遗传 ›› 2014, Vol. 36 ›› Issue (5): 431-438.doi: 10.3724/SP.J.1005.2014.0431
宋红卫, 安铁洙, 朴善花, 王春生
收稿日期:
2013-12-30
修回日期:
2014-02-27
出版日期:
2014-05-20
发布日期:
2014-05-25
通讯作者:
王春生, 博士, 副教授, 研究方向:体细胞重编程。Tel: 0451-82191785; E-mail: wangchunsheng79@163.com
E-mail:wangchunsheng79@163.com
作者简介:
宋红卫, 硕士研究生, 专业方向:体细胞重编程。E-mail: songhongwei25@163.com
基金资助:
中央高校基本科研业务费专项资金(编号: DL13EA06-02)和国家自然科学基金项目(编号:31000990)资助
Hongwei Song, Tiezhu An, Shanhua Piao, Chunsheng Wang
Received:
2013-12-30
Revised:
2014-02-27
Online:
2014-05-20
Published:
2014-05-25
Contact:
WANG Chunsheng
E-mail:wangchunsheng79@163.com
摘要:
诱导多能干细胞(Induced pluripotent stem cell, iPS)技术提供了将终末分化的细胞逆转为多潜能干细胞的可能, 在干细胞基础理论研究和再生医学中具有重要意义。然而, 目前体细胞诱导重编程方法效率极低, 常发生不完全的重编程。研究表明, 在不完全重编程的细胞中存在体细胞的表观遗传记忆, 而DNA甲基化作为相对长期和稳定的表观遗传修饰, 是影响重编程效率和iPS细胞分化能力的重要因素之一。哺乳动物DNA甲基化是指胞嘧啶第五位碳原子上的甲基化修饰, 常发生于CpG位点。DNA甲基化能够调节体细胞特异基因和多能性基因的表达, 因此其在哺乳动物基因调控、胚胎发育和细胞重编程过程中发挥着重要作用。此外, 异常DNA甲基化可能导致iPS细胞基因印记的异常和X染色体的失活。文章重点围绕DNA甲基化的机制、分布特点、及其在体细胞诱导重编程中的作用进行了综述。
宋红卫, 安铁洙, 朴善花, 王春生. 哺乳动物DNA甲基化及其在体细胞诱导重编程中的作用[J]. 遗传, 2014, 36(5): 431-438.
Hongwei Song, Tiezhu An, Shanhua Piao, Chunsheng Wang. Mammalian DNA methylation and its roles during the induced re-programming of somatic cells[J]. HEREDITAS(Beijing), 2014, 36(5): 431-438.
[1] Cantone I, Fisher AG. Epigenetic programming and repro-gramming during development. Nat Struct Mol Biol, 2013, 20(3): 282–289. <\p> [2] Apostolou E, Hochedlinger K. Chromatin dynamics during cellular reprogramming. Nature, 2013, 502(7472): 462– 471. <\p> [3] Papp B, Plath K. Epigenetics of reprogramming to induced pluripotency. Cell, 2013, 152(6): 1324–1343. <\p> [4] Waddington CH. The Strategy of the Genes. London: George Allen & Unwin, 1957. <\p> [5] Hochedlinger K, Plath K. Epigenetic reprogramming and induced pluripotency. Development, 2009, 136(4): 509–523. <\p> [6] Watanabe A, Yamada Y, Yamanaka S. Epigenetic regula-tion in pluripotent stem cells: a key to breaking the epi-genetic barrier. Philos Trans R Soc Lond B Biol Sci, 2013, 368(1609): 20120292, doi: 10.1098/rstb.2012.0292. <\p> [7] Simonsson S, Gurdon J. DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei. Nat Cell Biol, 2004, 6(10): 984–990. <\p> [8] Koche RP, Smith ZD, Adli M, Gu H, Ku M, Gnirke A, Bernstein BE, Meissner A. Reprogramming factor expres-sion initiates widespread targeted chromatin remodeling. Cell Stem Cell, 2011, 8(1): 96–105. <\p> [9] Sulewska A, Niklinska W, Kozlowski M, Minarowski L, Naumnik W, Niklinski J, Dabrowska K, Chyczewski L. DNA methylation in states of cell physiology and pathol-ogy. Folia Histochem Cytobiol, 2007, 45(3): 149–158. <\p> [10] Bestor TH, Bourc'his D. Transposon silencing and imprint establishment in mammalian germ cells. Cold Spring Harb Symp Quant Biol, 2004, 69: 381–387. <\p> [11] Jaenisch R, Bird A. Epigenetic regulation of gene expres-sion: how the genome integrates intrinsic and environ-mental signals. Nat Genet, 2003, 33(Suppl.): 245–254. <\p> [12] Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem, 2005, 74(1): 481–514. <\p> [13] Bostick M, Kim JK, Esteve PO, Clark A, Pradhan S, Jacobsen SE. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science, 2007, 317(5845): 1760–1764. <\p> [14] Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell, 1992, 69(6): 915–926. <\p> [15] Koh KP, Rao A. DNA methylation and methylcytosine oxidation in cell fate decisions. Curr Opin Cell Biol, 2013, 25(2): 152–161. <\p> [16] Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 1999, 99(3): 247–257. <\p> [17] Chen ZX, Mann JR, Hsieh CL, Riggs AD, Chedin F. Physical and functional interactions between the human DNMT3L protein and members of the de novo methyltransferase family. J Cell Biochem, 2005, 95(5): 902–917. <\p> [18] Ooi SK, Qiu C, Bernstein E, Li K, Jia D, Yang Z, Erd-jument-Bromage H, Tempst P, Lin SP, Allis CD, Cheng X, Bestor TH. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature, 2007, 448(7154): 714–717. <\p> [19] 许力凡, 张记, 田志强, 吴玉章. 表观遗传学与肿瘤干细胞. 遗传, 2013, 35(9): 1049–1057. <\p> [20] Tsai HC, Li HL, Van Neste L, Cai Y, Robert C, Rassool FV, Shin JJ, Harbom KM, Beaty R, Pappou E, Harris J, Yen RW, Ahuja N, Brock MV, Stearns V, Feller-Kopman D, Yarmus LB, Lin YC, Welm AL, Issa JP, Minn I, Matsui W, Jang YY, Sharkis SJ, Baylin SB, Zahnow CA. Transient low doses of DNA-demethylating agents exert durable an-titumor effects on hematological and epithelial tumor cells. Cancer Cell, 2012, 21(3): 430–446. <\p> [21] Feng S, Jacobsen SE, Reik W. Epigenetic reprogramming in plant and animal development. Science, 2010, 330(6004): 622–627. <\p> [22] Kohli RM, Zhang Y. TET enzymes, TDG and the dynam-ics of DNA demethylation. Nature, 2013, 502(7472): 472–479. <\p> [23] Seisenberger S, Peat JR, Hore TA, Santos F, Dean W, Reik W. Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Phi-los Trans R Soc Lond B Biol Sci, 2013, 368(1609): 20110330, doi: 10.1098/rstb.2011.0330. <\p> [24] Nabel CS, Jia H, Ye Y, Shen L, Goldschmidt HL, Stivers JT, Zhang Y, Kohli RM. AID/APOBEC deaminases disfa-vor modified cytosines implicated in DNA demethylation. Nat Chem Biol, 2012, 8(9): 751–758. <\p> [25] Gu TP, Guo F, Yang H, Wu HP, Xu GF, Liu W, Xie ZG, Shi L, He X, Jin SG, Iqbal K, Shi YG, Deng Z, Szabó PE, Pfeifer GP, Li J, Xu GL. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature, 2011, 477(7366): 606–610. <\p> [26] Koh KP, Yabuuchi A, Rao S, Huang Y, Cunniff K, Nar-done J, Laiho A, Tahiliani M, Sommer CA, Mostoslavsky G, Lahesmaa R, Orkin SH, Rodig SJ, Daley GQ, Rao A. Tet1 and Tet2 regulate 5-hydroxymethylcytosine produc-tion and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell, 2011, 8(2): 200–213. <\p> [27] Freudenberg JM, Ghosh S, Lackford BL, Yellaboina S, Zheng X, Li R, Cuddapah S, Wade PA, Hu G, Jothi R. Acute depletion of Tet1-dependent 5-hydroxymethylcytosine levels impairs LIF/Stat3 signaling and results in loss of embryonic stem cell identity. Nucleic Acids Res, 40(8): 3364–3377. <\p> [28] Song CX, Szulwach KE, Fu Y, Dai Q, Yi CQ, Li XK, Li YJ, Chen CH, Zhang W, Jian X, Wang J, Zhang L, Looney TJ, Zhang BC, Godley LA, Hicks LM, Lahn BT, Jin P, He C. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol, 2011, 29(1): 68–72. <\p> [29] Li WW, Liu M. Distribution of 5-hydroxymethylcytosine in different human tissues. J Nucleic Acids, 2011, 2011: 870726, doi: 10.4061/2011/870726. <\p> [30] Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR. Human DNA methylomes at base resolution show widespread epigenomic differ-ences. Nature, 2009, 462(7271): 315–322. <\p> [31] Dodge JE, Ramsahoye BH, Wo ZG, Okano M, Li E. De novo methylation of MMLV provirus in embryonic stem cells: CpG versus non-CpG methylation. Gene, 2002, 289(1–2): 41–48. <\p> [32] Lluis F, Cosma MP. Resetting epigenetic signatures to in-duce somatic cell reprogramming. Cell Mol Life Sci, 2013, 70(8): 1413–1424. <\p> [33] You JS, Kelly TK, De Carvalho DD, Taberlay PC, Liang G, Jones PA. OCT4 establishes and maintains nu-cleosome-depleted regions that provide additional layers of epigenetic regulation of its target genes. Proc Natl Acad Sci USA, 2011, 108(35): 14497–14502. <\p> [34] Weber M, Hellmann I, Stadler MB, Ramos L, Pääbo S, Rebhan M, Schübeler D. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet, 2007, 39(4): 457–466. <\p> [35] Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, Jaffe DB, Gnirke A, Jaenisch R, Lander ES. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature, 2008, 454(7205): 766–770. <\p> [36] Gardiner-Garden M, Frommer M. CpG islands in verte-brate genomes. J Mol Biol, 1987, 196(2): 261–282. <\p> [37] Liang G, Zhang Y. Embryonic stem cell and induced pluripotent stem cell: an epigenetic perspective. Cell Res, 2013, 23(1): 49–69. <\p> [38] Mohn F, Weber M, Rebhan M, Roloff TC, Richter J, Stadler MB, Bibel M, Schübeler D. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol Cell, 2008, 30(6): 755–766. <\p> [39] Prendergast GC, Ziff EB. Methylation-sensitive sequence- specific DNA binding by the c-Myc basic region. Science, 1991, 251(4990): 186–189. <\p> [40] Lupien M, Eeckhoute J, Meyer CA, Wang Q, Zhang Y, Li W, Carroll JS, Liu XS, Brown M. FoxA1 translates epi-genetic signatures into enhancer-driven lineage-specific transcription. Cell, 2008, 132(6): 958–970. <\p> [41] Samaco RC, Neul JL. Complexities of Rett syndrome and MeCP2. J Neurosci, 2011, 31(22): 7951–7959. <\p> [42] Yildirim O, Li R, Hung JH, Chen PB, Dong X, Ee LS, Weng Z, Rando OJ, Fazzio TG. Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells. Cell, 2011, 147(7): 1498– 1510. <\p> [43] Li M, Liu GH, Izpisua-Belmonte JC. Navigating the epi-genetic landscape of pluripotent stem cells. Nat Rev Mol Cell Biol, 2012, 13(8): 524–535. <\p> [44] Gurdon JB. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol, 1962, 10: 622–640. <\p> [45] Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell, 1987, 51(6): 987–1000. <\p> [46] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4): 663–676. <\p> [47] Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral in-tegration. Science, 2008, 322(5903): 945–949. <\p> [48] Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, Zhao T, Ye J, Yang W, Liu K, Ge J, Xu J, Zhang Q, Zhao Y, Deng H. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science, 2013, 341(6146): 651–654. <\p> [49] Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, Zhang Y, Yang W, Gruber PJ, Epstein JA, Mor-risey EE. Highly efficient miRNA-mediated reprogram-ming of mouse and human somatic cells to pluripotency. Cell Stem Cell, 2011, 8(4): 376–388. <\p> [50] Mikkelsen TS, Hanna J, Zhang X, Ku M, Wernig M, Schorderet P, Bernstein BE, Jaenisch R, Lander ES, Meissner A. Dissecting direct reprogramming through in-tegrative genomic analysis. Nature, 2008, 454(7200): 49– 55. <\p> [51] Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee MJ, Ji H, Ehrlich LI, Yabuuchi A, Takeuchi A, Cunniff KC, Hongguang H, McKinney-Freeman S, Naveiras O, Yoon TJ, Irizarry RA, Jung N, Seita J, Hanna J, Murakami P, Jaenisch R, Weissleder R, Orkin SH, Weissman IL, Feinberg AP, Daley GQ. Epigenetic memory in induced pluripotent stem cells. Nature, 2010, 467(7313): 285–290. <\p> [52] Han JW, Yoon YS. Epigenetic landscape of pluripotent stem cells. Antioxid Redox Signal, 2012, 17(2): 205–223. <\p> [53] Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J, Wong KY, Sung KW, Lee CW, Zhao XD, Chiu KP, Lipovich L, Kuznetsov VA, Robson P, Stanton LW, Wei CL, Ruan Y, Lim B, Ng HH. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet, 2006, 38(4): 431–440. <\p> [54] Wu H, D'Alessio AC, Ito S, Xia K, Wang Z, Cui K, Zhao K, Sun YE, Zhang Y. Dual functions of Tet1 in transcrip-tional regulation in mouse embryonic stem cells. Nature, 2011, 473(7347): 389–393. <\p> [55] Ohi Y, Qin H, Hong C, Blouin L, Polo JM, Guo T, Qi Z, Downey SL, Manos PD, Rossi DJ, Yu J, Hebrok M, Ho-chedlinger K, Costello JF, Song JS, Ramalho-Santos M. Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nat Cell Biol, 2011, 13(5): 541–549. <\p> [56] Stadtfeld M, Apostolou E, Akutsu H, Fukuda A, Follett P, Natesan S, Kono T, Shioda T, Hochedlinger K. Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature, 2010, 465(7295): 175–181. <\p> [57] Stadtfeld M, Apostolou E, Ferrari F, Choi J, Walsh RM, Chen T, Ooi SS, Kim SY, Bestor TH, Shioda T, Park PJ, Hochedlinger K. Ascorbic acid prevents loss of Dlk1-Dio3 imprinting and facilitates generation of all-iPS cell mice from terminally differentiated B cells. Nat Genet, 2012, 44(4): 398–405. <\p> [58] Tchieu J, Kuoy E, Chin MH, Trinh H, Patterson M, Sherman SP, Aimiuwu O, Lindgren A, Hakimian S, Zack JA, Clark AT, Pyle AD, Lowry WE, Plath K. Female human iPSCs retain an inactive X chromosome. Cell Stem Cell, 2010, 7(3): 329–342. <\p> [59] Le R, Kou Z, Jiang Y, Li M, Huang B, Liu W, Li H, Kou X, He W, Rudolph KL, Ju Z, Gao S. Enhanced telomere re-juvenation in pluripotent cells reprogrammed via nuclear transfer relative to induced pluripotent stem cells. Cell Stem Cell, 2013, 14(1): 27–39. <\p> [60] Di Ruscio A, Ebralidze AK, Benoukraf T, Amabile G, Goff LA, Terragni J, Figueroa ME, De Figueiredo Pontes LL, Alberich-Jorda M, Zhang P, Wu M, D'Alò F, Melnick A, Leone G, Ebralidze KK, Pradhan S, Rinn JL, Tenen DG. DNMT1-interacting RNAs block gene-specific DNA me-thylation. Nature, 2013, 503(7476): 371–376. <\p> [61] Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet, 2014, 15(1): 7–21.<\p> |
[1] | 黄鑫,陈永强,徐国良,彭淑红. 脂肪组织DNA甲基化与糖尿病和肥胖的发生发展[J]. 遗传, 2019, 41(2): 98-110. |
[2] | 潘云枫, 王演怡, 陈静雯, 范怡梅. 线粒体代谢介导的表观遗传改变与衰老研究[J]. 遗传, 2019, 41(10): 893-904. |
[3] | 鞠君毅,赵权. γ-珠蛋白基因表达调控机制与临床应用[J]. 遗传, 2018, 40(6): 429-444. |
[4] | 康岚, 陈嘉瑜, 高绍荣. 中国细胞重编程和多能干细胞研究进展[J]. 遗传, 2018, 40(10): 825-840. |
[5] | 刘辰东, 杨露, 蒲红州, 杨琼, 黄文耀, 赵雪, 朱砺, 张顺华. 运动对骨骼肌基因表达的表观遗传调控作用[J]. 遗传, 2017, 39(10): 888-896. |
[6] | 张轲, 冯光德, 张宝云, 向伟, 陈龙, 杨芳, 储明星, 王凭青. 表观遗传标记在猪分子育种中的研究与应用前景[J]. 遗传, 2016, 38(7): 634-643. |
[7] | 朱屹然,张美玲,翟志超,赵云蛟,马馨. 生殖细胞及早期胚胎基因组印记的表观调控[J]. 遗传, 2016, 38(2): 103-108. |
[8] | 刘姝丽,张胜利,俞英. 同卵双胞胎在复杂性状DNA甲基化调控机制研究中的应用[J]. 遗传, 2016, 38(12): 1043-1055. |
[9] | 刘洋洋, 崔恒宓. DNA甲基化分析中重亚硫酸盐处理DNA转化效率的评估方法[J]. 遗传, 2015, 37(9): 939-944. |
[10] | 谢龙祥, 于召箫, 郭思瑶, 李萍, AbualgasimElgailiAbdalla, 谢建平. 表观遗传和蛋白质翻译后修饰在细菌耐药中的作用[J]. 遗传, 2015, 37(8): 793-800. |
[11] | 孙凌云, 李星逾, 孙志为. 原发性肝癌的表观遗传学及其治疗[J]. 遗传, 2015, 37(6): 517-527. |
[12] | 陈晓颖, 叶华丹, 洪青晓, 周安楠, 汤琳琳, 段世伟. DNA甲基化修饰对血管疾病稳态失衡的影响[J]. 遗传, 2015, 37(3): 221-232. |
[13] | 张君, 张望强, 丁毓磊, 许彭, 王婷婷, 徐文静, 陆环, 刘宗智, 谢建新. 腹部脂肪组织APN基因DNA甲基化及mRNA表达与维吾尔族T2DM的相关性[J]. 遗传, 2015, 37(3): 269-275. |
[14] | 李红东,洪贵妮,郭政. 外周全血中与老化相关的DNA甲基化标记的来源[J]. 遗传, 2015, 37(2): 165-173. |
[15] | 杨文旭, 潘虹. MeCP2在Rett综合征中的调控机制[J]. 遗传, 2014, 36(7): 625-630. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: