[1] Meuwissen THE, van Arendonk JAM. Potential improvements in rate of genetic gain from marker-assisted selection in dairy cattle breeding schemes. J Dairy Sci, 1992, 75(6): 1651-1659.[2] Villanueva B, Pong-Wong R, Woolliams JA. Marker assisted selection with optimised contributions of the can-didates to selection. Genet Sel Evol, 2002, 34(6): 679-703.[3] Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, Giovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J. Complement factor H polymorphism in age-related macular degeneration. Science, 2005, 308(5720): 385-389.[4] Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J, Najjar S, Nagaraja R, Orrú M, Usala G, Dei M, Lai S, Maschio A, Busonero F, Mulas A, Ehret GB, Fink AA, Weder AB, Cooper RS, Galan P, Chakravarti A, Schless-inger D, Cao A, Lakatta E, Abecasis GR. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet, 2007, 3(7): e115.[5] Sladek R, Rocheleau G, Rung J, Dina C, Shen LS, Serre D, Boutin P, Vincent D, Belisle A, Hadjadj S, Balkau B, Heude B, Charpentier G, Hudson TJ, Montpetit A, Pshezhetsky AV, Prentki M, Posner BI, Balding DJ, Meyre D, Polychronakos C, Froguel P. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature, 2007, 445(7130): 881-885.[6] Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, Dixon RJ, Meitinger T, Braund P, Wichmann HE, Barrett JH, König IR, Stevens SE, Szymczak S, Tregouet DA, Iles MM, Pahlke F, Pollard H, Lieb W, Cambien F, Fischer M, Ouwehand W, Blanken-berg S, Balmforth AJ, Baessler A, Ball SG, Strom TM, Braenne I, Gieger C, Deloukas P, Tobin MD, Ziegler A, Thompson JR, Schunkert H. Genomewide association analysis of coronary artery disease. New Engl J Med, 2007, 357(5): 443-453.[7] Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, Brant SR, Silverberg MS, Taylor KD, Barmada MM, Bitton A, Dassopoulos T, Datta LW, Green T, Grig-giths AM, Daly MJ. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s dis-ease. Nat Genet, 2008, 40(8): 955-962.[8] Weiss LA, Arking DE, Gene Discovery Project of Johns Hopkins & the Autism Consortium, Daly MJ, Chakravarti A. A genome-wide linkage and association scan reveals novel loci for autism. Nature, 2009, 461(7265): 802-808.[9] Daetwyler HD, Schenkel FS, Sargolzael M, Robinson JAB. A genome scan to detect quantitative trait loci for eco-nomically important traits in Holstein cattle using two methods and a dense single nucleotide polymorphism map. J Dairy Sci, 2008, 91(8): 3225-3236.[10] Bastiaansen JWM, Bovenhuis H, Wijga S, Mc Parland S, Wall E, Strandberg E, Veerkamp RF. Genome-wide asso-ciation study for milk production and fat to protein ratio in dairy cattle. In: Proceedings of the 9th World Congress on Genetics Applied to Livestock Production. Leipzig, Ger-many, 2010: 270.[11] Meredith BK, Kearney FJ, Finlay EK, Bradley DG, Fahey AG, Berry DP, Lynn DJ. Genome-wide associations for milk production and somatic cell score in Hol-stein-Frie-sian cattle in Ireland. BMC Genet, 2012: 13: 21.[12] Mai MD, Sahana G, Christiansen FB, Guldbrandtsen B. A genome-wide association study for milk production traits in Danish Jersey cattle using a 50K single nucleotide polymorphism chip. J Anim Sci, 2010, 88(11): 3522-3528.[13] Schopen GCB, Visker MHPW, Koks PD, Mullaart E, van Arendonk JAM, Bovenhuis H. Whole-genome association study for milk protein composition in dairy cattle. J Dairy Sci, 2011, 94(6): 3148-3158.[14] Bouwman AC, Bovenhuis H, Visker MH, Arendonk JA. Genome-wide association of milk fatty acids in Dutch dairy cattle. BMC Genet, 2011, 12: 43.[15] Jiang L, Liu JF, Sun DX, Ma PP, Ding XD, Yu Y, Zhang Q. Genome wide association studies for milk production trait in Chinese Holstein population. PLoS One, 2010, 5(10): e13661.[16] 范大有, 许尚忠, 李俊雅, 任红艳, 杨雪丽. 中国西门塔尔牛次级性状与生产性状的遗传统计分析. 畜牧兽医学报, 2008, 39(8): 1025-1032.[17] Kolbehdari D, Wang Z, Grant JR, Murdoch B, Prasad A, Xiu Z, Marques E, Stothard P, Moore SS. A whole-genome scan to map quantitative trait loci for conformation and functional traits in Canadian Holstein bulls. J Dairy Sci, 2008, 91(7): 2844-2856.[18] Veerkamp RF, Beerda B. Genetics and genomics to improve fertility in high producing dairy cows. Therio-genology, 2007, 68(S1): S266-S273.[19] Olsen HG, Hayes BJ, Kent MP, Nome T, Svendsen M, Lien S. A genome wide association study for QTL affecting direct and maternal effects of stillbirth and dystocia in cattle. Anim Genet, 2010, 41(3): 273-280.[20] Olsen HG, Hayes BJ, Kent MP, Nome T, Svendsen M, Larsgard AG, Lien S. Genome-wide association mapping in Norwegian Red cattle identifies quantitative trait loci for fertility and milk production on BTA12. Anim Genet, 2011, 42(5): 466-474.[21] Sahana G, Guldbrandtsen B, Bendixen C, Lund MS. Genome-wide association mapping for female fertility traits in Danish and Swedish Holstein cattle. Anim Genet, 2010, 41(6): 579-588.[22] Huang W, Kirkpatrick BW, Rosa GJM, Khatib H. A genome-wide association study using selective DNA pooling identifies candidate markers for fertility in Holstein cattle. Anim Genet, 2010, 41(6): 570-578.[23] Sahana G, Guldbrandtsen B, Lund MS. Genome-wide association study for calving traits in Danish and Swedish Holstein cattle. J Dairy Sci, 2011, 94(1): 479-486.[24] Pryce JE, Hayes BJ, Bolormaa S, Goddard ME. Polymor-phic regions affecting human height also control stature in cattle. Genetics, 2011, 187(3): 981-984.[25] Wijga S, Bastiaansen JWM, Wall E, Strandberg E, Haas Y, Berry DP, de Bovenhuis H. A whole genome association study to detect loci associated with somatic cell score in dairy cattle. In: Proceedings of the 9th World Congress on Genetics Applied to Livestock Production. Leipzig, Ger-many, 2010: 362.[26] Sodeland M, Kent MP, Olsen HG, Opsal MA, Svendsen M, Sehested E, Hayes BJ, Lien S. Quantitative trait loci for clinical mastitis on chromosomes 2,6,14 and 20 in Nor-wegian Red cattle. Anim Genet, 2011, 42(5): 457-465.[27] Pant SD, Schenkel FS, Verschoor CP, You QM, Kelton DF, Moore SS, Karrow NA. A principal component re-gression based genome wide analysis approach reveals the presence of a novel QTL on BTA7 for MAP resistance in Holstein cattle. Genomics, 2010, 95(3): 176-182.[28] Kirkpatrick BW, Shi X, Shook GE, Collins MT. Whole- genome association analysis of susceptibility to paratu-berculosis in Holstein cattle. Anim Genet, 2011, 42(2): 149-160.[29] Settles M, Zanella R, McKay SD, Schnabel RD, Taylor JF, Whitlock RH, Schukken Y, Van Kessel JS, Smith JM, Neibergs HL. A whole genome association analysis identi-fies loci associated with Mycobacterium avium subsp. paratuberculosis infection status in US Holstein cattle. Anim Genet, 2009, 40(5): 655-662.[30] Zanella R, Settles ML, Mckay SD, Schnabel R, Taylor J, Whitlock RH, Schukken Y, Van Kessel JS, Smith JM, Neibergs HL. Identification of loci associated with tolerance to Johne’s disease in Holstein cattle. Anim Genet, 2011, 42(1): 28-38.[31] 张沅. 家畜育种规划. 北京: 中国农业大学出版社, 2000: 228-280.[32] Pryce JE, Haile-Mariam M, Verbyla K, Bowman PJ, Goddard ME, Hayes BJ. Genetic markers for lactation persistency in primiparous Australian dairy cows. J Dairy Sci, 2010, 93(5): 2202-2214.[33] Zhang KL, Cui SJ, Chang SH, Zhang LY, Wang J. i-GSEA4GWAS: a web server for identification of pathways/ gene sets associated with traits by applying an improved gene set enrichment analysis to genome-wide association study. Nucleic Acids Res, 2010, 38(S2): W90-W95.[34] Zhang KL, Chang SH, Cui SJ, Guo LY, Zhang LY, Wang J. ICSNPathway: identify candidate causal SNPs and path-ways from genome-wide association study by one ana-lytical framework. Nucleic Acids Res, 2011, 39(S2): W437-W443. |