[1] Mehta GD, Agarwal MP, Ghosh SK. Centromere identity: a challenge to be faced. Mol Genet Genomics, 2010, 284(2): 75-94.[2] Dalal Y, Bui M. Down the rabbit hole of centromere assembly and dynamics. Curr Opin Cell Biol, 2010, 22(3): 392-402.[3] Jain D, Cooper JP. Telomeric strategies: means to an end. Annu Rev Genet, 2010, 44: 243-269.[4] Giraud-Panis MJ, Pisano S, Poulet A, Le Du MH, Gilson E. Structural identity of telomeric complexes. FEBS Lett, 2010, 584(17): 3785-3799.[5] Murray AW, Szostak JW. Construction of artificial chromosomes in yeast. Nature, 1983, 305(5931): 189-193.[6] Burke DT, Carle GF, Olson MV. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science, 1987, 236(4803): 806-812.[7] Bellis M, Gérard A, Charlieu JP, Marçais B, Brun ME, Viegas-Péquignot E, Carter DA, Roizès G. Construction and characterization of a partial library of yeast artificial chromosomes from human chromosome 21. DNA Cell Biol, 1991, 10(4): 301-310.[8] Green ED, Riethman HC, Dutchik JE, Olson MV. Detection and characterization of chimeric yeast artificial-chromosome clones. Genomics, 1991, 11(3): 658-669.[9] Roberts L. Two chromosomes down, 22 to go. Science, 1992, 258(5079): 28-30.[10] Sakata K, Antonio BA, Mukai Y, Nagasaki H, Sakai Y, Ma-kino K, Sasaki T. INE: a rice genome database with an integrated map view. Nucleic Acids Res, 2000, 28 (1): 97-101.[11] Shizuya H, Birren B, Kim UJ, Mancino V, Slepak T, Tachiiri Y, Simon M. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci USA, 1992, 89(18): 8794-8797.[12] Shizuya H, Kouros-Mehr H. The development and applications of the bacterial artificial chromosome cloning system. Keio J Med, 2001, 50(1): 26-30.[13] Kim UJ, Shizuya H, Kang HL, Choi SS, Garrett CL, Smink LJ, Birren BW, Korenberg JR, Dunham I, Simon MI. A bacterial artificial chromosome-based framework contig map of human chromosome 22q. Proc Natl Acad Sci USA, 1996, 93(13): 6297-6301.[14] Asakawa S, Abe I, Kudoh Y, Kishi N, Wang YM, Kubota R, Kudoh J, Kawasaki K, Minoshima S, Shimizu N. Hu-man BAC library: construction and rapid screening. Gene, 1997, 191(1): 69-79.[15] Harrington JJ, Van Bokkelen G, Mays RW, Gustashaw K, Willard HF. Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat Genet, 1997, 15(4): 345-355.[16] Irvine DV, Shaw ML, Choo KH, Saffery R. Engineering chromosomes for delivery of therapeutic genes. Trends Biotechnol, 2005, 23(12): 575-583.[17] Heller R, Brown KE, Burgtorf C, Brown WR. Mini-chromosomes derived from the human Y chromosome by telomere directed chromosome breakage. Proc Natl Acad Sci USA, 1996, 93(14): 7125-7130.[18] Duncan A, Hadlaczky G. Chromosomal engineering. Curr Opin Biotechnol, 2007, 18(5): 420-424.[19] Lufino MM, Edser PA, Wade-Martins R. Advances in high-capacity extrachromosomal vector technology: episomal maintenance, vector delivery, and transgene expression. Mol Ther, 2008, 16(9): 1525-1538.[20] Macnab S, Whitehouse A. Progress and prospects: human artificial chromosomes. Gene Therapy, 2009, 16(10): 1180-1188.[21] Keith KC, Copenhaver GP, Luo S, Preuss D. Arabidopsis centromeres: minichromosome analysis of functional centromere domains. Abstract of 11th Arabidopsis Meeting, 2000, 41: 49.[22] Carlson SR, Rudgers GW, Zieler H, Mach JM, Luo S, Grunden E, Krol C, Copenhaver GP, Preuss D. Meiotic transmission of an in vitro-assembled autonomous maize minichromosome. PLoS Genet, 2007, 3(10): 1965-1974.[23] Onomura K, Kurata N. Construction of rice |