[1] Waddington CH. Canalization of development and the in-heritance of acquired characters. Nature, 1942, 150(3811): 563–565. <\p>
[2] Bird AP. DNA methylation patterns and epigenetic mem-ory. Genes Development, 2002, 16(1): 6–21. <\p>
[3] Springer NM. Epigenetics and crop improvement. Trends Genet, 2013, 29(4): 241–247. <\p>
[4] Lauria M, Rupe M, Guo M, Kranz E, Pirona R, Viotti A, Lund G. Extensive maternal DNA hypomethylation in the endosperm of Zea mays. Plant Cell, 2004, 16(2): 510–522. <\p>
[5] Kinoshita T, Miura A, Choi Y, Kinoshita Y, Cao X, Jacobsen SE, Fischer RL, Kakutani T. One-way control of FWA imprinting in Arabidopsis endosperm by DNA me-thylation. Science, 2004, 303(5657): 521–523. <\p>
[6] Zhang MS, Yan HY, Zhao N, Lin XY, Pang JS, Xu KZ, Liu LX, Liu B. Endosperm-specific hypomethylation, and meiotic inheritance and variation of DNA methylation level and pattern in sorghum (Sorghum bicolor L.) inter- strain hybrids. Theor Appl Genet, 2007, 115(2): 195–207. <\p>
[7] Cui XK, Jin P, Cui X, Gu LF, Lu ZK, Xue YM, Wei LY, Qi JF, Song XY, Luo M, An GH, and Cao XF. Control of transposon activity by a histone H3K4 demethylase in rice. Proc Natl Acad Sci USA, 2013, 110(5): 1953–1958. <\p>
[8] Ding Y, Wang X, Su L, Zhai JX, Cao SY, Zhang DF, Liu YC, Bi YP, Qian Q, Cheng ZK, Chu CC, Cao XF. SDG714, a histone H3K9 methyltransferase, is involved in Tos17 DNA methylation and transposition in rice. Plant Cell, 2007, 19(1): 9–22. <\p>
[9] 文戈, 田云, 方俊, 卢向阳. 表观遗传与分子育种. 江西农业学报, 2011, 23(6): 23–24. <\p>
[10] Lewin B. GeneⅦ. Pemmon Prentice Hall Press, 2004: 735–749. <\p>
[11] Chodavarapu RK, Feng S, Bernatavichute YV, Chen PY, Stroud H, Yu YC, Hetzel JA, Kuo F, Kim J, Cokus SJ. Relationship between nucleosome positioning and DNA methylation. Nature, 2010, 466(7304): 388–392. <\p>
[12] 邓衍明, 叶晓青, 佘建明, 汤日圣. 植物远缘杂交育种研究进展. 华北农学报, 2011, 26(S2): 52–55. <\p>
[13] Schranz ME, Osborn TC. Novel flowering time variation in the resynthesized polyploid Brassica napus. J Heredity, 2000, 91(3): 242–246. <\p>
[14] Comail L, Tyagi AP, Winter K, Holmes-Davis R, Reynolds SH, Stevens Y, Byers B. Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allopoly-ploids. Plant Cell, 2000, 12(9): 1551–1567. <\p>
[15] Zhao XX, Chai Y, Liu B. Epigenetic inheritance and variation of DNA methylation level and pattern in maize intra- specific hybrids. Plant Sci, 2007, 172(5): 930–938. <\p>
[16] Chandler VL. Paramutation: from maize to mice. Cell, 2007, 128(4): 641–645. <\p>
[17] 刘宝. 表观遗传变异与作物遗传改良. 吉林农业大学学报, 2008, 30(4): 386–393. <\p>
[18] 余丽. 表观遗传学的研究和进展. 安徽农业科学, 2010, 38(2): 588–591. <\p>
[19] Madlung A, Masuelli RW, Watson B, Reynolds SH, Davi-son J, Comai L. Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids. Plant Physiol, 2002, 129(2): 733–746. <\p>
[20] Cubas P, Vincent C, Coen E. An epigenetic mutation re-sponsible for natural variation in floral symmetry. Nature, 1999, 401(6749): 157–161. <\p>
[21] 冯德江, 刘翔, 朱桢. 转录后基因沉默-植物抵御外来病毒入侵的一种机制. 遗传学报, 2003, 30(6): 589–596. <\p>
[22] 杨俊宝, 彭正松. 多倍体植物的表观遗传现象. 遗传, 2005, 27(2): 335–342. <\p>
[23] Feil R, Fraga MF. Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet, 2012, 13(2): 97–109. <\p>
[24] Lukens LN, Zhan S. The plant genome’s methylation status and response to stress: implications for plant im-provement. Curr Opin Plant Biol, 2007, 10(3): 317–322. <\p>
[25] Chinnusamy V, Zhu JK. Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol, 2009, 12(2): 133–139. <\p>
[26] Boyko A, Kovalchuk I. Genome instability and epigenetic modification-heritable responses to enviromental stress? Curr Opin Plant Biol, 2011, 14(3): 260–266. <\p>
[27] Mirouze M, Paszkowski J. Epigenetic contribution to stress adaptation in plants. Curr Opin Plant Biol, 2011, 14(3): 267–274. <\p>
[28] 葛才林, 杨小勇, 刘向农, 孙锦荷, 罗时石, 王泽港. 重金属对水稻和小麦DNA甲基化水平的影响. 植物生理与分子生物学学报, 2002, 28(5): 363–368. <\p>
[29] Kim DH, Doyle MR, Sung S, Amasino RM. Vernalization: winter and the timing of flowering in plants. Annu Rev Cell Dev Biol, 2009, 25: 277–299. <\p>
[30] Finnegan EJ, Genger RK, Kovac K, Peacock WJ, Dennis ES. DNA methylation and the promotion of flowering by vernalization. Proc Natl Acad Sci USA, 1998, 95(10): 5824–5829. <\p>
[31] Burn JE, Bagnall DJ, Metzger JD, Dennis ES, Peacock WJ. DNA methylation, vernalization, and the initiation of flowering. Proc Natl Acad Sci USA, 1993, 90(1): 287–291. <\p>
[32] Bastow R, Mylne JS, Lister C, Lippman Z, Martienssen RA, Dean C. Vernalization requires epigenetic silencing of FLC by histone methylation. Nature, 2004, 427(6970): 164–167. <\p>
[33] Sung S, Amasino RM. Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature, 2004, 427(6970): 159–164. <\p>
[34] Lucia F, Crevillen P, Jones ME, Greb T, Dean C. A PHD-polycomb repressive complex 2 triggers the epige-netic silencing of FLC during vernalization. Proc Natl Acad Sci USA, 2008, 105(44): 16831–16836. <\p>
[35] Mikula BC. Environmental programming of heritable epigenetic changes in paramutant r-gene expression using temperature and light at a specific stage of early develop-ment in maize seedlings. Genetics, 1995, 140(4): 1379– 1387. <\p>
[36] Luna E, Bruce TJ, Roberts MR, Flors V, Ton J. Next- generation systemic acquired resistance. Plant Physiol, 2012, 158(2): 844–853. <\p>
[37] Slaughter A, Daniel X, Flors V, Luna E, Hohn B. Descen-dants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol, 2012, 158(2): 835–843. <\p>
[38] Kaeppler SM, Kaeppler HF, Rhee Y. Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol, 2000, 43(2–3): 179–188. <\p>
[39] He G, Zhu X, Elling AA, Chen L, Wang X, Guo L, Liang M, He H, Zhang H, Chen F, Qi Y, Chen R, DengXW. Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell, 2010, 22(1): 17–33. <\p>
[40] Li C, Huang L, Xu C, Zhao Y, Zhou DX. Altered levels of histone deacetylase OsHDT1 affect differential gene ex-pression patterns in hybrid rice. PLoS ONE, 2011, 6(7): e21789. <\p>
[41] Song GS, Zhai HL, Peng YG, Zhang L, Wei G, Chen XY, Xiao YG, Wang LL, Chen YJ, Wu B, Chen B, Zhang Y, Chen H, Feng XJ, Gong WK, Liu Y, Yin ZJ, Wang F, Liu GZ, Xu HL, Wei XL, Zhao XL, Ouwer-kerk P, Hanke-meier T, Reijmers T, Heijden R, Lu CM, Wang M, Greef J, Zhu Z. Comparative transcriptional profiling and prelimi-nary study on heterosis mechanism of super-hybrid rice. Mol Plant, 2010, 3(6): 1012–1025. <\p>
[42] Chen ZJ. Genomic and epigenetic insights into the mo-lecular bases of heterosis. Nat Rev Genet, 2013, 14(7): 471– 482. <\p>
[43] Chodavarapu RK, Feng S, Ding B, Simon SA, Lopez D, Jia Y, Wang GL, Meyers BC, Jacobsen SE, Pellegrini M. Transcriptome and methylome interactions in rice hybrids. Proc Natl Acad Sci USA, 2012, 109(30): 12040–12045. <\p>
[44] Chen XS, Zhou DX. Rice epigenomics and epigenetics: challenges and opportunities. Curr Opin Plant Biol, 2013, 16(2): 164–169. <\p>
[45] Eichten SR, Swanson-Wagner RA, Schnable JC, Waters AJ, Hermanson PJ, Liu S, Yeh CT, Jia Y, Gendler K, Freeling M, Schnable PS, Vaughn MW, Springer NM. Heritable epigenetic variation among maize inbreds. PLoS Genet, 2011, 7(11): e1002372. <\p>
[46] 潘丽娜. 表观遗传修饰调控非生物胁迫应答提高植物抗逆性的研究进展. 遗传, 2013, 35(6): 745–751. <\p>
[47] Tsuji H, Saika H, Tsutsumi N, Hirai A, Nakazono M. Dy-namic and reversible changes in histone H3-Lys4 methy-lation and H3 acetylation occurring at submergence- inducible genes in rice. Plant Cell Physiol, 2006, 47(7): 995–1003. <\p>
[48] Wang XF, Axel AE, Li XY. Genome-wide and organ- pecific landscapes of epigenetic modifications and their relationships to mRNA and small RNA transcriptomes in maize. Plant Cell, 2009, 21(4): 1053–1069. <\p>
[49] 余素芹, 谢国文, 王正询, 江奕君, 高云, 梁前进. 特效植物营养素在水稻的合理使用及表观遗传效应. 广东农业科学, 2011, (20): 11–15. <\p>
[50] Mirouze M, Reinders J, Bucher E, Nishimura T, Schnee-berger K, Ossowski S. Selective epigenetic control of retro-transposition in Arabidopsis. Nature, 2009, 461(7262): 427–430. <\p>
[51] Creasey KM, Zhai JX, Borges F, Van Ex F, Regulski M, Meyers BC, Martienssen RA. MiRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis. Nature, 2014, 508(7496): 411-415.<\p> |