[1] Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, Nadeau JH. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet, 2010, 11(6): 446–450. <\p>
[2] Matthews SG, Phillips DI. Transgenerational inheritance of stress pathology. Exp Neuro, 2012, 233(1): 95–101. <\p>
[3] Guerrero-Bosagna C, Skinner MK. Environmentally in-duced epigenetic transgenerational inheritance of pheno-type and disease. Mol Cell Endocrinol, 2012, 354(1–2): 3–8. <\p>
[4] Skinner MK, Manikkam M, Guerrero-Bosagna C. Epige-netic transgenerational actions of endocrine disruptors. Reprod Toxicol, 2011, 31(3): 337–343. <\p>
[5] Khashan AS, Abel KM, McNamee R, Pedersen MG, Webb RT, Baker PN, Kenny LC, Mortensen PB. Higher risk of offspring schizophrenia following antenatal maternal ex-posure to severe adverse life events. Arch Gen Psychiatry, 2008, 65(2): 146–152. <\p>
[6] Dunn GA, Bale TL. Maternal high-fat diet effects on third-generation female body size via the paternal lineage. Endocrinology, 2011, 152(6): 2228–2236. <\p>
[7] Jensen P. Transgenerational epigenetic effects on animal behaviour. Prog Biophys Mol Biol, 2013, 113(3): 447– 454. <\p>
[8] Skinner MK. What is an epigenetic transgenerational phenotype? F3 or F2. Reprod Toxicol, 2008, 25(1): 2–6. <\p>
[9] Champagne FA. Epigenetic mechanisms and the transgenerational effects of maternal care. Front Neuroendocrinol, 2008, 29(3): 386–397. <\p>
[10] Bohacek J, Gapp K, Saab BJ, Mansuy IM. Transgenerational epigenetic effects on brain functions. Biol Psy-chiatry, 2013, 73(4): 313–320. <\p>
[11] Gabory A, Attig L, Junien C. Sexual dimorphism in envi-ronmental epigenetic programming. Mol Cell Endocrinol, 2009, 304(1-2): 8–18. <\p>
[12] Migicovsky Z, Kovalchuk I. Epigenetic memory in mam-mals. Front Genet, 2011, 2: 28. <\p>
[13] Li YF, Sasaki H. Genomic imprinting in mammals: its life cycle, molecular mechanisms and reprogramming. Cell Res, 2011, 21(3): 466–473. <\p>
[14] Guibert S, Forné T, Weber M. Global profiling of DNA methylation erasure in mouse primordial germ cells. Ge-nome Res, 2012, 22(4): 633–641. <\p>
[15] Franklin TB, Russig H, Weiss IC, Gräff J, Linder N, Michalon A, Vizi S, Mansuy IM. Epigenetic transmission of the impact of early stress across generations. Biol Psy-chiatry, 2010, 68(5): 408–415. <\p>
[16] Li Y, O'Neill C. Persistence of cytosine methylation of DNA following fertilisation in the mouse. PLoS ONE, 2012, 7(1): e30687. <\p>
[17] Kelsey G, Feil R. New insights into establishment and maintenance of DNA methylation imprints in mammals. Philos Trans R Soc Lond B Biol Sci, 2013, 368: 20110336. <\p>
[18] Franklin TB, Mansuy IM. Epigenetic inheritance in mammals: evidence for the impact of adverse environ-mental effects. Neurobiol Dis, 2010, 39(1): 61–65. <\p>
[19] Skinner MK, Haque CGBM, Nilsson E, Bhandari R, McCarrey JR. Environmentally induced transgenerational epigenetic reprogramming of primordial germ cells and the subsequent germ line. PLoS ONE, 2013, 8(7): e66318. <\p>
[20] Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR. Distinctive chromatin in human sperm pack-ages genes for embryo development. Nature, 2009, 460(7254): 473–478. <\p>
[21] Brykczynska U, Hisano M, Erkek S, Ramos L, Oakeley EJ, Roloff TC, Beisel C, Schübeler D, Stadler MB, Peters AH. Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat Struct Mol Biol, 2010, 17(6): 679–687. <\p>
[22] Greer EL, Maures TJ, Ucar D, Hauswirth AG, Mancini E, Lim JP, Benayoun BA, Shi Y, Brunet A. Transgen |