遗传 ›› 2015, Vol. 37 ›› Issue (4): 327-335.doi: 10.16288/j.yczz.14-417
蒲强,罗嘉,沈林園,李学伟,张顺华,朱砺
收稿日期:
2014-11-30
出版日期:
2015-04-20
发布日期:
2015-02-13
通讯作者:
张顺华,博士,硕士生导师,研究方向:猪的遗传育种。E-mail:363445986@qq.com;朱砺,教授,博士生导师,研究方向:猪的遗传育种。E-mail:zhuli7508@163.com
E-mail:461662559@qq.com;1028400278@qq.com
作者简介:
蒲强,硕士研究生,专业方向:猪的遗传育种。E-mail: 461662559@qq.com;罗嘉,硕士研究生,专业方向:猪的遗传育种。E-mail:1028400278@qq.com
基金资助:
Qiang Pu,Jia Luo,Linyuan Shen,Xuewei Li,Shunhua Zhang,Li Zhu
Received:
2014-11-30
Online:
2015-04-20
Published:
2015-02-13
摘要: 蛋白质翻译后修饰(Post-translational modifications, PTMs)在生命体中具有十分重要的作用。生命有机体中常见的PTMs有磷酸化、酰化、糖基化、泛素化、乙酰化、氧化和甲基化等。文章主要介绍了蛋白质组学在肉制品科学方面的应用、PTMs的主要内容以及分析蛋白修饰特性常见技术的发展,总结了PTMs对肌肉生理特性的影响和蛋白质组学方法在肉质蛋白质修饰研究中的重要性及前景,讨论了利用蛋白质修饰组学技术研究肌肉熟化过程中品质特性变化的特点。
蒲强,罗嘉,沈林園,李学伟,张顺华,朱砺. 蛋白质修饰组学在肉品质研究中的应用[J]. 遗传, 2015, 37(4): 327-335.
Qiang Pu,Jia Luo,Linyuan Shen,Xuewei Li,Shunhua Zhang,Li Zhu. Application of modification-specific proteomics in the meat-quality study[J]. HEREDITAS(Beijing), 2015, 37(4): 327-335.
[1] Paredi G, Raboni S, Bendixen E, de Almeida AM, Mozzarelli A. “Muscle to meat” molecular events and technological transformations: The proteomics insight. J Proteomics , 2012, 75(14): 4275-4289. [2] Lagerstedt Å, Lundström K, Lindahl G. Influence of vacuum or high-oxygen modified atmosphere packaging on quality of beef M. longissimus dorsi steaks after different ageing times. Meat Sci , 2011, 87(2): 101-106. [3] Lund MN, Heinonen M, Baron CP, Estévez M. Protein oxidation in muscle foods: A review. Mol Nutr Food Res , 2011, 55(1): 83-95. [4] Promeyrat A, Sayd T, Laville E, Chambon C, Lebret B, Gatellier P. Early post-mortem sarcoplasmic proteome of porcine muscle related to protein oxidation. Food Chem , 2011, 127(3): 1097-1104. [5] Huang H, Larsen MR, Karlsson AH, Pomponio L, Costa LN, Lametsch R. Gel-based phosphoproteomics analysis of sarcoplasmic proteins in postmortem porcine muscle with pH decline rate and time differences. Proteomics , 2011, 11(20): 4063-4076. [6] Lametsch R, Larsen MR, Essén-Gustavsson B, Jensen-Waern M, Lundström K, Lindahl G. Postmortem changes in pork muscle protein phosphorylation in relation to the RN genotype. J Agric Food Chem , 2011, 59(21): 11608-11615. [7] Koohmaraie M. Biochemical factors regulating the toughening and tenderization processes of meat. Meat Sci , 1996, 43(Suppl. 1): 193-201. [8] Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature , 2003, 422(6928): 198-207. [9] Yates JR, Ruse CI, Nakorchevsky A. Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng , 2009, 11: 49-79. [10] Bendixen E, Danielsen M, Hollung K, Gianazza E, Miller I. Farm animal proteomics—a review. J Proteomics , 2011, 74(3): 282-293. [11] Wilkins MR, Pasquali C, Appel RD, Ou K, Golaz O, Sanchez JC, Yan JX, Gooley AA, Hughes G, Humphery-Smith I. From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and arnino acid analysis. Nat Biotechnol , 1996, 14(1): 61-65. [12] Bendixen E. The use of proteomics in meat science. Meat Sci , 2005, 71(1): 138-149. [13] Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O'Shea EK, Weissman JS. Global analysis of protein expression in yeast. Nature , 2003, 425(6959): 737-741. [14] Jia X, Hollung K, Therkildsen M, Hildrum KI, Bendixen E. Proteome analysis of early post-mortem changes in two bovine muscle types: M. longissimus dorsi and M. semitendinosis . Proteomics , 2006, 6(3): 936-944. [15] Walsh CT, Garneau-Tsodikova S, Gatto GJ Jr. Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Intl Ed , 2005, 44(45): 7342-7372. [16] Jensen ON. Interpreting the protein language using proteomics. Nat Rev Mol Cell Biol , 2006, 7(6): 391-403. [17] Khoury GA, Baliban RC, Floudas CA. Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci Rep , 2011, 1: Article number 90. [18] Kerwin BA, Remmele RL. Protect from light: photodegradation and protein biologics. J Pharm Sci , 2007, 96(6): 1468-1479. [19] Promeyrat A, Gatellier P, Lebret B, Kajak-Siemaszko K, Aubry L, Santé-Lhoutellier V. Evaluation of protein aggregation in cooked meat. Food Chem , 2010, 121(2): 412-417. [20] Shen QW, Du M. Role of AMP‐activated protein kinase in the glycolysis of postmortem muscle. J Sci Food Agric , 2005, 85(14): 2401-2406. [21] Witze ES, Old WM, Resing KA, Ahn NG. Mapping protein post-translational modifications with mass spectrometry. Nat Methods , 2007, 4(10): 798-806. [22] Steinberg TH, Agnew BJ, Gee KR, Leung WY, Goodman T, Schulenberg B, Hendrickson J, Beechem JM, Haugland RP, Patton WF. Global quantitative phosphoprotein analysis using multiplexed proteomics technology. Proteomics , 2003, 3(7): 1128-1144. [23] Jensen ON. Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. Curr Opin Chem Biol , 2004, 8(1): 33-41. [24] Lametsch R, Roepstorff P, Bendixen E. Identification of protein degradation during post-mortem storage of pig meat. J Agric Food Chem , 2002, 50(20): 5508-5512. [25] Larsen MR, Larsen PM, Fey SJ, Roepstorff P. Characterization of differently processed forms of enolase 2 from Saccharomyces cerevisiae by two‐dimensional gel electrophoresis and mass spectrometry. Electrophoresis , 2001, 22(3): 566-575. [26] Wu CC, MacCoss MJ, Howell KE, Yates JR. A method for the comprehensive proteomic analysis of membrane proteins. Nat Biotechnol , 2003, 21(5): 532-538. [27] Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, Zhang H, Zha X-M, Polakiewicz RD, Comb MJ. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol , 2004, 23(1): 94-101. [28] Ficarro SB, McCleland ML, Stukenberg PT, Burke DJ, Ross MM, Shabanowitz J, Hunt DF, White FM. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol , 2002, 20(3): 301-305. [29] Thingholm TE, Jørgensen TJ, Jensen ON, Larsen MR. Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat Protoc , 2006, 1(4): 1929-1935. [30] Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villén J, Li J, Cohn MA, Cantley LC, Gygi SP. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci USA , 2004, 101(33): 12130-12135. [31] Gabius HJ, André S, Kaltner H, Siebert HC. The sugar code: functional lectinomics. Biochim Biophys Acta , 2002, 1572(2-3): 165-177. [32] Larsen MR, Jensen SS, Jakobsen LA, Heegaard NH. Exploring the sialiome using titanium dioxide chromatography and mass spectrometry. Mol Cell Proteomics , 2007, 6(10): 1778-1787. [33] Kim SC, Sprung R, Chen Y, Xu YD, Ball H, Pei JM, Cheng T, Kho Y, Xiao H, Xiao L, Grishin NV, White M, Yang XJ, Zhao YM. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell , 2006, 23(4): 607-618. [34] Lawrie RA. Lawrie's meat science. 6th ed. Cambridge, England: Woodhead Ltd, 1998. [35] Gordon AM, Homsher E, Regnier M. Regulation of contraction in striated muscle. Physiol Rev , 2000, 80(2): 853-924. [36] Hopkins DL, Thompson JM. Factors contributing to proteolysis and disruption of myofibrillar proteins and the impact on tenderisation in beef and sheep meat. Crop Past Sci , 2002, 53(2): 149-166. [37] Rosenvold K, Andersen HJ. Factors of significance for pork quality—a review. Meat Sci , 2003, 64(3): 219-237. [38] D΄Alessandro A, Marrocco C, Zolla V, D΄Andrea M, Zolla L. Meat quality of the longissimus lumborum muscle of Casertana and Large White pigs: Metabolomics and proteomics intertwined. J Proteomics , 2011, 75(2): 610-627. [39] Jia XH, Ekman M, Grove H, Færgestad EM, Aass L, Hildrum KI, Hollung K. Proteome changes in bovine longissimus thoracis muscle during the early postmortem storage period. J Proteome Res , 2007, 6(7): 2720-2731. [40] Lametsch R, Karlsson A, Rosenvold K, Andersen HJ, Roepstorff P, Bendixen E. Postmortem proteome changes of porcine muscle related to tenderness. J Agric Food Chem , 2003, 51(24): 6992-6997. [41] Maltin C, Balcerzak D, Tilley R, Delday M. Determinants of meat quality: tenderness. Proc Nutr Soc , 2003, 62(2): 337-347. [42] Bouley J, Meunier B, Chambon C, De Smet S, Hocquette JF, Picard B. Proteomic analysis of bovine skeletal muscle hypertrophy. Proteomics , 2005, 5(2): 490-500. [43] Deveaux V, Picard B, Bouley J, Cassar-Malek I. Location of myostatin expression during bovine myogenesis in vivo and in vitro . Reprod Nutr Dev , 2003, 43(6): 527-542. [44] Taylor RG, Geesink GH, Thompson VF, Koohmaraie M, Goll DE. Is Z-disk degradation responsible for postmortem tenderization?. J Anim Sci , 1995, 73(5): 1351-1367. [45] Koohmaraie M, Shackelford SD, Wheeler TL, Lonergan SM, Doumit ME. A muscle hypertrophy condition in lamb (callipyge): characterization of effects on muscle growth and meat quality traits. J Anim Sci , 1995, 73(12): 3596-3607. [46] Lametsch R, Roepstorff P, Møller H, Bendixen E. Identification of myofibrillar substrates for μ-calpain. Meat Sci , 2004, 68(4): 515-521. [47] Hedegaard J, Horn P, Lametsch R, Møller HS, Roepstorff P, Bendixen C, Bendixen E. UDP-Glucose pyrophosphorylase is upregulated in carriers of the porcine RN- mutation in the AMP-activated protein kinase. Proteomics , 2004, 4(8): 2448-2454. [48] Ferguson DM, Warner RD. Have we underestimated the impact of pre-slaughter stress on meat quality in ruminants? Meat Sci , 2008, 80(1): 12-19. [49] Huang HG, Larsen MR, Lametsch R. Changes in phosphorylation of myofibrillar proteins during postmortem development of porcine muscle. Food Chem , 2012, 134(4): 1999-2006. [50] Larsen MR, Trelle MB, Thingholm TE, Jensen ON. Analysis of posttranslational modifications of proteins by tandem mass spectrometry. BioTechniques , 2006, 40(6): 790-798. [51] Wang LJ, Xiong YZ, Zuo B, Lei MG, Ren ZQ, Xu DQ. Molecular and functional characterization of glycogen synthase in the porcine satellite cells under insulin treatment. Mol Cell Biochem , 2012, 360(1-2): 169-180. [52] Gannon J, Staunton L, O’Connell K, Doran P, Ohlendieck K. Phosphoproteomic analysis of aged skeletal muscle. Int J Mol Med , 2008, 22(1): 33-42. [53] Højlund K, Bowen BP, Hwang H, Flynn CR, Madireddy L, Geetha T, Langlais P, Meyer C, Mandarino LJ, Yi ZP. In vivo phosphoproteome of human skeletal muscle revealed by phosphopeptide enrichment and HPLC- ESI- MS/MS. J Proteome Res , 2009, 8(11): 4954-4965. [54] Hou JJ, Cui ZY, Xie ZS, Xue P, Wu P, Chen XL, Li J, Cai TX, Yang FQ. Phosphoproteome analysis of rat L6 myotubes using reversed-phase C18 prefractionation and titanium dioxide enrichment. J Proteome Res , 2010, 9(2): 777-788. [55] Scheffler TL, Gerrard DE. Mechanisms controlling pork quality development: The biochemistry controlling postmortem energy metabolism. Meat Sci , 2007, 77(1): 7-16. [56] Johnson LN. Glycogen phosphorylase: control by phosphorylation and allosteric effectors. FASEB J , 1992, 6(6): 2274-2282. [57] Sprang SR, Acharya KR, Goldsmith EJ, Stuart DI, Varvill K, Fletterick RJ, Madsen NB, Johnson LN. Structural changes in glycogen phosphorylase induced by phosphorylation. Nature , 1988, 336(6196): 215-221. [58] Schwägele F, Haschke C, Honikel KO, Krauss G. Enzymological investigations on the causes for the PSE-syndrome, Ⅰ. Comparative studies on pyruvate kinase from PSE-and normal pig muscles. Meat Sci , 1996, 44(1-2): 27-40. [59] Li CB, Li J, Zhou GH, Lametsch R, Ertbjerg P, Brüggemann DA, Huang HG, Karlsson AH, Hviid M, Lundström K. Electrical stimulation affects metabolic enzyme phosphorylation, protease activation, and meat tenderization in beef. J Anim Sci , 2012, 90(5): 1638-1649. [60] Rowe LJ, Maddock KR, Lonergan SM, Huff-Lonergan E. Influence of early postmortem protein oxidation on beef quality. J Anim Sci , 2004, 82(3): 785-793. [61] Morzel M, Gatellier P, Sayd T, Renerre M, Laville E. Chemical oxidation decreases proteolytic susceptibility of skeletal muscle myofibrillar proteins. Meat Sci , 2006, 73(3): 536-543. [62] Estévez M. Protein carbonyls in meat systems: A review. Meat Sci , 2011, 89(3): 259-279. [63] Stagsted J, Bendixen E, Andersen HJ. Identification of specific oxidatively modified proteins in chicken muscles using a combined immunologic and proteomic approach. J Agric Food Chem , 2004, 52(12): 3967-3974. [64] Bernevic B, Petre BA, Galetskiy D, Werner C, Wicke M, Schellander K, Przybylski M. Degradation and oxidation postmortem of myofibrillar proteins in porcine skeleton muscle revealed by high resolution mass spectrometric proteome analysis. Int J Mass Spectrom , 2011, 305(2-3): 217-227. [65] Suman SP, Faustman C, Stamer SL, Liebler DC. Proteomics of lipid oxidation-induced oxidation of porcine and bovine oxymyoglobins. Proteomics , 2007, 7(4): 628-640. [66] Sentandreu MA, Sentandreu E. Peptide biomarkers as a way to determine meat authenticity. Meat Sci , 2011, 89(3): 280-285. [67] Jardin J, Mollé D, Piot M, Lortal S, Gagnaire V. Quantitative proteomic analysis of bacterial enzymes released in cheese during ripening. Int J Food Microbiol , 2012, 155(1-2): 19-28. [68] Panchaud A, Affolter M, Kussmann M. Mass spectrometry for nutritional peptidomics: how to analyze food bioactives and their health effects. J Proteomics , 2012, 75(12): 3546-3559. [69] Koohmaraie M, Geesink GH. Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system. Meat Sci , 2006, 74(1): 34-43. [70] Morzel M, Terlouw C, Chambon C, Micol D, Picard B. Muscle proteome and meat eating qualities of Longissimus thoracis of “Blonde d’Aquitaine” young bulls: A central role of HSP27 isoforms. Meat Sci , 2008, 78(3): 297-304. [71] Spiro RG. Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology , 2002, 12(4): 43R-56R. [72] D'Ambrosio C, Arena S, Salzano AM, Renzone G, Ledda L, Scaloni A. A proteomic characterization of water buffalo milk fractions describing PTM of major species and the identification of minor components involved in nutrient delivery and defense against pathogens. Proteomics , 2008, 8(17): 3657-3666. [73] Saeki H, Inoue K. Improved solubility of carp myofibrillar proteins in low ionic strength medium by glycosylation. J Agric Food Chem , 1997, 45(9): 3419-3422. [74] 陈欣, 周春霞, 洪鹏志, 黄和. 糖基化改性对罗非鱼肉肌原纤维蛋白功能特性的影响. 现代食品科技, 2010, 26(8): 793-796. |
[1] | 吕丹丹,张媛雅,葛海涛,黄夏禾,汪迎春. 大规模膜蛋白质组鉴定技术进展[J]. 遗传, 2019, 41(9): 863-874. |
[2] | 秦辰雨, 蔡禾, 卿涵睿, 李利, 张红平. 长链非编码RNA H19对哺乳动物肌肉生长发育的调控[J]. 遗传, 2017, 39(12): 1150-1157. |
[3] | 谢龙祥, 于召箫, 郭思瑶, 李萍, AbualgasimElgailiAbdalla, 谢建平. 表观遗传和蛋白质翻译后修饰在细菌耐药中的作用[J]. 遗传, 2015, 37(8): 793-800. |
[4] | 刘泽先, 蔡煜东, 郭雪江, 李骜, 李婷婷, 邱建丁, 任间, 施绍萍, 宋江宁, 王明会, 谢鹭, 薛宇, 张子丁, 赵兴明. 中国在翻译后修饰的生物信息学研究领域的进展与前瞻[J]. 遗传, 2015, 37(7): 621-634. |
[5] | 徐苹,杨晶,陆丽兰,冯尔玲,王恒樑,卢瑛,朱力. 密度感应系统对弗氏志贺菌生长竞争能力的影响[J]. 遗传, 2015, 37(5): 487-493. |
[6] | 周文婷. 运动能力的遗传学研究进展[J]. 遗传, 2014, 36(4): 301-308. |
[7] | 冉茂良,陈斌,尹杰,杨岸奇,李智,蒋明. 猪microRNA组学研究进展[J]. 遗传, 2014, 36(10): 974-984. |
[8] | 沈林園 张顺华 吴泽辉 郑梦月 李学伟 朱砺. 骨骼肌卫星细胞对肉品质的影响及其分化调控[J]. 遗传, 2013, 35(9): 1081-1086. |
[9] | 曹随忠 岳成鹤 李西睿 冯冲 龙川 潘登科. 锌指核酸酶技术制备肌肉生长抑制素基因敲除的五指山小型猪成纤维细胞[J]. 遗传, 2013, 35(6): 778-785. |
[10] | 郭敏霞 傅永福. 拟南芥SUMO底物的研究进展[J]. 遗传, 2013, 35(6): 727-734. |
[11] | 赵艳 李燕燕. 组学技术评价转基因农作物的非预期效应[J]. 遗传, 2013, 35(12): 1360-1367. |
[12] | 杨帆,王琼萍,何侃,王明辉,潘玉春. 丙酸通路基因多态性与猪肉质及胴体性状的关联分析[J]. 遗传, 2012, 34(7): 872-878. |
[13] | 刘开东,柳楠,杜立新,魏彩虹,张莉,路国彬,赵福平,刘积凤. 临床型乳房炎奶牛与健康奶牛嗜中性粒细胞差异蛋白质组的表达分析[J]. 遗传, 2012, 34(10): 1298-1303. |
[14] | 郭新军. 人类(Homo sapiens)肌肉增强因子2(MEF2)生物信息学特性比较及其进化分析[J]. 遗传, 2011, 33(9): 975-981. |
[15] | 刘阳,吴望军,左波,任竹青,熊远著. 猪PRDX6基因编码区的多态性及遗传效应分析[J]. 遗传, 2011, 33(7): 743-748. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: