[1] Johnson HD. Bioclimate effects on growth, reproduction, and milk production. World Animal Science (Netherlands): Elsevier, 1987, 35–37.
[2] Du Preez JH, Hattingh PJ, Giesecke WH , Eisenberg BE. Heat stress in dairy cattle and other livestock under southern African conditions. III. Monthly tempera-ture-humidity index mean values and their significance in the performance of dairy cattle. Onderstepoort J Vet, 1990. 57(4): 243-248.
[3] Holter JB, West JW, McGilliard ML. Predicting ad libitum dry matter intake and yield of Holstein cows. J Dairy Sci, 1997, 80(9): 2188-2199.
[4] Valtorta SE, Gallardo MR. Evaporative cooling for Hol-stein dairy cows under grazing conditions. Int J Biomete-orol, 2004, 48(4): 213-217.
[5] Turner LW, Chastain JP, Hemken RW, Gates RS, Crist WL. Reducing heat stress in dairy cows through sprinkler and fan cooling. Appl Eng Agric, 1992, 48(4): 251-256.
[6] Smith TR, Chapa A, Willard S, Herndon Jr C, Williams RJ, Crouch J, Riley T, Pogue D. Evaporative tunnel cooling of dairy cows in the southeast. II: Impact on lactation per-formance. J Dairy Sci, 2006, 89(10): 3915-3923.
[7] Armstrong DV. Heat stress interaction with shade and cooling. J Dairy Sci, 1994, 77(7): 2044-2050.
[8] Silanikove N, Maltz E, Halevi A, Shinder D. Metabolism of water, sodium, potassium, and chlorine by high yielding dairy cows at the onset of lactation. J Dairy Sci, 1997, 80(5): 949-956.
[9] Ravagnolo O, Misztal I, Hoogenboom G. Genetic compo-nent of heat stress in dairy cattle, development of heat in-dex function. J Dairy Sci, 2000, 83(9): 2120-2125.
[10] 穆玉云. 乳牛耐热性的数量指标和遗传力. 中国畜牧杂志, 1990, 26(5): 46.
[11] Feige U, Morimoto R, Yahara I, Polla BS. Stress-inducible Cellular Responses. Birkhäuser Verlag Basel, Boston, Ber-lin, 1996, 239-254.
[12] Cai YF, Liu QH, Xing GD, Zhou L, Yang YY, Zhang LJ, Li J, Wang GL. Polymorphism of the promoter region of Hsp70 gene and its relationship with the expression of HSP70 mRNA, HSF1mRNA, Bcl-2 mRNA and Bax-A mRNA in lymphocytes in peripheral blood of heat shocked dairy cows. Asian-Aust J Anim Sci, 2005, 18(5): 734-740.
[13] Morimoto RI. Cells in stress: transcriptional activation of heat shock genes. Science, 1993, 259(5100): 1409-1410.
[14] Bruemmer-Smith S, Stüber F, Schroeder S. Protective functions of intracellular heat shock protein (HSP) 70 ex-pression in patients with severe sepsis. J Intensive Care Med, 2001, 27(12): 1835-1841.
[15] Schmittgen TD, Zakrajsek BA, Mills AG, Gorn V, Singer MJ, Reed MW. Quantitative reverse transcription- poly-merase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. Anal Biochem, 2000, 285(2): 194-204.
[16] Bustin SA. Quantification of mRNA using real-time re-verse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol, 2002, 29(1): 23–39.
[17] 储明星, 周国利, 金海国, 石万海, 曹福存, 方丽, 叶素成, 朱颜. 7个微卫星座位与北京荷斯坦母牛体细胞评分关系的研究. 遗传学报, 2005, 32(5): 471-475.
[18] 李延璐, 储明星, 陈宏权, 方丽, 狄冉, 马月辉, 李奎. 绵羊微卫星BMS2508和FecB基因的多态及连锁分析. 遗传, 2009, 31(5): 500-507.
[19] 孙伟, 常洪, 金银, 王鹏, 钱建共, 吴文忠, 陈玲, 王伟. 湖羊产羔性状的微卫星标记与可能生产力的关联性分析. 畜牧兽医学报, 2009, 40(1): 7-14. [20] Rhoad AO. The Iberia heat tolerance test for cattle. Trop Agr, 1944, 21(9): 162-164.
[21] Livak KJ, Schmittgen TD. Analysis of relative gene ex-pression data using real-time quantitative PCR and the 2-△△Ct Method. Methods, 2001, 25(4): 402-408.
[22] Ahn SG, Thiele DJ. Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress. Gene Dev, 2003, 17(4): 516-528.
[23] Zhang Y, Huang L, Zhang J. Targeted disruption of hsf1 leads to lack of thermotolerance and defines tis-sue-specific regulation for stress-induced Hsp molecular chaperones. Cell Biochem, 2002, 86(2): 376-393.
[24] Mosser DD, Caron AW, Bourget L. Role of the human heat shock protein HSP70 in protection against stress-induced apoptosis. Mol Cell Biol, 1997, 17(9): 5317-5321.
[25] Vaiman D, Mercier D, Moazami-Goudarzi K, Eggen A, Ciampolini R, Lépingle A, Velmala R, Kaukinen J, Varvio SL, Martin P, Levéziel H, Guérin G. A set of 99 cattle mi-crosatellites: characterization, synteny mapping, and polymorphism. Mamm Genome, 1994, 5(5): 288-297.
[26] Bostein D, White RL, Skolnick M, Davis RW. Construc-tion of a genetic linkage map in man using restriction fragment length polymorphism. Am J Hum Genet, 1980, 32(3): 314-331.
[27] 穆玉云, 李如治, 黄昌澍. 乳牛耐热性指标的检测. 安徽农业大学学报, 1993, 20(1): 69-75.
[28] 李建国, 桑润滋, 张正珊, 王铁征, 朱慧中. 热应激对奶牛生理常值、血液生化指标、繁殖及泌乳性能的影响. 河北农业大学学报, 1998, 21(4): 69-75.
[29] Abdel-Samee AM. Response of New Zealand white rab-bits to thermal stress and its amelioration during winter and summer of North Sinai, Egypt. J Arid Environ, 1997, 36(2): 333-342.
[30] McManus C, Paludo GR, Louvandini H, Garcia JAS, Egito AA, Mariante AS. Heat tolerance in naturalised cattle in Brazil: physical factors. Arch Zoote, 2005, 54(206): 453-458.
[31] Evans J. Adaptation to subtropical environments by Zebu and British breeds of cattle in relation to erythrocyte characters. Aust J Agr Res, 1963, 14(4): 559–571.
[32] 史彬林, 李如治, 黄昌澎, 林全曾, 金穗华. 奶牛耐热性评定指标的研究. 中国奶牛, 1996, (2): 20-22.
[33] 赖登明, 夏东, 李如治, 谭志明, 谢伍生. 红细胞钾含量对奶牛耐热性的影响. 中国奶牛, 1997,(2): 15-16.
[34] 苏光华, 肖兵南, 燕海峰, 张元跃, 邓缘, 吴晓林, 刘海林. 南方中国荷斯坦牛耐热性的遗传分析. 中国奶牛, 2007, (1): 21-25.
[35] 王泽英, 黄金明, 王长法, 刘延鑫, 李大齐, 仲跻峰, 王根林. 荷斯坦牛血红细胞NA+K+-ATP酶活力与其耐热性的相关性研究. 中国牛业科学, 2009, 35(3): 1-5. |