijing), 2017,39(11):1090-1101. |
胡鹏飞, 徐佳萍, 艾成, 邵秀娟, 王洪亮, 董依萌, 崔学哲, 杨福合, 邢秀梅 . 利用全基因组重测序分析鹿茸重量相关基因. 遗传, 2017,39(11):1090-1101. | |
[28] | Brauning R, Fisher PJ , McCulloch AF, Smithies RJ, Ward JF, Bixley MJ, Lawley CT, Rowe SJ, McEwan JC. Utilization of high throughput genome sequencing technology for large scale single nucleotide polymerphism discovery in red deer and canadian elk. Biorxiv, 2015: 027318. |
[29] |
Davey JW, Cezard T, Fuentes-Utrilla P, Eland C, Gharbi K, Blaxter ML. Special features of rad sequencing data: Implications for genotyping. Mol Ecol, 2013,22(11):3151-3164.
pmid: 23110438 |
[30] |
Shafer ABA, Miller JM, Kardos M. Cross-species application of snp chips is not suitable for identifying runs of homozygosity. J Hered, 2016,107(2):193-195.
doi: 10.1093/jhered/esv137 pmid: 26774056 |
[31] | Rowe SJ , Clarke SM, van Stijn TC, Hyndaman DL, ward JF, Km M, Dodds KG, Mcewan JC, Newman S-AN, GW A. Brief communication: Developing genomic tools in the new zealand deer industry.Proceedings of the New Zealand Society of Animal Production, 2015(75):91-93. |
[32] | Slate J, Van Stijn TC, Anderson RM , McEwan KM, Maqbool NJ, Mathias HC, Bixley MJ, Stevens DR, Molenaar AJ, Beever JE, Galloway SM, Tate ML. A deer (subfamily Cervinae) genetic linkage map and the evolution of ruminant genomes. Genetics, 2002,160(4):1587-1597. |
[33] |
Hu PF, Shao Y , C Xu JP, Wang TJ, Li YQ, Liu HM, Rong M, Su WL, Chen BX, Cui SH, Cui XZ, Yang FH, Tamate H, Xing XM. Genome-wide study on genetic diversity and phylogeny of five species in the genus cervus. BMC Genomics, 2019,20(1):384.
pmid: 31101010 |
[34] |
Zhu LF, Deng C, Zhao X, Ding JJ, Huang HS, Zhu SL, Wang ZW, Qin SS, Ding YH, Lu GQ, Yang ZS. Endangered père david’s deer genome provides insights into population recovering. Evol Appl, 2018,11(10):2040-2053.
doi: 10.1111/eva.12705 pmid: 30459847 |
[35] |
Zhao SC, Zheng PP, Dong SS, Zhan XJ, Wu Q, Guo XS, Hu YB, He WM, Zhang SN, Fan W, Zhu LF, Li D, Zhang XM, Chen Q, Zhang HM, Zhang ZH, Jin XL, Zhang J, Yang HM, Wang J, Wang J, Wei FW. Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation. Nat Genet, 2013,45(1):67-71.
pmid: 23242367 |
[36] |
Szyda J, Fraszczak M, Mielczarek M, Giannico R, Minozzi G, Nicolazzi EL, Kamiński S, Wojdak- Maksymiec K. The assessment of inter-individual variation of whole-genome DNA sequence in 32 cows. Mamm Genome, 2015,26(11-12):658-665.
doi: 10.1007/s00335-015-9606-7 pmid: 26475143 |
[37] | Hu PF, Deng YY, Ba HX, Li CY. Association analysis of thirty-one single nucleotide polymorphisms with antler weight in sika deer. Anim Genet, 2020, 51(6):990-991. |
[38] |
Hu PF, Wang TJ, Liu HM, Xu JP, Wang L, Zhao P, Xing XM. Full-length transcriptome and microrna sequencing reveal the specific gene-regulation network of velvet antler in sika deer with extremely different velvet antler weight. Mol Genet Genomics, 2019,294(2):431-443.
doi: 10.1007/s00438-018-1520-8 pmid: 30539301 |
[39] | Xie LW, Deng YY, Shao XQ, Hu PF, Zhao DW, Li CY, Ba HX. Design of a universal primer pair for the identification of deer species. Conserv Genet Resour, 2020,13(1):9-12. |
[40] |
Jia BY, Wang GW, Zheng JJ, Yang WY, Chang SZ, Zhang JL, Liu Y, Li QN, Ge CX, Chen G, Liu DD, Yang FH. Development of novel est microsatellite markers for genetic diversity analysis and correlation analysis of velvet antler growth characteristics in sika deer. Hereditas, 2020,157(1):24.
doi: 10.1186/s41065-020-00137-x pmid: 32591015 |
[41] |
Jia BY, Ba HX, Wang GW, Yang Y, Cui XZ, Peng YH, Zheng JJ, Xing XM, Yang FH. Transcriptome analysis of sika deer in china. Mol Genet Genomics, 2016,291(5):1941-1953.
doi: 10.1007/s00438-016-1231-y pmid: 27423230 |
[42] |
Yang WY, Zheng JJ, Jia BY, Wei HJ, Wang GW, Yang FH. Isolation of novel microsatellite markers and their application for genetic diversity and parentage analyses in sika deer. Gene, 2018,643:68-73.
pmid: 29223356 |
[43] | Tanaka K, Hoshi A, Nojima R, Suzuki K, Takiguchi H, Takatsuki S, Takizawa T, Hosoi E, Tamate HB, Hayashida M, Anezaki T, Fukue Y, Minami M. Genetic variation in y-chromosome genes of sika deer ( Cervus nippon) in japan. Zoolog Sci, 2020,37(5):411-416. |
[44] |
Frank K, Bana NÁ, Bleier N, Sugár L, Nagy J, Wilhelm J, Kálmán Z, Barta E, Orosz L, Horn P, Stéger V. Mining the red deer genome (cerela1.0) to develop x-and y-chromosome-linked str markers. PLoS One, 2020,15(11):e0242506.
doi: 10.1371/journal.pone.0242506 pmid: 33226998 |
[45] |
Farré M, Kim J, Proskuryakova AA, Zhang Y, Kulemzina AI, Li QY, Zhou Y, Xiong YQ, Johnson JL, Perelman PL, Johnson WE, Warren WC, Kukekova AV, Zhang GJ , O'Brien SJ, Ryder OA, Graphodatsky AS, Ma J, Lewin HA, Larkin DM. Evolution of gene regulation in ruminants differs between evolutionary breakpoint regions and homologous synteny blocks. Genome Res, 2019,29(4):576-589.
doi: 10.1101/gr.239863.118 pmid: 30760546 |
[46] | Zhou Q, Huang L, Zhang JG, Zhao XY, Zhang QP, Song F, Chi JX, Yang FT, Wang W. Comparative genomic analysis links karyotypic evolution with genomic evolution in the indian muntjac ( Muntiacus muntjak vaginalis). Chromosoma, 2006,115(6):427-436. |
[47] |
Lee C, Sasi R, Lin CC. Interstitial localization of telomeric DNA sequences in the indian muntjac chromosomes: Further evidence for tandem chromosome fusions in the karyotypic evolution of the asian muntjacs. Cytogenet Cell Genet, 1993,63(3):156-159.
doi: 10.1159/000133525 pmid: 8485991 |
[48] | Yang F, Carter NP, Shi L, Ferguson-Smith MA. A comparative study of karyotypes of muntjacs by chromosome painting. Chromosoma, 1995,103(9):642-652. |
[49] | Yang F , O'Brien PC, Wienberg J, Ferguson-Smith MA. Evolution of the black muntjac ( Muntiacus crinifrons) karyotype revealed by comparative chromosome painting. Cytogenet Cell Genet, 1997,76(3-4):159-163. |
[50] | Yang F , O'Brien PC, Wienberg J, Neitzel H, Lin CC, Ferguson-Smith MA. Chromosomal evolution of the chinese muntjac ( Muntiacus reevesi). Chromosoma, 1997,106(1):37-43. |
[51] |
Tsipouri V, Schueler MG, Hu S, Program NCS, Dutra A, Pak E, Riethman H, Green ED. Comparative sequence analyses reveal sites of ancestral chromosomal fusions in the indian muntjac genome. Genome Biol, 2008,9(10):R155.
doi: 10.1186/gb-2008-9-10-r155 pmid: 18957082 |
[52] |
Huang L, Chi J, Nie WH, Wang JH, Yang FT. Phylogenomics of several deer species revealed by comparative chromosome painting with chinese muntjac paints. Genetica, 2006,127(1-3):25-33.
doi: 10.1007/s10709-005-2449-5 pmid: 16850210 |
[53] | Huang L, Chi JX, Wang JH, Nie WH, Su W, Yang FT. High-density comparative bac mapping in the black muntjac ( Muntiacus crinifrons): Molecular cytogenetic dissection of the origin of mcr 1p+4 in the x1x2y1y2y3 sex chromosome system. Genomics, 2006,87(5):608-615. |
[54] | Zhou Q, Wang J, Huang L, Nie WH, Wang JH, Liu Y, Zhao XY, Yang FT, Wang W. Neo-sex chromosomes in the black muntjac recapitulate incipient evolution of mammalian sex chromosomes. Genome Biol, 2008,9(6):R98. |
[55] | Huang L, Jing MD, Zhou Q, Yang FT, Wang W . Research advances in genome evolution of muntjacs ( Muntiacinae, Cervidae). Sci China Life Sci, 2012,42(2):87-95. |
黄玲, 靖美东, 周琦, 杨凤堂, 王文 . 鹿科麂属动物基因组演化研究进展. 中国科学:生命科学, 2012,42(2):87-95. | |
[56] | Lin ZS, Chen L, Chen XQ, Zhong YB, Yang Y, Xia WH, Liu C, Zhu WB, Wang H, Yan BY, Yang YF, Liu X, Sternang Kvie K, Røed KH, Wang K, Xiao WH, Wei HJ, Li GY, Heller R, Gilbert MTP, Qiu Q, Wang W, Li ZP. Biological adaptations in the arctic cervid, the reindeer(Rangifer tarandus). Science, 2019, 364(6446): eaav6312. |
[57] |
Weldenegodguad M, Pokharel K, Ming Y, Honkatukia M, Peippo J, Reilas T, Røed KH, Kantanen J. Genome sequence and comparative analysis of reindeer (Rangifer tarandus) in northern eurasia. Sci Rep, 2020,10(1):8980.
doi: 10.1038/s41598-020-65487-y pmid: 32488117 |
[58] | Yang SL, Lu XC, Wang YF, Xu LZ, Chen XY, Yang F, Lai R. A paradigm of thermal adaptation in penguins and elephants by tuning cold activation in trpm8. Proc Natl Acad Sci USA, 2020,117(15):8633-8638. |
[59] | Ababaikeri B, Abduriyim S, Tohetahong Y, Mamat T, Ahmat A, Halik M. Whole-genome sequencing of tarim red deer (Cervus elaphus yarkandensis) reveals demographic history and adaptations to an arid-desert environment. Front Zool, 2020,17(1):31. |
[60] |
Ba HX, Qin T, Cai ZX, Liu WY, Li CY. Molecular evidence for adaptive evolution of olfactory-related genes in cervids. Genes Genomics, 2020,42(4):355-360.
doi: 10.1007/s13258-019-00911-w pmid: 31902105 |
[61] | Li CY, Suttie JM. Deer antlerogenic periosteum: A piece of postnatally retained embryonic tissue? Anat Embryol (Berl), 2001,204(5):375-388. |
[62] |
Kierdorf U, Li CY, Price JS. Improbable appendages: Deer antler renewal as a unique case of mammalian regeneration. Semin Cell Dev Biol, 2009,20(5):535-542.
doi: 10.1016/j.semcdb.2008.11.011 pmid: 19084608 |
[63] |
Price JS, Allen S, Faucheux C, Althnaian T, Mount JG. Deer antlers: A zoological curiosity or the key to understanding organ regeneration in mammals? J Anat, 2005,207(5):603-618.
doi: 10.1111/j.1469-7580.2005.00478.x pmid: 16313394 |
[64] |
Randi E, Mucci N, Pierpaoli M, Douzery E. New phylogenetic perspectives on the Cervidae (Artiodactyla) are provided by the mitochondrial cytochrome b gene. Proc Biol Sci, 1998,265(1398):793-801.
doi: 10.1098/rspb.1998.0362 pmid: 9628037 |
[65] |
Li CY. Deer antler regeneration: A stem cell-based epimorphic process. Birth Defects Res C Embryo Today, 2012,96(1):51-62.
pmid: 22457177 |
[66] | Li CY, Chu WH. The regenerating antler blastema: The derivative of stem cells resident in a pedicle stump. Front Biosci (Landmark Ed), 2016,21:455-467. |
[67] |
Rolf HJ, Kierdorf U, Kierdorf H, Schulz J, Seymour N, Schliephake H, Napp J, Niebert S, Wölfel H, Wiese KG. Localization and characterization of stro-1 cells in the deer pedicle and regenerating antler. PLoS One, 2008,3(4):e2064.
doi: 10.1371/journal.pone.0002064 pmid: 18446198 |
[68] |
Seo MS, Park SB, Choi SW, Kim JJ, Kim HS, Kang KS. Isolation and characterization of antler-derived multipotent stem cells. Cell Transplant, 2014,23(7):831-843.
doi: 10.3727/096368912X661391 pmid: 23294672 |
[69] | Wang DT, Ba HX, Li CG, Zhao QM, Li CY. Proteomic analysis of plasma membrane proteins of antler stem cells using label-free LC-MS/MS. Int J Mol Sci, 2018,19(11):3477. |
[70] |
Wang DT, Berg DB, Ba HX, Sun HM, Wang Z, Li CY. Deer antler stem cells are a novel type of cells that sustain full regeneration of a mammalian organ-deer antler. Cell Death Dis, 2019,10(6):443.
doi: 10.1038/s41419-019-1686-y pmid: 31165741 |
[71] |
Ba HX, Wang DT, Li CY. Microrna profiling of antler stem cells in potentiated and dormant states and their potential roles in antler regeneration. Mol Genet Genomics, 2016,291(2):943-955.
doi: 10.1007/s00438-015-1158-8 pmid: 26738876 |
[72] |
Ba HX, Wang DT, Wu WY, Sun HM, Li CY. Single-cell transcriptome provides novel insights into antler stem cells, a cell type capable of mammalian organ regeneration. Funct Integr Genomics, 2019,19(4):555-564.
doi: 10.1007/s10142-019-00659-2 pmid: 30673893 |
[73] |
Li CY, Yang FH, Li GY, Gao XH, Xing XM, Wei HJ, Deng XM, Clark DE. Antler regeneration: A dependent process of stem tissue primed via interaction with its enveloping skin. J Exp Zool A Ecol Genet Physiol, 2007,307(2):95-105.
pmid: 17177282 |
[74] | Dong Z, Ba HX, Zhang W, Coates D, Li CY. Itraq-based quantitative proteomic analysis of the potentiated and dormant antler stem cells. Int J Mol Sci, 2016,17(11):1778. |
[75] |
Dong Z, Coates D, Liu QX, Sun HM, Li CY. Quantitative proteomic analysis of deer antler stem cells as a model of mammalian organ regeneration. J Proteomics, 2019,195:98-113.
doi: 10.1016/j.jprot.2019.01.004 pmid: 30641233 |
[76] |
Dong Z, Haines S, Coates D. Proteomic profiling of stem cell tissues during regeneration of deer antler: A model of mammalian organ regeneration. J Proteome Res, 2020,19(4):1760-1775.
doi: 10.1021/acs.jproteome.0c00026 pmid: 32155067 |
[77] |
Sun HM, Sui ZG, Wang DT, Ba HX, Zhao HP, Zhang LH, Li CY. Identification of interactive molecules between antler stem cells and dermal papilla cells using an in vitro co-culture system. J Mol Histol, 2020,51(1):15-31.
doi: 10.1007/s10735-019-09853-9 pmid: 31858326 |
[78] |
Li CY, Harper A, Puddick J, Wang WY, McMahon C. Proteomes and signalling pathways of antler stem cells. PLoS One, 2012,7(1):e30026.
pmid: 22279561 |
[79] | Liu Z, Zhao HP, Wang D, McMahon C, Li CY. Differential effects of the pi3k/akt pathway on antler stem cells for generation and regeneration of antlers in vitro. Front Biosci (Landmark Ed), 2018,23:1848-1863. |
[80] |
Dedhar S, Rennie PS, Shago M, Hagesteijn CY, Yang H, Filmus J, Hawley RG, Bruchovsky N, Cheng H, Matusik RJ. Inhibition of nuclear hormone receptor activity by calreticulin. Nature, 1994,367(6462):480-483.
doi: 10.1038/367480a0 pmid: 8107809 |
[81] |
Akhtar RW, Liu Z, Wang DT, Ba HX, Shah SAH, Li CY. Identification of proteins that mediate the role of androgens in antler regeneration using label free proteomics in sika deer (Cervus nippon). Gen Comp Endocrinol, 2019,283:113235.
doi: 10.1016/j.ygcen.2019.113235 pmid: 31369730 |
[82] |
Park HJ, Lee DH, Park SG, Lee SC, Cho S, Kim HK, Kim JJ, Bae H, Park BC. Proteome analysis of red deer antlers. Proteomics, 2004,4(11):3642-3653.
doi: 10.1002/pmic.200401027 pmid: 15529405 |
[83] |
Yao BJ, Zhao Y, Wang Q, Zhang M, Liu MC, Liu HL, Li J. De novo characterization of the antler tip of chinese sika deer transcriptome and analysis of gene expression related to rapid growth. Mol Cell Biochem, 2012,364(1-2):93-100.
doi: 10.1007/s11010-011-1209-3 pmid: 22198337 |
[84] | Yao BJ, Zhao Y, Zhang HS, Zhang M, Liu MC, Liu HL, Li J. Sequencing and de novo analysis of the chinese sika deer antler-tip transcriptome during the ossification stage using illumina rna-seq technology. Biotechnol Lett, 2012,34(5):813-822. |
[85] |
Zhao Y, Yao BJ, Zhang M, Wang SM, Zhang H, Xiao W. Comparative analysis of differentially expressed genes in sika deer antler at different stages. Mol Biol Rep, 2013,40(2):1665-1676.
doi: 10.1007/s11033-012-2216-5 pmid: 23073784 |
[86] |
Han RB, Han L, Wang SN, Li HP. Whole transcriptome analysis of mesenchyme tissue in sika deer antler revealed the cernas regulatory network associated with antler development. Front Genet, 2019,10:1403.
pmid: 32133026 |
[87] | Zhang YY, Liu HM, Shao YC, Zhou PY, Su Y, Wang L, Xing XM . Comparative proteomic analysis in different growth stages of sika deer velvet antler, Acta Veterinaria et Zootechnica Sinica, 2016,47(3):493-501. |
张然然, 刘华淼, 邵元臣, 周盼伊, 苏莹, 王磊, 邢秀梅 . 不同生长时期梅花鹿鹿茸差异蛋白质组学分析. 畜牧兽医学报, 2016,47(3):493-501. | |
[88] |
Li CY, Clark DE, Lord EA, Stanton JA, Suttie JM. Sampling technique to discriminate the different tissue layers of growing antler tips for gene discovery. Anat Rec, 2002,268(2):125-130.
doi: 10.1002/ar.10120 pmid: 12221718 |
[89] |
Ba HX, Wang DT, Yau TO, Shang YD, Li CY. Transcriptomic analysis of different tissue layers in antler growth center in sika deer ( Cervus nippon). BMC Genomics, 2019,20(1):173.
doi: 10.1186/s12864-019-5560-1 pmid: 30836939 |
[90] |
Ker DFE, Wang D, Sharma R, Zhang B, Passarelli B, Neff N, Li CY, Maloney W, Quake S, Yang YP. Identifying deer antler uhrf1 proliferation and s100a10 mineralization genes using comparative rna-seq. Stem Cell Res Ther, 2018,9(1):292.
doi: 10.1186/s13287-018-1027-6 pmid: 30376879 |
[91] |
Chen DY, Jiang RF, Li YJ, Liu MX, Wu L, Hu W. Screening and functional identification of lncrnas in antler mesenchymal and cartilage tissues using high- throughput sequencing. Sci Rep, 2020,10(1):9492.
doi: 10.1038/s41598-020-66383-1 pmid: 32528134 |
[92] |
Yao BJ, Wang CN, Zhou ZW, Zhang M, Zhao DQ, Bai XY, Leng XY. Comparative transcriptome analysis of the main beam and brow tine of sika deer antler provides insights into the molecular control of rapid antler growth. Cell Mol Biol Lett, 2020,25:42.
doi: 10.1186/s11658-020-00234-9 pmid: 32944020 |
[93] |
Li CY, Zhao HP, Liu Z, McMahon C. Deer antler--a novel model for studying organ regeneration in mammals. Int J Biochem Cell Biol 2014,56:111-122.
pmid: 25046387 |
[94] |
Landete-Castillejos T, Kierdorf H, Gomez S, Luna S, García AJ, Cappelli J, Pérez-Serrano M, Pérez-Barbería J, Gallego L, Kierdorf U. Antlers-evolution, development, structure, composition, and biomechanics of an outstanding type of bone. Bone, 2019,128:115046.
doi: 10.1016/j.bone.2019.115046 pmid: 31446115 |
[95] |
Fennessy PF. Deer antlers: Regeneration, function and evolution. J R Soc N Z, 1984,14(3):290-291.
doi: 10.1080/03036758.1984.10426948 |
[96] |
Lombard LS, Witte EJ. Frequency and types of tumors in mammals and birds of the philadelphia zoological garden. Cancer Res, 1959,19(2):127-141.
pmid: 13629476 |
[97] | Griner LA. A review of necropsies conducted over a fourteen-year period at the san diego zoo and san diego wild animal park. In: Pathology of Zoo Animals. 1983. |
[98] |
Rong XL, Chu WH, Zhang HY, Wang YS, Qi XY, Zhang GK, Wang YM, Li CY. Antler stem cell- conditioned medium stimulates regenerative wound healing in rats. Stem Cell Res Ther 2019,10(1):326.
doi: 10.1186/s13287-019-1457-9 pmid: 31744537 |
[99] |
Willyard C. Unlocking the secrets of scar-free skin healing. Nature, 2018,563(7732):S86-S88.
doi: 10.1038/d41586-018-07430-w pmid: 30464288 |
[100] |
Banks WJ, Epling GP, Kainer RA, Davis RW. Antler growth and osteoporosis. I. Morphological and morphometric changes in the costal compacta during the antler growth cycle. Anat Rec, 1968,162(4):387-397.
doi: 10.1002/ar.1091620401 pmid: 5701619 |
[101] |
Jr WJB, Epling GP, Kainer RA, Davis RW. Antler growth and osteoporosis. II. Gravimetric and chemical changes in the costal compacta during the antler growth cycle. Anat Rec, 1968,162(4):399-405.
doi: 10.1002/ar.1091620402 pmid: 5701620 |
[102] |
Stéger V, Molnár A, Borsy A, Gyurján I, Szabolcsi Z, Dancs G, Molnár J, Papp P, Nagy J, Puskás L, Barta E, Zomborszky Z, Horn P, Podani J, Semsey S, Lakatos P, Orosz L. Antler development and coupled osteoporosis in the skeleton of red deer cervus elaphus: Expression dynamics for regulatory and effector genes. Mol Genet Genomics, 2010,284(4):273-287.
doi: 10.1007/s00438-010-0565-0 pmid: 20697743 |
[103] |
van der Weijden VA, Ulbrich SE. Embryonic diapause in roe deer: A model to unravel embryo-maternal communication during pre-implantation development in wildlife and livestock species. Theriogenology, 2020,158:105-111.
doi: 10.1016/j.theriogenology.2020.06.042 pmid: 32947063 |
[104] |
Beyes M, Nause N, Bleyer M, Kaup FJ, Neumann S. Description of post-implantation embryonic stages in european roe deer (capreolus capreolus) after embryonic diapause. Anat Histol Embryol, 2017,46(6):582-591.
doi: 10.1111/ahe.12315 pmid: 28960412 |
[105] |
Drews B, Rudolf Vegas A, van der Weijden VA, Milojevic V, Hankele AK, Schuler G, Ulbrich SE. Do ovarian steroid hormones control the resumption of embryonic growth following the period of diapause in roe deer (Capreolus capreolus)? Reprod Biol, 2019,19(2):149-157.
doi: 10.1016/j.repbio.2019.04.003 pmid: 31147267 |
[106] |
Korzekwa AJ, Kotlarczyk AM, Zadroga A. Profiles of maternal origin factors during transition from embryonic diapause to implantation in roe deer. Anim Sci J, 2019,90(11):1444-1452.
doi: 10.1111/asj.13289 pmid: 31486226 |
[107] |
van der Weijden VA, Puntar B, Rudolf Vegas A, Milojevic V, Schanzenbach CI, Kowalewski MP, Drews B, Ulbrich SE. Endometrial luminal epithelial cells sense embryo elongation in the roe deer independent of interferon-tau†. Biol Reprod, 2019,101(5):882-892.
doi: 10.1093/biolre/ioz129 pmid: 31317179 |
[1] | 刘文兵, 刘丹, 闫进, 刘欣, 王前飞. 重症新型冠状病毒肺炎患者遗传易感性研究进展[J]. 遗传, 2022, 44(8): 672-681. |
[2] | 毛轲, 孟子秋, 张永彪. 神经嵴发育调控及颅面部遗传基础研究进展[J]. 遗传, 2022, 44(12): 1089-1102. |
[3] | 章誉兴, 吴宏, 于黎. 哺乳动物毛色调控机制及其适应性进化研究进展[J]. 遗传, 2021, 43(2): 118-133. |
[4] | 钱国清. 慢性阻塞性肺疾病全基因组关联研究进展[J]. 遗传, 2020, 42(9): 832-846. |
[5] | 梅志超, 位竹君, 于佳慧, 冀凤丹, 解莉楠. 多组学关联分析揭示表观等位基因在拟南芥环境适应性进化中的作用及机制[J]. 遗传, 2020, 42(3): 321-331. |
[6] | 孟玉,杨若林. 基于基因家族大小的比较研究脊椎动物的适应性进化[J]. 遗传, 2019, 41(2): 158-174. |
[7] | 宋述慧,滕徐菲,肖景发. 中国人群参考基因组及基因组变异图谱资源库[J]. 遗传, 2018, 40(11): 1048-1054. |
[8] | 黄莹,刘琪,池连江,石承民,吴祯,胡敏,石宏,陈华. BIG-Annotator:基因组测序数据高效功能注释及其在遗传诊断中的应用[J]. 遗传, 2018, 40(11): 1015-1023. |
[9] | 梁素芸,周正奎,侯水生. 基于测序技术的畜禽基因组学研究进展[J]. 遗传, 2017, 39(4): 276-292. |
[10] | 常飞, 邹文超, 高芳銮, 沈建国, 詹家绥. 不同寄主来源的马铃薯Y病毒群体遗传结构的比较分析[J]. 遗传, 2015, 37(3): 292-301. |
[11] | 梁运鹏, 于黎. 翼手目(蝙蝠)适应性进化分子机制的研究进展[J]. 遗传, 2015, 37(1): 25-33. |
[12] | 江静, 钱前, 马伯军,高振宇. 表观遗传变异及其在作物改良中的应用[J]. 遗传, 2014, 36(5): 469-475. |
[13] | 郎大田, 张亚平, 于黎. 核糖核酸酶基因超家族分子进化[J]. 遗传, 2014, 36(4): 316-326. |
[14] | 朱林江, 李崎. 环境胁迫诱导的细胞适应性突变[J]. 遗传, 2014, 36(4): 327-335. |
[15] | 彭立新 孙菲菲 黄艳燕 黎贞崇. 酿酒酵母中亚硫酸盐转运基因SSU1的分子进化分析[J]. 遗传, 2013, 35(11): 1317-1326. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: