[1] Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 2009, 462(7271): 315-322.[2] Bird AP, Wolffe AP. Methylation-induced repression-belts, braces, and chromatin. Cell, 1999, 99(5): 451-454.[3] Jones PA, Takai D. The role of DNA methylation in mammalian epigenetics. Science, 2001, 293(5532): 1068-1070.[4] Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet, 2009, 10(5): 295-304.[5] Koerner MV, Pauler FM, Huang R, Barlow DP. The function of non-coding RNAs in genomic imprinting. Development, 2009, 136(11): 1771-1783.[6] Park KY, Pfeifer K. Epigenetic interplay. Nat Genet, 2003, 34(2): 126-128.[7] Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D'Souza C, Fouse SD, Johnson BE, Hong CB, Nielsen C, Zhao YJ, Turecki G, Delaney A, Varhol R, Thiessen N, Shchors K, Heine VM, Rowitch DH, Xing XY, Fiore C, Schillebeeckx M, Jones SJM, Haussler D, Marra MA, Hirst M, Wang T, Costello JF. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature, 2010, 466(7303): 253-257.[8] Jones PA, Liang GN. Rethinking how DNA methylation patterns are maintained. Nat Rev Genet, 2009, 10(11): 805-811.[9] Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet, 2010, 11(3): 204-220.[10] Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science, 2001, 293(5532): 1089-1093.[11] Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet, 2001, 2(1): 21-32.[12] Sasaki H, Matsui Y. Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat Rev Genet, 2008, 9(2): 129-140.[13] Ooi SKT, Bestor TH. The colorful history of active DNA demethylation. Cell, 2008, 133(7): 1145-1148.[14] Li E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet, 2002, 3(9): 662-673.[15] Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature, 2007, 447(7143): 425-432.[16] Morgan HD, Santos F, Green K, Dean W, Reik W. Epigenetic reprogramming in mammals. Hum Mol Genet, 2005, 14(Spec 1): R47-R58.[17] Mayer W, Niveleau A, Walter J, Fundele R, Haaf T. Embryogenesis: Demethylation of the zygotic paternal genome. Nature, 2000, 403(6769): 501-502.[18] Oswald J, Engemann S, Lane N, Mayer W, Olek A, Fundele R, Dean W, Reik W, Walter J. Active demethylation of the paternal genome in the mouse zygote. Curr Biol, 2000, 10(8): 475-478.[19] Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W, Walter J, Surani MA. Epigenetic reprogramming in mouse primordial germ cells. Mech Dev, 2002, 117(1-2): 15-23.[20] Lee JY, Inoue K, Ono R, Ogonuki N, Kohda T, Kaneko-Ishino T, Ogura A, Ishino F. Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development, 2002, 129(8): 1807-1817.[21] Zhu JK. Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet, 2009, 43: 143-166.[22] Monk M, Boubelik M, Lehnert S. Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development, 1987, 99(3): 371-382.[23] Howlett SK, Reik W. Methylation levels of maternal and paternal genomes during preimplantation development. Development, 1991, 113(1): 119-127.[24] Farthing CR, Ficz G, Ng RK, Chan CF, Andrews S, Dean W, Hemberge |