遗传 ›› 2023, Vol. 45 ›› Issue (8): 643-657.doi: 10.16288/j.yczz.23-086
时文睿1,2,3(), 渠鸿竹1,2,3(), 方向东1,2,3()
收稿日期:
2023-04-03
修回日期:
2023-06-13
出版日期:
2023-08-20
发布日期:
2023-06-28
通讯作者:
渠鸿竹,方向东
E-mail:shiwenrui@big.ac.cn;quhongzhu@big.ac.cn;fangxd@big.ac.cn
作者简介:
时文睿,在读硕士研究生,专业方向:基因组学。E-mail: 基金资助:
Wenrui Shi1,2,3(), Hongzhu Qu1,2,3(), Xiangdong Fang1,2,3()
Received:
2023-04-03
Revised:
2023-06-13
Online:
2023-08-20
Published:
2023-06-28
Contact:
Hongzhu Qu,Xiangdong Fang
E-mail:shiwenrui@big.ac.cn;quhongzhu@big.ac.cn;fangxd@big.ac.cn
Supported by:
摘要:
痛风是一种由尿酸盐结晶沉积引起的自限性炎症疾病,伴有多种合并症。随着生活水平的提高,痛风在全球的发病率逐年上升,严重影响人民健康。组学技术是研究疾病的有效工具,已被广泛应用于发现痛风的潜在生物标志物和风险因子,其鉴定出的变异位点或差异表达产物为研究痛风的发病机制和疾病进展提供了不同维度的见解和认识。本文通过PubMed检索相关文献,分析和总结了多组学技术在痛风中的应用和研究结果,对近年来多组学技术在痛风领域的相关研究进展进行综述,以期了解痛风患者在不同分子层次上的特异性变化,为今后更深入地研究痛风提供思路和方向。
时文睿, 渠鸿竹, 方向东. 痛风的多组学研究进展[J]. 遗传, 2023, 45(8): 643-657.
Wenrui Shi, Hongzhu Qu, Xiangdong Fang. Overview of multi-omics research in gout[J]. Hereditas(Beijing), 2023, 45(8): 643-657.
表1
2018~2022年痛风的基因组研究进展"
研究方法 | 队列来源 | 样本量 | 痛风风险基因 | 参考文献 |
---|---|---|---|---|
GWAS分析 | 英国 | 7049例痛风,81,354例AH对照 | ABCG2、SLC2A9、SLC22A11、GCKR、MEPE、PPM1K-DT、LOC105377323、ADH1B | [ |
德国 | 1217例痛风,3724例肾病患者 | SLC2A9、ABCG2 | [ | |
欧洲,美国 | 63,031例受试者 | PKD2、SLC2A9、SLC17A1、SLC17A4、SLC17A2 | [ | |
日本 | 2860例痛风,3149例AH对照 | CNTN5,MIR302F、ZNF724 | [ | |
日本 | 1411例痛风,1285例健康对照 | A1CF、BAZ1B | [ | |
中国台湾 | 758例痛风,14,166例健康对照 | PKD2、NUTD9、NAP1L5 | [ | |
中国台湾,日本 | 3800例痛风,6625例健康对照 | FGF5、MLXIP | [ | |
中国台湾 | 952例痛风,11,650例AH对照,46,870例健康对照 | SLC2A9、C5orf22、SPANXN1、CNTNAP2、GLRX5 | [ | |
中国台湾 | 5857例痛风患者,12,382例AH对照,21,355例健康对照 | DNAJC16、AGMAT、NUDT17、TRIM46、MUC1MTX1 | [ | |
WES分析 | 中国 | 5例痛风,4例健康对照(同一家系) | LRP1、OIT3 | [ |
中国 | 5例痛风,1例AH患者,7例健康对照(同一家系) | CPT2 | [ | |
中国 | 2例痛风,3例健康对照(同一家系) | SLC16A9 | [ | |
中国 | 2例痛风,2例健康对照(第一家系)、3例痛风,8例健康对照(第二家系)、4例痛风,5例健康对照(第三家系) | ABCG2、PRKG2、ADRB3 | [ |
表2
痛风中多种相关RNA表达情况"
RNA类型 | RNA分子 | 靶向基因/miRNA | 表征 | 参考文献 |
---|---|---|---|---|
mRNA | NLRP3-4↓ | NLRP3 | IL-1β升高、NLRP3炎症小体降低 | [ |
PTGS2、NFE2L2↑/ CASP8、CD274↓ | miR-128-3p、miR-20a-5p、miR-16-5p、miR-155-5p | 促进细胞炎症性坏死 | [ | |
miRNA | miR-488、miR-920↓ | IL1B | 炎症细胞因子水平升高 | [ |
miR-192-5p↓ | EREG | 炎症细胞因子水平升高、M1巨噬细胞活化 | [ | |
miR-223-3p、miR-22-3p↓ | NLRP3 | 炎症细胞因子水平升高 | [ | |
miR-142-3p↑ | ZEB2 | 激活NF-κB信号通路、炎症细胞因子水平升高 | [ | |
miR-221-5p↓ | IL1B | 炎症细胞因子水平升高 | [ | |
miR-339-5p、miR-486-5p、miR-361-5p↓ | - | 趋化因子配体2水平升高、炎症细胞因子水平升高 | [ | |
miR-302b↑ | IRAK4、EphA2 | 抑制NF-κB和半胱天冬酶-1信号通路、抑制巨噬细胞迁移、炎症细胞因子水平降低 | [ | |
miR-146a↑ | TRAF6、IRAK1 | 炎症细胞因子水平降低 | [ | |
miR-155↑ | SHIP-1 | 炎症细胞因子水平升高 | [ | |
lncRNA | lncRNA-MM2P↓ | - | 炎症细胞因子水平升高 | [ |
lncRNA-H19↑ | miR-22-3p | 激活NF-κB信号通路、炎症细胞因子水平升高 | [ | |
ceRNA | lncRNA-HOTAIR↑/miR-20b↓ | NLRP3 | 炎症细胞因子水平升高 | [ |
lncRNA-SNHG8↑/miR-542-3p↓ | AP3D1 | 炎症细胞因子水平升高 | [ | |
circHIPK3↑/miR-192、miR-561↓ | TLR4、NLRP3 | 激活TLR4信号通路、炎症细胞因子水平升高 | [ | |
lncRNA-NEAT1↑/miR-142-3p↓ | IL-6 | 炎症细胞因子水平升高 | [ |
表3
痛风的代谢组学研究进展"
样本类型 | 参与者数量 | 重要代谢物 | 涉及代谢通路 | 参考文献 |
---|---|---|---|---|
尿液 | 29名健康对照,35名痛风患者 | 乙醇胺、苯乙醇胺、乙醇酸盐、甘油、半乳糖醛酸、硬脂酸酯、琥珀酸盐、延胡索酸酯、丙二醇、5-羟基-L-色氨酸、5-羟基吲哚-3-乙酸酯、β-乳酸、苏氨酸盐、D-来苏糖、核糖醇、山梨糖醇、D-醛糖、葡萄糖酸盐、尿嘧啶、尿酸盐、肌酐,异黄蝶呤、氨基酸类 | 嘌呤核苷酸合成、氨基酸代谢、嘌呤代谢、脂质代谢、碳水化合物代谢、三羧酸循环 | [ |
血浆 | 29名健康对照,20名AH患者,20名痛风患者 | L-异亮氨酸、L-赖氨酸、L-丙氨酸 | - | [ |
血浆 | 26名健康对照,26名痛风患者 | 白三烯B4 | - | [ |
血清 | 50名健康对照,50名AH患者,49名痛风患者 | 极低密度脂蛋白、脂质、谷氨酰胺、丙酮、柠檬酸盐、肌酸酐、β-葡萄糖、α-葡萄糖、甘油三酯、不饱和脂质、氨基酸类 | 氨酰基-tRNA生物合成、支链氨基酸生物合成、D-谷氨酰胺,D-谷氨酸代谢 | [ |
血清 | 31名健康对照,31名痛风患者 | 4-羟基三唑仑、尿酸盐、胆红素 | 胆汁酸生物合成、嘌呤代谢、甘油磷脂代谢 | [ |
血清,尿液 | 30名健康对照,30名痛风患者 | 次黄嘌呤、黄嘌呤、焦谷氨酸、2-甲基丁酰肉碱、氨基酸类 | 嘌呤代谢、支链氨基酸代谢、三羧酸循环、酮体的合成和降解、胆汁分泌、花生四烯酸代谢 | [ |
血清 | 80名健康对照,62名AH患者,69名痛风患者 | 犬尿喹啉酸、5-羟基吲哚乙酸 | - | [ |
[1] |
Dalbeth N, Choi HK, Joosten LAB, Khanna PP, Matsuo H, Perez-Ruiz F, Stamp LK. Gout. Nat Rev Dis Primers, 2019, 5(1): 69.
doi: 10.1038/s41572-019-0115-y pmid: 31558729 |
[2] |
Merriman TR, Dalbeth N. The genetic basis of hyperuricaemia and gout. Joint Bone Spine, 2011, 78(1): 35-40.
doi: 10.1016/j.jbspin.2010.02.027 pmid: 20472486 |
[3] |
Kuo CF, Grainge MJ, Zhang WY, Doherty M. Global epidemiology of gout: prevalence, incidence and risk factors. Nat Rev Rheumatol, 2015, 11(11): 649-662.
doi: 10.1038/nrrheum.2015.91 |
[4] | Butler F, Alghubayshi A, Roman Y. The epidemiology and genetics of hyperuricemia and gout across major racial groups: a literature review and population genetics secondary database analysis. J Pers Med, 2021, 11(3): 231. |
[5] |
Punzi L, Scanu A, Galozzi P, Luisetto R, Spinella P, Scire CA, Oliviero F. One year in review 2020: gout. Clin Exp Rheumatol, 2020, 38(5): 807-821.
pmid: 33034561 |
[6] | Zhao M, Chen T, Huang ZG, Zhong QA.Disease burden of gout in China, 1990—2019. Mod Prev Med, 2021, 48(21): 3974-3978. |
赵敏, 陈婷, 黄振光, 钟秋安. 1990—2019年中国痛风疾病负担研究. 现代预防医学, 2021, 48(21): 3974-3978. | |
[7] |
Song J, Jin CY, Shan ZY, Teng WP, Li J. Prevalence and risk factors of hyperuricemia and gout: a cross-sectional survey from 31 provinces in mainland China. J Transl Int Med, 2022, 10(2): 134-145.
doi: 10.2478/jtim-2022-0031 pmid: 35959454 |
[8] |
Vitart V, Rudan I, Hayward C, Gray NK, Floyd J, Palmer CNA, Knott SA, Kolcic I, Polasek O, Graessler J, Wilson JF, Marinaki A, Riches PL, Shu XH, Janicijevic B, Smolej-Narancic N, Gorgoni B, Morgan J, Campbell S, Biloglav Z, Barac-Lauc L, Pericic M, Klaric IM, Zgaga L, Skaric-Juric T, Wild SH, Richardson WA, Hohenstein P, Kimber CH, Tenesa A, Donnelly LA, Fairbanks LD, Aringer M, Mckeigue PM, Ralston SH, Morris AD, Rudan P, Hastie ND, Campbell H, Wright AF. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet, 2008, 40(4): 437-442.
doi: 10.1038/ng.106 pmid: 18327257 |
[9] |
Dalbeth N, Gosling AL, Gaffo A, Abhishek A. Gout. Lancet, 2021, 397(10287): 1843-1855.
doi: 10.1016/S0140-6736(21)00569-9 pmid: 33798500 |
[10] |
Stamp LK, Chapman PT. Gout and its comorbidities: implications for therapy. Rheumatology (Oxford), 2013, 52(1): 34-44.
doi: 10.1093/rheumatology/kes211 pmid: 22949727 |
[11] |
Pillinger MH, Goldfarb DS, Keenan RT. Gout and its comorbidities. Bull NYU Hosp Jt Dis, 2010, 68(3): 199-203.
pmid: 20969552 |
[12] |
Smith E, Hoy D, Cross M, Merriman TR, Vos T, Buchbinder R, Woolf A, March L.The global burden of gout: estimates from the global burden of disease 2010 study. Ann Rheum Dis, 2014, 73(8): 1470-1476.
doi: 10.1136/annrheumdis-2013-204647 pmid: 24590182 |
[13] |
Narang RK, Dalbeth N. Pathophysiology of gout. Semin Nephrol, 2020, 40(6): 550-563.
doi: 10.1016/j.semnephrol.2020.12.001 pmid: 33678310 |
[14] | Reginato AM, Mount DB, Yang I, Choi HK. The genetics of hyperuricaemia and gout. Nat Rev Rheumatol, 2012, 8(10): 610-621. |
[15] |
Cadzow M, Merriman TR, Dalbeth N. Performance of gout definitions for genetic epidemiological studies: analysis of UK Biobank. Arthritis Res Ther, 2017, 19(1): 181.
doi: 10.1186/s13075-017-1390-1 pmid: 28793914 |
[16] |
Xu PZ, Liu P, Zhou CM, Shi Y, Wu QP, Yang YT, Li GY, Hu GL, Guo XQ. A multi-omics study of chicken infected by nephropathogenic infectious bronchitis virus. Viruses, 2019, 11(11): 1070.
doi: 10.3390/v11111070 |
[17] | Subramanian I, Verma S, Kumar S, Jere A, Anamika K. Multi-omics data integration, interpretation, and its application. Bioinform Biol Insights, 2020, 14: 1177932219899051. |
[18] |
Liu XN, Cui DN, Li YF, Liu YH, Liu G, Liu L. Multiple “Omics” data-based biomarker screening for hepatocellular carcinoma diagnosis. World J Gastroenterol, 2019, 25(30): 4199-4212.
doi: 10.3748/wjg.v25.i30.4199 |
[19] |
Ivanova O, Richards LB, Vijverberg SJ, Neerincx AH, Sinha A, Sterk PJ, Maitland-Van der Zee AH. What did we learn from multiple omics studies in asthma? Allergy, 2019, 74(11): 2129-2145.
doi: 10.1111/all.13833 pmid: 31004501 |
[20] | Zheng M, Ma JW. Research progress in the genetics of hyperuricaemia and gout. Hereditas (Beijing), 2016, 38(4): 300-313. |
郑敏, 麻骏武. 高尿酸血症和痛风的遗传学研究进展. 遗传, 2016, 38(4): 300-313. | |
[21] |
Alghubayshi A, Edelman A, Alrajeh K, Roman Y. Genetic assessment of hyperuricemia and gout in Asian, Native Hawaiian, and Pacific Islander subgroups of pregnant women: biospecimens repository cross-sectional study. BMC Rheumatol, 2022, 6(1): 1.
doi: 10.1186/s41927-021-00239-7 pmid: 34986901 |
[22] | Tin A, Marten J, Halperin Kuhns VL, Li Y, Wuttke M, Kirsten H, Sieber KB, Qiu CX, Gorski M, Yu Z, Giri A, Sveinbjornsson G, Li M, Chu AY, Hoppmann A, O'Connor LJ, Prins B, Nutile T, Noce D, Akiyama M, Cocca M, Ghasemi S, van der Most PJ, Horn K, Xu YZ, Fuchsberger C, Sedaghat S, Afaq S, Amin N, Ärnlöv J, Bakker SJL, Bansal N, Baptista D, Bergmann S, Biggs ML, Biino G, Boerwinkle E, Bottinger EP, Boutin TS, Brumat M, Burkhardt R, Campana E, Campbell A, Campbell H, Carroll RJ, Catamo E, Chambers JC, Ciullo M, Concas MP, Coresh J, Corre T, Cusi D, Felicita SC, de Borst MH, De Grandi A, de Mutsert R, de Vries APJ, Delgado G, Demirkan A, Devuyst O, Dittrich K, Eckardt KU, Ehret G, Endlich K, Evans MK, Gansevoort RT, Gasparini P, Giedraitis V, Gieger C, Girotto G, Gögele M, Gordon SD, Gudbjartsson DF, Gudnason V, German Chronic Kidney Disease Stud, Haller T, Hamet P, Harris TB, Hayward C, Hicks AA, Hofer E, Holm H, Huang W, Hutri-Kähönen N, Hwang SJ, Ikram MA, Lewis RM, Ingelsson E, Jakobsdottir J, Jonsdottir I, Jonsson H, Joshi PK, Josyula NS, Jung B, Kähönen M, Kamatani Y, Kanai M, Kerr SM, Kiess W, Kleber ME, Koenig W, Kooner JS, Körner A, Kovacs P, Krämer BK, Kronenberg F, Kubo M, Kühnel B, La Bianca M, Lange LA, Lehne B, Lehtimaki T, Lifelines Cohort Study, Liu J, Loeffler M, Loos RJF, Lyytikäinen LP, Magi R, Mahajan A, Martin NG, März W, Mascalzoni D, Matsuda K, Meisinger C, Meitinger T, Metspalu A, Milaneschi Y, V. A. Million Veteran Program, O'Donnell CJ, Wilson OD, Gaziano JM, Mishra PP, Mohlke KL, Mononen N, Montgomery GW, Mook-Kanamori DO, Müller-Nurasyid M, Nadkarni GN, Nalls MA, Nauck M, Nikus K, Ning BT, Nolte IM, Noordam R, O'Connell JR, Olafsson I, Padmanabhan S, Penninx BWJH, Perls T, Peters A, Pirastu M, Pirastu N, Pistis G, Polasek O, Ponte B, Porteous DJ, Poulain T, Preuss MH, Rabelink TJ, Raffield LM, Raitakari OT, Rettig R, Rheinberger M, Rice KM, Rizzi F, Robino A, Rudan I, Krajcoviechova A, Cifkova R, Rueedi R, Ruggiero D, Ryan KA, Saba Y, Salvi E, Schmidt H, Schmidt R, Shaffer CM, Smith AV, Smith BH, Spracklen CN, Strauch K, Stumvoll M, Sulem P, Tajuddin SM, Teren A, Thiery J, Thio CHL, Thorsteinsdottir U, Toniolo D, Tönjes A, Tremblay J, Uitterlinden AG, Vaccargiu S, van der Harst P, van Duijn CM, Verweij N, Völker U, Vollenweider P, Waeber G, Waldenberger M, Whitfield JB, Wild SH, Wilson JF, Yang Q, Zhang WH, Zonderman AB, Bochud M, Wilson JG, Pendergrass SA, Ho K, Parsa A, Pramstaller PP, Psaty BM, Böger CA, Snieder H, Butterworth AS, Okada Y, Edwards TL, Stefansson K, Susztak K, Scholz M, Heid IM, Hung AM, Teumer A, Pattaro C, Woodward OM, Vitart V, Köttgen A. Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels. Nat Genet, 2019, 51(10): 1459-1474. |
[23] |
Sandoval-Plata G, Morgan K, Abhishek A. Variants in urate transporters, ADH1B, GCKR and MEPE genes associate with transition from asymptomatic hyperuricaemia to gout: results of the first gout versus asymptomatic hyperuricaemia GWAS in Caucasians using data from the UK Biobank. Ann Rheum Dis, 2021, 80(9): 1220-1226.
doi: 10.1136/annrheumdis-2020-219796 pmid: 33832965 |
[24] |
Jing JJ, Ekici AB, Sitter T, Eckardt KU, Schaeffner E, Li Y, Kronenberg F, Köttgen A, Schultheiss UT. Genetics of serum urate concentrations and gout in a high-risk population, patients with chronic kidney disease. Sci Rep, 2018, 8(1): 13184.
doi: 10.1038/s41598-018-31282-z pmid: 30181573 |
[25] | Dong Z, Zhou JR, Xu X, Jiang S, Li Y, Zhao DB, Yang CD, Ma YY, Wang Y, He HJ, Ji HD, Zhang J, Yuan ZY, Yang YJ, Wang XF, Pang YF, Jin L, Zou HJ, Wang JC. Genetic variants in two pathways influence serum urate levels and gout risk: a systematic pathway analysis. Sci Rep, 2018, 8(1): 3848. |
[26] |
Kawamura Y, Nakaoka H, Nakayama A, Okada Y, Yamamoto K, Higashino T, Sakiyama M, Shimizu T, Ooyama H, Ooyama K, Nagase M, Hidaka Y, Shirahama Y, Hosomichi K, Nishida Y, Shimoshikiryo I, Hishida A, Katsuura-Kamano S, Shimizu S, Kawaguchi M, Uemura H, Ibusuki R, Hara M, Naito M, Takao M, Nakajima M, Iwasawa S, Nakashima H, Ohnaka K, Nakamura T, Stiburkova B, Merriman TR, Nakatochi M, Ichihara S, Yokota M, Takada T, Saitoh T, Kamatani Y, Takahashi A, Arisawa K, Takezaki T, Tanaka K, Wakai K, Kubo M, Hosoya T, Ichida K, Inoue I, Shinomiya N, Matsuo H. Genome-wide association study revealed novel loci which aggravate asymptomatic hyperuricaemia into gout. Ann Rheum Dis, 2019, 78(10): 1430-1437.
doi: 10.1136/annrheumdis-2019-215521 pmid: 31289104 |
[27] |
Kawaguchi M, Nakayama A, Aoyagi Y, Nakamura T, Shimizu S, Kawamura Y, Takao M, Tamura T, Hishida A, Nagayoshi M, Nagase M, Ooyama K, Ooyama H, Shinomiya N, Matsuo H. Both variants of A1CF and BAZ1B genes are associated with gout susceptibility: a replication study and meta-analysis in a Japanese population. Hum Cell, 2021, 34(2): 293-299.
doi: 10.1007/s13577-021-00485-4 pmid: 33517564 |
[28] |
Lee MTG, Hsu TC, Chen SC, Lee YC, Kuo PH, Yang JH, Chang HH, Lee CC. Integrative genome-wide association studies of eQTL and GWAS data for gout disease susceptibility. Sci Rep, 2019, 9(1): 4981.
doi: 10.1038/s41598-019-41434-4 |
[29] |
Chang SJ, Toyoda Y, Kawamura Y, Nakamura T, Nakatochi M, Nakayama A, Liao WT, Shimizu S, Takada T, Takeuchi K, Wakai K, Shi YY, Shinomiya N, Chen CJ, Li CG, Okada Y, Ichida K, Matsuo H, for Japan Gout Genomics Consortium (Japan Gout). A meta-analysis of genome-wide association studies using Japanese and Taiwanese has revealed novel loci associated with gout susceptibility. Hum Cell, 2022, 35(2): 767-770.
doi: 10.1007/s13577-021-00665-2 |
[30] |
Nakayama A, Nakatochi M, Kawamura Y, Yamamoto K, Nakaoka H, Shimizu S, Higashino T, Koyama T, Hishida A, Kuriki K, Watanabe M, Shimizu T, Ooyama K, Ooyama H, Nagase M, Hidaka Y, Matsui D, Tamura T, Nishiyama T, Shimanoe C, Katsuura-Kamano S, Takashima N, Shirai Y, Kawaguchi M, Takao M, Sugiyama R, Takada Y, Nakamura T, Nakashima H, Tsunoda M, Danjoh I, Hozawa A, Hosomichi K, Toyoda Y, Kubota Y, Takada T, Suzuki H, Stiburkova B, Major TJ, Merriman TR, Kuriyama N, Mikami H, Takezaki T, Matsuo K, Suzuki S, Hosoya T, Kamatani Y, Kubo M, Ichida K, Wakai K, Inoue I, Okada Y, Shinomiya N, Matsuo H, Japan Gout Genomics Consortium (Japan Gout). Subtype-specific gout susceptibility loci and enrichment of selection pressure on ABCG2 and ALDH2 identified by subtype genome-wide meta-analyses of clinically defined gout patients. Ann Rheum Dis, 2020, 79(5): 657-665.
doi: 10.1136/annrheumdis-2019-216644 |
[31] |
Nakayama A, Nakaoka H, Yamamoto K, Sakiyama M, Shaukat A, Toyoda Y, Okada Y, Kamatani Y, Nakamura T, Takada T, Inoue K, Yasujima T, Yuasa H, Shirahama Y, Nakashima H, Shimizu S, Higashino T, Kawamura Y, Ogata H, Kawaguchi M, Ohkawa Y, Danjoh I, Tokumasu A, Ooyama K, Ito T, Kondo T, Wakai K, Stiburkova B, Pavelka K, Stamp LK, Dalbeth N, Eurogout Consortium, Sakurai Y, Suzuki H, Hosoyamada M, Fujimori S, Yokoo T, Hosoya T, Inoue I, Takahashi A, Kubo M, Ooyama H, Shimizu T, Ichida K, Shinomiya N, Merriman TR, Matsuo H, Eurogout Consortium. GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci that include urate transporter genes. Ann Rheum Dis, 2017, 76(5): 869-877.
doi: 10.1136/annrheumdis-2016-209632 pmid: 27899376 |
[32] |
Toyoda Y, Nakayama A, Nakatochi M, Kawamura Y, Nakaoka H, Yamamoto K, Shimizu S, Ooyama H, Ooyama K, Shimizu T, Nagase M, Hidaka Y, Ichida K, Inoue I, Shinomiya N, Matsuo H, Japan Gout Genomics Consortium (Japan Gout). Genome-wide meta-analysis between renal overload type and renal underexcretion type of clinically defined gout in Japanese populations. Mol Genet Metab, 2022, 136(3): 186-189.
doi: 10.1016/j.ymgme.2022.01.100 pmid: 35148957 |
[33] |
Eun Y, Kim IY, Han K, Lee KN, Lee DY, Shin DW, Kang S, Lee S, Cha HS, Koh EM, Lee J, Kim H. Association between female reproductive factors and gout: a nationwide population-based cohort study of 1 million postmenopausal women. Arthritis Res Ther, 2021, 23(1): 304.
doi: 10.1186/s13075-021-02701-w pmid: 34915918 |
[34] |
Lin CY, Chang YS, Liu TY, Huang CM, Chung CC, Chen YC, Tsai FJ, Chang JG, Chang SJ. Genetic contributions to female gout and hyperuricaemia using genome-wide association study and polygenic risk score analyses. Rheumatology (Oxford), 2022, 62(2): 638-646.
doi: 10.1093/rheumatology/keac369 |
[35] |
Chang YS, Lin CY, Liu TY, Huang CM, Chung CC, Chen YC, Tsai FJ, Chang JG, Chang SJ. Polygenic risk score trend and new variants on chromosome 1 are associated with male gout in genome-wide association study. Arthritis Res Ther, 2022, 24(1): 229.
doi: 10.1186/s13075-022-02917-4 |
[36] | Yang PQ, Pi XN, Marion TN, Wang J, Wang G, Xie Y, Xie D, Liu Y. Gout inheritance in an extended Chinese family analyzed by whole-exome sequencing: A case- report. Medicine (Baltimore), 2020, 99(25): e20057. |
[37] |
Guo Y, Jin J, Zhou ZN, Chen YH, Sun L, Zhang CW, Xia XR. Whole-exome sequencing identifies a novel CPT2 mutation in a pedigree with gout. Front Cell Dev Biol, 2022, 10: 802635.
doi: 10.3389/fcell.2022.802635 |
[38] | Huang XF, Sun L, Zhang CW, Zhou ZN, Chen H, Zhang LH, Brown MA, Xia XR. Whole-exome sequencing reveals a rare missense variant in SLC16A9 in a pedigree with early-onset gout. Biomed Res Int, 2020, 2020: 4321419. |
[39] | Xia XR, Jin J, Chen ZJ, Zhou ZN, Chen H, Zhang CW, Zhang L, Sun L. Unraveling the genetic causes in large pedigrees with gout by whole-exome sequencing. Int J Mol Med, 2020, 45(4): 1047-1058. |
[40] | Pei F, Pei H, Xia ZH, Xie FS, Su CH. Research progress of epigenetics in hyperuricemia and gout. Prog Physiol Sci, 2019, 50(3): 175-180. |
裴芳, 裴华, 夏中华, 谢福生, 苏春花. 高尿酸血症和痛风的表观遗传学研究进展. 生理科学进展, 2019, 50(3): 175-180. | |
[41] |
Stylianou E. Epigenetics of chronic inflammatory diseases. J Inflamm Res, 2019, 12: 1-14.
doi: 10.2147/JIR.S129027 pmid: 30588059 |
[42] |
Li HD, Chen X, Xu JJ, Du XS, Yang Y, Li JJ, Yang XJ, Huang HM, Li XF, Wu MF, Zhang C, Zhang C, Li Z, Wang H, Meng XM, Huang C, Li J. DNMT3b-mediated methylation of ZSWIM3 enhances inflammation in alcohol-induced liver injury via regulating TRAF2- mediated NF-kappaB pathway. Clin Sci (Lond), 2020, 134(14): 1935-1956.
doi: 10.1042/CS20200031 |
[43] |
Tseng CC, Wong MC, Liao WT, Chen CJ, Lee SC, Yen JH, Chang SJ. Systemic investigation of promoter-wide methylome and genome variations in gout. Int J Mol Sci, 2020, 21(13): 4702.
doi: 10.3390/ijms21134702 |
[44] | Tseng CC, Liao WT, Wong MC, Chen CJ, Lee SC, Yen JH, Chang SJ. Cell lineage-specific methylome and genome alterations in gout. Aging (Albany NY), 2021, 13(3): 3843-3865. |
[45] |
Wang ZM, Zhao Y, Phipps-Green A, Liu-Bryan R, Ceponis A, Boyle DL, Wang J, Merriman TR, Wang W, Terkeltaub R. Differential DNA methylation of networked signaling, transcriptional, innate and adaptive immunity, and osteoclastogenesis genes and pathways in gout. Arthritis Rheumatol, 2020, 72(5): 802-814.
doi: 10.1002/art.v72.5 |
[46] |
Li B, Chen XY, Jiang YT, Yang Y, Zhong J, Zhou C, Hu HC, Duan SW. CCL2 promoter hypomethylation is associated with gout risk in Chinese Han male population. Immunol Lett, 2017, 190: 15-19.
doi: S0165-2478(17)30168-2 pmid: 28690186 |
[47] |
Yang Y, Chen XY, Hu HC, Jiang YT, Yu H, Dai J, Mao YY, Duan SW. Elevated UMOD methylation level in peripheral blood is associated with gout risk. Sci Rep, 2017, 7(1): 11196.
doi: 10.1038/s41598-017-11627-w pmid: 28894234 |
[48] |
Zhu ZH, Meng WD, Liu PR, Zhu XX, Liu Y, Zou HJ. DNA hypomethylation of a transcription factor binding site within the promoter of a gout risk gene NRBP1 upregulates its expression by inhibition of TFAP2A binding. Clin Epigenetics, 2017, 9: 99.
doi: 10.1186/s13148-017-0401-z |
[49] |
Cleophas MCP, Crişan TO, Klück V, Hoogerbrugge N, Netea-Maier RT, Dinarello CA, Netea MG, Joosten LAB. Romidepsin suppresses monosodium urate crystal-induced cytokine production through upregulation of suppressor of cytokine signaling 1 expression. Arthritis Res Ther, 2019, 21(1): 50.
doi: 10.1186/s13075-019-1834-x pmid: 30728075 |
[50] |
Crişan TO, Cleophas MCP, Oosting M, Lemmers H, Toenhake-Dijkstra H, Netea MG, Jansen TL, Joosten LAB. Soluble uric acid primes TLR-induced proinflammatory cytokine production by human primary cells via inhibition of IL-1Ra. Ann Rheum Dis, 2016, 75(4): 755-762.
doi: 10.1136/annrheumdis-2014-206564 pmid: 25649144 |
[51] |
Jiang H, Ma R, Zou SB, Wang YZ, Li ZQ, Li WP. Reconstruction and analysis of the lncRNA-miRNA- mRNA network based on competitive endogenous RNA reveal functional lncRNAs in rheumatoid arthritis. Mol Biosyst, 2017, 13(6): 1182-1192.
doi: 10.1039/c7mb00094d pmid: 28470264 |
[52] |
Gezer U, Özgür E, Cetinkaya M, Isin M, Dalay N. Long non-coding RNAs with low expression levels in cells are enriched in secreted exosomes. Cell Biol Int, 2014, 38(9): 1076-1079.
doi: 10.1002/cbin.10301 pmid: 24798520 |
[53] |
Matsui M, Corey DR. Non-coding RNAs as drug targets. Nat Rev Drug Discov, 2017, 16(3): 167-179.
doi: 10.1038/nrd.2016.117 pmid: 27444227 |
[54] |
Xu YT, Leng YR, Liu MM, Dong RF, Bian J, Yuan LL, Zhang JG, Xia YZ, Kong LY. MicroRNA and long noncoding RNA involvement in gout and prospects for treatment. Int Immunopharmacol, 2020, 87: 106842.
doi: 10.1016/j.intimp.2020.106842 |
[55] | Li X, Pan YY, Li W, Guan PW, You CG. The role of noncoding RNAs in gout. Endocrinology, 2020, 161(11). |
[56] |
Dang WT, Xu D, Xie WG, Zhou JG. Study on the expressions of NLRP3 gene transcript variants in peripheral blood monocytes of primary gout patients. Clin Rheumatol, 2018, 37(9): 2547-2555.
doi: 10.1007/s10067-018-4149-4 pmid: 29946988 |
[57] |
Bai B, Liu YZ, Abudukerimu A, Tian TT, Liang MT, Li R, Sun YP. Key genes associated with pyroptosis in gout and construction of a miRNA-mRNA regulatory network. Cells, 2022, 11(20): 3269.
doi: 10.3390/cells11203269 |
[58] |
Li Y, Huang CC, Yang ZG, Wang L, Luo D, Qi L, Li ZC, Huang YQ. Identification of potential biomarkers of gout through competitive endogenous RNA network analysis. Eur J Pharm Sci, 2022, 173: 106180.
doi: 10.1016/j.ejps.2022.106180 |
[59] |
Papanagnou P, Stivarou T, Tsironi M. The role of miRNAs in common inflammatory arthropathies: osteoarthritis and gouty arthritis. Biomolecules, 2016, 6(4): 44.
doi: 10.3390/biom6040044 |
[60] | Chen XM, Zhao Y, Wu XD, Wang MJ, Yu H, Lu JJ, Hu YJ, Huang QC, Huang RY, Lu CJ. Novel findings from determination of common expressed plasma exosomal microRNAs in patients with psoriatic arthritis, psoriasis vulgaris, rheumatoid arthritis, and gouty arthritis. Discov Med, 2019, 28(151): 47-68. |
[61] |
Zhou WD, Wang Y, Wu RF, He Y, Su Q, Shi GX. MicroRNA-488 and -920 regulate the production of proinflammatory cytokines in acute gouty arthritis. Arthritis Res Ther, 2017, 19(1): 203.
doi: 10.1186/s13075-017-1418-6 pmid: 28915828 |
[62] |
An LX, Yin FZ. MiR-192-5p suppresses M1 macrophage polarization via epiregulin (EREG) downregulation in gouty arthritis. Tissue Cell, 2021, 73: 101669.
doi: 10.1016/j.tice.2021.101669 |
[63] |
Wang X, Chi JW, Dong BZ, Xu LL, Zhou Y, Huang YJ, Sun SN, Wei FX, Liu YZ, Liu CF, Che K, Lv WS, Chen Y, Wang YG.MiR-223-3p and miR-22-3p inhibit monosodium urate-induced gouty inflammation by targeting NLRP3. Int J Rheum Dis, 2021, 24(4): 599-607.
doi: 10.1111/1756-185X.14089 pmid: 33650318 |
[64] |
Lu Y, Fang L, Xu XF, Wu YY, Li JJ. MicroRNA-142-3p facilitates inflammatory response by targeting ZEB2 and activating NF-kappaB signaling in gouty arthritis. Cell Cycle, 2022, 21(8): 805-819.
doi: 10.1080/15384101.2022.2031678 |
[65] |
Li GW, Zhang HH, Ma H, Qu SP, Xing Q, Wang G. MiR-221-5p is involved in the regulation of inflammatory responses in acute gouty arthritis by targeting IL-1beta. Int J Rheum Dis, 2021, 24(3): 335-340.
doi: 10.1111/apl.v24.3 |
[66] | Wang Y, Dong LP, Liu P, Chen Y, Jia SD, Wang YG. A randomized controlled trial of chuanhutongfeng mixture for the treatment of chronic gouty arthritis by regulating miRNAs. Evid Based Complement Alternat Med, 2019, 2019: 5917269. |
[67] |
Ma T, Liu X, Cen ZF, Xin C, Guo MF, Zou CY, Song WP, Xie R, Wang KL, Zhou H, Zhang J, Wang Z, Bian C, Cui KJ, Li J, Wei YQ, Li J, Zhou XK.MicroRNA-302b negatively regulates IL-1beta production in response to MSU crystals by targeting IRAK4 and EphA2. Arthritis Res Ther, 2018, 20(1): 34.
doi: 10.1186/s13075-018-1528-9 |
[68] |
Zhang QB, Qing YF, Yin CC, Zhou L, Liu XS, Mi QS, Zhou JG. Mice with miR-146a deficiency develop severe gouty arthritis via dysregulation of TRAF 6, IRAK 1 and NALP3 inflammasome. Arthritis Res Ther, 2018, 20(1): 45.
doi: 10.1186/s13075-018-1546-7 |
[69] |
Jin HM, Kim TJ, Choi JH, Kim MJ, Cho YN, Nam KI, Kee SJ, Moon JB, Choi SY, Park DJ, Lee SS, Park YW. MicroRNA-155 as a proinflammatory regulator via SHIP-1 down-regulation in acute gouty arthritis. Arthritis Res Ther, 2014, 16(2): R88.
doi: 10.1186/ar4531 |
[70] |
Xu JF, Cao XT. Long noncoding RNAs in the metabolic control of inflammation and immune disorders. Cell Mol Immunol, 2019, 16(1): 1-5.
doi: 10.1038/s41423-018-0042-y pmid: 29795339 |
[71] |
Chen YG, Satpathy AT, Chang HY. Gene regulation in the immune system by long noncoding RNAs. Nat Immunol, 2017, 18(9): 962-972.
doi: 10.1038/ni.3771 pmid: 28829444 |
[72] |
Ye BZ, Wu ZH, Tsui TY, Zhang BF, Su X, Qiu YH, Zheng XT. LncRNA KCNQ1OT1 suppresses the inflammation and proliferation of vascular smooth muscle cells through IκBa in intimal hyperplasia. Mol Ther Nucleic Acids, 2020, 20: 62-72.
doi: 10.1016/j.omtn.2020.01.032 |
[73] | Atianand MK, Hu WQ, Satpathy AT, Shen Y, Ricci EP, Alvarez-Dominguez JR, Bhatta A, Schattgen SA, Mcgowan JD, Blin J, Braun JE, Gandhi P, Moore MJ, Chang HY, Lodish HF, Caffrey DR, Fitzgerald KA. A long noncoding RNA lincRNA-EPS acts as a transcriptional brake to restrain inflammation. Cell, 2016, 165(7): 1672-1685. |
[74] | Qing YF, Zheng JX, Tang YP, Dai F, Dong ZR, Zhang QB. LncRNAs Landscape in the patients of primary gout by microarray analysis. PLoS One, 2021, 16(2): e232918. |
[75] |
Zhang XF, Zou Y, Zheng JX, Ji SG, Wen XZ, Ye F, Liu J, Li XY, Lei J, Qiu ML. lncRNA-MM2P downregulates the production of pro-inflammatory cytokines in acute gouty arthritis. Mol Med Rep, 2020, 22(3): 2227-2234.
doi: 10.3892/mmr |
[76] |
Xue YY, Liu HJ, Sun ZJ, Xiang T, Shao P. H19 is involved in the regulation of inflammatory responses in acute gouty arthritis by targeting miR-2-3p. Immunol Res, 2022, 70(3): 392-399.
doi: 10.1007/s12026-022-09276-x |
[77] |
Yang C, Wu D, Gao L, Liu X, Jin YJ, Wang D, Wang TZ, Li XB. Competing endogenous RNA networks in human cancer: hypothesis, validation, and perspectives. Oncotarget, 2016, 7(12): 13479-13490.
doi: 10.18632/oncotarget.7266 pmid: 26872371 |
[78] |
Chan JJ, Tay Y. Noncoding RNA:RNA regulatory networks in cancer. Int J Mol Sci, 2018, 19(5): 1310.
doi: 10.3390/ijms19051310 |
[79] |
Liu YB, Lin LP, Zou R, Wen CY, Wang Z, Lin FQ. MSC-derived exosomes promote proliferation and inhibit apoptosis of chondrocytes via lncRNA-KLF3- AS1/miR-206/GIT1 axis in osteoarthritis. Cell Cycle, 2018, 17(21-22): 2411-2422.
doi: 10.1080/15384101.2018.1526603 |
[80] |
Hu JC, Wu H, Wang DC, Yang ZJ, Dong JJ.LncRNA ANRIL promotes NLRP3 inflammasome activation in uric acid nephropathy through miR-122-5p/BRCC3 axis. Biochimie, 2019, 157: 102-110.
doi: S0300-9084(18)30293-1 pmid: 30347231 |
[81] |
Chen F, Zhang XY, Chen YP, Chai Y, Jiang X, Li HN. Construction of lncRNA-miRNA-mRNA network based on ceRNA mechanism reveals the function of lncRNA in the pathogenesis of gout. J Clin Lab Anal, 2022, 36(6): e24451.
doi: 10.1002/jcla.v36.6 |
[82] | Shu JL, Chen MH, Ya CS, Yang RX, Li FZ. Regulatory role of miRNAs and lncRNAs in gout. Comput Math Methods Med, 2022, 2022: 6513565. |
[83] |
Liu YF, Xing GL, Chen Z, Tu SH. Long non-coding RNA HOTAIR knockdown alleviates gouty arthritis through miR-20b upregulation and NLRP3 downregulation. Cell Cycle, 2021, 20(3): 332-344.
doi: 10.1080/15384101.2021.1874696 |
[84] |
Fang L, Xu XF, Lu Y, Wu YY, Li JJ. Long noncoding RNA SNHG8 accelerates acute gouty arthritis development by upregulating AP3D1 in mice. Bioengineered, 2021, 12(2): 9803-9815.
doi: 10.1080/21655979.2021.1995579 pmid: 34874227 |
[85] |
Lian CF, Sun JL, Guan WJ, Zhang L, Zhang X, Yang L, Hu WL. Circular RNA circHIPK 3 activates macrophage NLRP3 inflammasome and TLR4 pathway in gouty arthritis via sponging miR-561 and miR-192. Inflammation, 2021, 44(5): 2065-2077.
doi: 10.1007/s10753-021-01483-2 |
[86] | Cifani P, Kentsis A. Towards comprehensive and quantitative proteomics for diagnosis and therapy of human disease. Proteomics, 2017, 17(1-2). |
[87] |
Chen XL, Sun YP, Zhang TT, Shu L, Roepstorff P, Yang FQ. Quantitative proteomics using isobaric labeling: a practical guide. Genomics Proteomics Bioinformatics, 2021, 19(5): 689-706.
doi: 10.1016/j.gpb.2021.08.012 |
[88] | Sun GH, Liu J, Wan L, Liu W, Long Y, Bao BX, Zhang Y. Differentially expressed inflammatory proteins in acute gouty arthritis based on protein chip. J Zhejiang Univ Med Sci, 2020, 49(06): 743-749. |
孙广瀚, 刘健, 万磊, 刘维, 龙琰, 鲍丙溪, 张颖. 急性痛风性关节炎致炎蛋白的蛋白质组学研究. 浙江大学学报(医学版), 2020, 49(06): 743-749. | |
[89] |
Ying Y, Chen Y, Zhang S, Huang HY, Zou RX, Li XK, Chu ZB, Huang XQ, Peng Y, Gan MZ, Geng BQ, Zhu MY, Ying YY, Huang ZA. Investigation of serum biomarkers in primary gout patients using iTRAQ-based screening. Clin Exp Rheumatol, 2018, 36(5): 791-797.
pmid: 29600944 |
[90] |
Chen GQ, Cheng JF, Yu HJ, Huang X, Bao H, Qin L, Wang L, Song YX, Liu XY, Peng A. Quantitative proteomics by iTRAQ-PRM based reveals the new characterization for gout. Proteome Sci, 2021, 19(1): 12.
doi: 10.1186/s12953-021-00180-0 pmid: 34635120 |
[91] |
Huang YK, Liu YQ, Huang QD, Sun SM, Ji ZY, Huang LX, Li Z, Huang XC, Deng WM, Li TW. TMT-based quantitative proteomics analysis of synovial fluid- derived exosomes in inflammatory arthritis. Front Immunol, 2022, 13: 800902.
doi: 10.3389/fimmu.2022.800902 |
[92] | Li QQ, Wei SS, Wu DH, Wen CP, Zhou J. Urinary metabolomics study of patients with gout using gas chromatography-mass spectrometry. Biomed Res Int, 2018, 2018: 3461572. |
[93] |
Shen X, Wang C, Liang NN, Liu Z, Li XD, Zhu ZJ, Merriman TR, Dalbeth N, Terkeltaub R, Li CG, Yin HY. Serum metabolomics identifies dysregulated pathways and potential metabolic biomarkers for hyperuricemia and gout. Arthritis Rheumatol, 2021, 73(9): 1738-1748.
doi: 10.1002/art.v73.9 |
[94] |
Li H, Jiang Y, He FC. Recent development of metabonomics and its applications in clinical research. Hereditas (Beijing), 2008, 30(4): 389-399.
doi: 10.3724/SP.J.1005.2008.00389 |
李灏, 姜颖, 贺福初. 代谢组学技术及其在临床研究中的应用. 遗传, 2008, 30(4): 389-399.
doi: 10.3724/SP.J.1005.2008.00389 |
|
[95] |
Zhang YN, Zhang HZ, Chang D, Guo FC, Pan HZ, Yang YX. Metabolomics approach by (1)H NMR spectroscopy of serum reveals progression axes for asymptomatic hyperuricemia and gout. Arthritis Res Ther, 2018, 20(1): 111.
doi: 10.1186/s13075-018-1600-5 |
[96] |
Zhong Z, Huang YK, Huang QD, Zheng SL, Huang ZX, Deng WM, Li TW. Serum metabolic profiling analysis of gout patients based on UPLC-Q-TOF/MS. Clin Chim Acta, 2021, 515: 52-60.
doi: 10.1016/j.cca.2020.12.028 pmid: 33388309 |
[97] |
Luo Y, Wang L, Liu XY, Chen XL, Song YX, Li XH, Jiang CZ, Peng A, Liu JY. Plasma profiling of amino acids distinguishes acute gout from asymptomatic hyperuricemia. Amino Acids, 2018, 50(11): 1539-1548.
doi: 10.1007/s00726-018-2627-2 pmid: 30073607 |
[98] |
Huang YF, Xiao M, Ou JY, Lv Q, Wei QJ, Chen ZN, Wu JL, Tu LD, Jiang YT, Zhang X, Qi J, Qiu ML, Cao SY, Gu JR. Identification of the urine and serum metabolomics signature of gout. Rheumatology (Oxford), 2020, 59(10): 2960-2969.
doi: 10.1093/rheumatology/keaa018 pmid: 32134107 |
[99] |
Luo Y, Wang L, Peng A, Liu JY. Metabolic profiling of human plasma reveals the activation of 5-lipoxygenase in the acute attack of gouty arthritis. Rheumatology (Oxford), 2019, 58(2): 345-351.
doi: 10.1093/rheumatology/key284 pmid: 30247644 |
[100] |
Lyu S, Rao Y, Liu P, Yang SL, Chen WY, Yang HJ, Ke SW, Ouyang H, He MZ, Feng YL. Metabolomics analysis reveals four biomarkers associated with the gouty arthritis progression in patients with sequential stages. Semin Arthritis Rheum, 2022, 55: 152022.
doi: 10.1016/j.semarthrit.2022.152022 |
[101] |
Rasheed H, Stamp LK, Dalbeth N, Merriman TR. Interaction of the GCKR and A1CF loci with alcohol consumption to influence the risk of gout. Arthritis Res Ther, 2017, 19(1): 161.
doi: 10.1186/s13075-017-1369-y pmid: 28679452 |
[102] | Wu YL, Lin ZJ, Li CC, Lin X, Shan SK, Guo B, Zheng MH, Li FX, Yuan LQ, Li ZH. Epigenetic regulation in metabolic diseases: mechanisms and advances in clinical study. Signal Transduct Target Ther, 2023, 8(1): 98. |
[103] |
Chang JG, Tu SJ, Huang CM, Chen YC, Chiang HS, Lee YT, Yen JC, Lin CL, Chung CC, Liu TC, Chang YS. Single-cell RNA sequencing of immune cells in patients with acute gout. Sci Rep, 2022, 12(1): 22130.
doi: 10.1038/s41598-022-25871-2 |
[104] |
Chu YL, Sun SL, Huang YF, Gao Q, Xie XF, Wang P, Li JX, Liang LF, He XH, Jiang YQ, Wang MJ, Yang JH, Chen XM, Zhou CM, Zhao Y, Ding F, Zhang Y, Wu XD, Bai XY, Wu JQ, Wei X, Chen XH, Yue Z, Fang XD, Huang QC, Wang Z, Huang RY. Metagenomic analysis revealed the potential role of gut microbiome in gout. NPJ Biofilms Microbiomes, 2021, 7(1): 66.
doi: 10.1038/s41522-021-00235-2 |
[105] |
Méndez-Salazar EO, Vázquez-Mellado J, Casimiro- Soriguer CS, Dopazo J, Çubuk C, Zamudio-Cuevas Y, Francisco-Balderas A, Martínez-Flores K, Fernández- Torres J, Lozada-Pérez C, Pineda C, Sánchez-González A, Silveira LH, Burguete-García AI, Orbe-Orihuela C, Lagunas-Martínez A, Vazquez-Gomez A, López-Reyes A, Palacios-González B, Martínez-Nava GA. Taxonomic variations in the gut microbiome of gout patients with and without tophi might have a functional impact on urate metabolism. Mol Med, 2021, 27(1): 50.
doi: 10.1186/s10020-021-00311-5 pmid: 34030623 |
[1] | 王舜泽, 江丰, 朱东丽, 杨铁林, 郭燕. Hi-C技术在三维基因组学和疾病致病机理研究中的应用[J]. 遗传, 2023, 45(4): 279-294. |
[2] | 李玲红, 苟彤, 任爱霞, 丁鹏程, 林文, 武祥云, 孙敏, 高志强. 藜麦基因组学与重要农艺性状位点研究进展[J]. 遗传, 2022, 44(11): 1009-1027. |
[3] | 王海燕, 龚志云, 蒋甲福, 周宝良, 娄群峰, 曹清河, 席梦利, 陈佩度, 顾铭洪, 张天真, 陈发棣, 陈劲枫, 李宗芸, 王秀娥. 江苏省植物细胞遗传学研究回顾与展望[J]. 遗传, 2021, 43(5): 397-424. |
[4] | 巴恒星, 胡鹏飞, 李春义. 鹿科动物基因组学研究进展[J]. 遗传, 2021, 43(4): 308-322. |
[5] | 彭威, 冯蒙洁, 陈皓, 韩宝瑜. 双翅目昆虫基因组研究进展[J]. 遗传, 2020, 42(11): 1093-1109. |
[6] | 吕红强, 郝乐乐, 刘二虎, 吴志芳, 韩九强, 刘源. 基于生物信息学的Hi-C研究现状与发展趋势[J]. 遗传, 2020, 42(1): 87-99. |
[7] | 宁椿游,何梦楠,唐茜子,朱庆,李明洲,李地艳. 基于Hi-C技术哺乳动物三维基因组研究进展[J]. 遗传, 2019, 41(3): 215-233. |
[8] | 杨莹,陈宇晟,孙宝发,杨运桂. RNA甲基化修饰调控和规律[J]. 遗传, 2018, 40(11): 964-976. |
[9] | 张太奎, 苑兆和. 植物古基因组学研究进展[J]. 遗传, 2018, 40(1): 44-56. |
[10] | 徐赫鸣,谢泽雄,刘夺,吴毅,李炳志,元英进. 酿酒酵母染色体设计与合成研究进展[J]. 遗传, 2017, 39(10): 865-876. |
[11] | 许崇凤,段子渊. 中华民族永生细胞库在生命科学研究中的支撑作用[J]. 遗传, 2017, 39(1): 75-86. |
[12] | 王云生. 基于高通量测序的植物群体基因组学研究进展[J]. 遗传, 2016, 38(8): 688-699. |
[13] | 郑敏, 麻骏武. 高尿酸血症和痛风的遗传学研究进展[J]. 遗传, 2016, 38(4): 300-313. |
[14] | 周纪东,李余动. 探究式教学在基因组学课程中的实例研究:基于比较基因组学鉴定大肠杆菌致病因子[J]. 遗传, 2015, 37(2): 214-218. |
[15] | 李雪娟, 黄原, 雷富民. 山鹧鸪属鸟类线粒体基因组的比较及系统发育研究[J]. 遗传, 2014, 36(9): 912-920. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: