[1] Bartel DP. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2): 281-297.[2] Zhang BH, Pan XP, Cobb GP, Anderson TA. Plant microRNA: A small regulatory molecule with big impact. Dev Biol, 2006, 289(1): 3-16.[3] Chen XM. MicroRNA biogenesis and function in plants. FEBS Lett, 2005, 579(26): 5923-5931.[4] Taylor PF, Zhang BH. Identification of plant microRNAs using expressed sequence tag analysis. Methods Mol Biol, 2011, 678: 13-25.[5] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5): 843-854.[6] Baker CC, Sieber P, Wellmer F, Meyerowitz EM. The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Curr Biol, 2005, 15(4): 303-315.[7] Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol, 2006, 57(1): 19-53.[8] 卫波, 张荣志, 李爱丽, 毛龙. 利用高通量测序技术发现植物小分子RNA研究进展. 中国农业科学, 2009, 42(11): 3755-3764.[9] Zhang BH, Pan XP, Cannon CH, Cobb GP, Anderson TA. Conservation and divergence of plant microRNA genes. Plant J, 2006, 46(2): 243-259.[10] Floyd SK, Bowman JL. Gene regulation: ancient mi-croRNA target sequences in plants. Nature, 2004, 428(6982): 485-486.[11] Wang JF, Zhou H, Chen YQ, Luo QJ, Qu LH. Identification of 20 microRNAs from Oryza sativa. Nucleic Acids Res, 2004, 32(5): 1688-1695.[12] Jones-Rhoades MW, Bartel DP. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell, 2004, 14(6): 787-799.[13] Zhang BH, Pan XP, Wang QL, Cobb GP, Anderson TA. Identification and characterization of new plant microR-NAs using EST analysis. Cell Res, 2005, 15(5): 336-360.[14] Yin ZJ, Li CH, Han XL, Shen FF. Identification of con-served microRNAs and their target genes in tomato (Lycopersicon esculentum). Gene, 2008, 414(1-2): 60-66.[15] Zhang BH, Wang QL, Wang KB, Pan XP, Liu F, Gou TL, Cobb GP, Anderson TA. Identification of cotton microR-NAs and their targets. Gene, 2007, 397(1-2): 26-37.[16] Zhang BH, Pan XP, Anderson TA. Identification of 188 conserved maize microRNAs and their targets. FEBS Lett, 2006, 580(15): 3753-3762.[17] Lang QL, Jin CZ, Lai LY, Feng JL, Chen SN, Chen JH. Tobacco microRNAs prediction and their expression infected with Cucumber mosaic virus and Potato virus X. Mol Biol Rep, 2010, 38(3): 1523-1531.[18] Frazier TP, Xie FL, Freistaedter A, Burklew CE, Zhang BH. Identification and characterization of microRNAs and their target genes in bobacco (Nicotiana tabacum). Planta, 2010, 232(6): 1289-1308.[19] Daunay MC, Lester RN. The usefulness of taxonomy for Solanaceae breeders, with special reference to the genus Solanum and to Solanum melongena L. (eggplant). Capsicum Newslett, 1988, (7): 70-79.[20] Griffiths-Jones S, Saini HK, Dongen SV, Enright AJ. miRBase: tools for microRNA genomics. Nucleic Acids Res, 2008, 36(S1): D154-D158.[21] Song CN, Fang JG, Wang C, Guo L, Nicholas KK, Ma ZQ. MiR-RACE, a new efficient approach to determine the precise sequences of computationally identied trifoliate orange (Poncirus trifoliata) microRNAs. PLoS ONE, 2010, 5(6): e10861.[22] Dsouza M, Larsen N, Overbeek R. Searching for patterns in genomic data. Trends Genet, 1997, 13(12): 497-498.[23] Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P. Fast folding and comparison of RNA secondary structures. Monatshefte für Chemie, 1994, 125(2): 167-188.[24] Dai XB, Zhuang ZH, Zhao PX. Computational analysis of miRNA targets in plants: current status and challenges. Brief Bioinform, 2011, 12(2): 115-121.[25] Zhang YJ. MiRU: an automated plant miRNA target pre-diction server. Nucleic Acids Res, 2005, 33(S2): 701-704.[26] Zhang BH, Pan XP, Stellwag EJ. Identication of soybean microRNAs and their targets. Planta, 2008, 229(1): 161-182.[27] Ambros V. The functions of animal microRNAs. Nature, 2004, 431: 350-355.[28] Zhang BH, Pan XP, Cox B, Cobb GP, Anderson TA. Evidence that miRNAs are different from other RNAs. Cell Mol Life Sci, 2006, 63(2): 246-254.[29] Stark A, Bushati N, Jan CH, Kheradpour P, Hodges E, Brennecke J, Bartel DP, Cohen SM, Kellis M. A single Hox locus in Drosophila produces functional microRNAs from opposite DNA strands. Genes Dev, 2008, 22(1): 8-13.[30] Achard P, Herr A, Baulcombe DC, Harberd NP. Modula-tion of floral development by a gibberellin-regulated mi-croRNA. Development, 2004, 131(14): 3357-3365.[31] Mantovani R. The molecular biology of the CCAAT-binding factor NF-Y. Gene, 1999, 239(1): 15-27.[32] Maity SN, de Crombrugghe B. Role of the CCAAT-binding protein CBF/NF-Y in transcription. Trends Biochem Sci, 1998, 23(5): 174-178.[33] Combier JP, Frugier F, de Billy F, Boualem A, El-Yahyaoui F, Moreau S, Vernié T, Ott T, Gamas P, Crespi M, Niebel A. MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes Dev, 2006, 20(22): 3084-3088.[34] Dugas DV, Bartel B. Sucrose induction of Arabidopsis miR398 represses two Cu/Zn super-oxide dismutases. Plant Mol Biol, 2008, 67(4): 403-417.[35] 丁艳菲, 王光钺, 傅亚萍, 朱诚. miR398在植物逆境胁迫应答中的作用. 遗传, 2010, 32(2): 129-134.[36] Lu C, Kulkarni K, Souret FF, MuthuValliappan R, Tej SS, Poethig RS, Henderson IR, Jacobsen SE, Wang WZ, Green PJ, Meyers BC. MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant. Genome Res, 2006, 16(10): 1276-1288. |