[1]Golosow N, Grobstein C. Epitheliomesenchymal interaction in pancreatic morphogenesis. Dev Biol, 1962, 4(2): 242-255.
[2]Wessells NK, Cohen JH. Early pancreas organogenesis: morphogenesis, tissue interactions, and mass effects. Dev Biol, 1967, 15(3): 237-270.
[3]Tremblay KD, Zaret KS. Distinct populations of endoderm cells converge to generate the embryonic liver bud and ventral foregut tissues. Dev Biol, 2005, 280(1): 87-99.
[4]Franklin V, Khoo PL, Bildsoe H, Wong N, Lewis S, Tam PP. Regionalisation of the endoderm progenitors and morphogenesis of the gut portals of the mouse embryo. Mech Dev, 2008, 125(7): 587-600.
[5]Lewis SL, Tam PPL. Definitive endoderm of the mouse embryo: formation, cell fates, and morphogenetic function. Dev Dyn, 2006, 235(9): 2315-2329.
[6]Zhao H, Han D, Dawid IB, Pieler T, Chen Y. Homeo-protein hhex-induced conversion of intestinal to ventral pancreatic precursors results in the formation of giant pancreata in Xenopus embryos. Proc Nat Acad Sci USA, 2012, 109(22): 8594-8599.
[7]Kim SK, Hebrok M, Melton DA. Notochord to endoderm signaling is required for pancreas development. Development, 1997, 124(21): 4243-4252.
[8]Edlund H. Pancreatic organogenesis-developmental mechanisms and implications for therapy. Nature Rev Genet, 2002, 3(7): 524-532.
[9]Deltour L, Leduque P, Paldi A, Ripoche MA, Dubois P, Jami J. Polyclonal origin of pancreatic islets in aggregation mouse chimaeras. Development, 1991, 112(4): 1115- 1121.
[10]Herrera PL. Adult insulin-and glucagon-producing cells differentiate from two independent cell lineages. Develo-pment, 2000, 127(11): 2317-2322.
[11]Jensen J, Heller RS, Funder-Nielsen T, Pedersen EE, Lindsell C, Weinmaster G, Madsen OD, Serup P. Independent development of pancreatic alpha-and beta-cells from neurogenin3-expressing precursors: a role for the notch pathway in repression of premature differentiation. Diabetes, 2000, 49(2): 163-176.
[12]Stafford D, Prince VE. Retinoic acid signaling is required for a critical early step in zebrafish pancreatic development. Curr Biol, 2002, 12(14): 1215-1220.
[13]Chen YL, Pan FC, Brandes N, Afelik S, Solter M, Pieler T. Retinoic acid signaling is essential for pancreas development and promotes endocrine at the expense of exocrine cell differentiation in Xenopus. Dev Biol, 2004, 271(1): 144-160.
[14]Hald J, Hjorth JP, German MS, Madsen OD, Serup P, Jensen J. Activated Notch1 prevents differentiation of pancreatic acinar cells and attenuate endocrine development. Dev Biol, 2003, 260(2): 426-437.
[15]Martin M, Gallego-Llamas J, Ribes V, Kedinger M, Niederreither K, Chambon P, Dolle P, Gradwohl G. Dorsal pancreas agenesis in retinoic acid-deficient Raldh2 mutant mice. Dev Biol, 2005, 284(2): 399-411.
[16]Molotkov A, Molotkova N, Duester G. Retinoic acid generated by Raldh2 in mesoderm is required for mouse dorsal endodermal pancreas development. Dev Dyn, 2005, 232(4): 950-957.
[17]Wells JM, Melton DA. Early mouse endoderm is patterned by soluble factors from adjacent germ layers. Development, 2000, 127(8): 1563-1572.
[18]Hebrok M, Kim SK, Melton DA. Notochord repression of endodermal Sonic hedgehog permits pancreas development. Genes Dev, 1998, 12(11): 1705-1713.
[19]Pictet R, Rutter W. Development of the embryonic pancreas. In: Steiner DF, Frenkel N, eds. Handbook in Physiology. Vol 1. Baltimore MD: Williams & Wilkins, 1972: 25-66.
[20]Lammert E, Cleaver O, Melton D. Induction of pancreatic differentiation by signals from blood vessels. Science, 2001, 294(5542): 564-567.
[21]Sussel L, Kalamaras J, Hartigan-O'Connor DJ, Meneses JJ, Pedersen RA, Rubenstein JL, German MS. Mice lacking the homeodomain transcription factor Nkx 2.2 have diabetes due to arrested differentiation of pancreatic beta cells. Development, 1998, 125(12): 2213-2221.
[22]Prado CL, Pugh-Bernard AE, Elghazi L, Sosa-Pineda B, Sussel L. Ghrelin cells replace insulin-producing β cells in two mouse models of pancreas development. Proc Natl Acad Sci USA, 2004, 101(9): 2924-2929.
[23]Holland AM, Hale MA, Kagami H, Hammer RE, MacDonald RJ. Experimental control of pancreatic development and maintenance. Proc Natl Acad Sci USA, 2002, 99(19): 12236-12241.
[24]Fujitani Y, Fujitani S, Boyer DF, Gannon M, Kawaguchi Y, Ray M, Shiota M, Stein RW, Magnuson MA, Wright CV. Targeted deletion of a cis-regulatory region reveals differential gene dosage requirements for Pdx1 in foregut organ differentiation and pancreas formation. Genes Dev, 2006, 20(2): 253-266.
[25]Gradwohl G, Dierich A, LeMeur M, Guillemot F. neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci USA, 2000, 97(4): 1607-1611.
[26]Gu G, Dubauskaite J, Melton DA. Direct evidence for the pancreatic lineage: NGN3 positive cells are islet progenitors and are distinct from duct progenitors. Development, 2002, 129(10): 2447-2457.
[27]Wang S, Jensen JN, Seymour PA, Hsu W, Dor Y, Sander M, Magnuson MA, Serup P, Gu G. Sustained Neurog3expres-sion in hormone-expressing islet cells is required for endocrine maturation and function. Proc Natl Acad Sci USA, 2009, 106(24): 9715-9720.
[28]Aramata S, Han SI, Kataoka K. Roles and regulation of transcription factor MafA in islet beta-cells. Endocr J, 2007, 54(5): 659-666.
[29]Artner I, Hang Y, Mazur M, Yamamoto T, Guo M, Lindner J, Magnuson MA, Stein R. MafA and MafB regulate genes critical to β-cells in a unique temporal manner. Diabetes, 2010, 59(10): 2530-2539.
[30]He KH, Juhl K, Karadimos M, El Khattabi I, Fitzpatrick C, Bonner-Weir S, Sharma A. Differentiation of pancreatic endocrine progenitors reversibly blocked by premature induction of MafA. Dev Biol, 2014, 385(1): 2-12.
[31]Bhushan A, Itoh N, Kato S, Thiery JP, Czernichow P, Bellusci S, Scharfmann R. Fgf10 is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. Development, 2001, 128(24): 5109-5117.
[32]Miralles F, Lamotte L, Couton D, Joshi RL. Interplay between FGF10 and Notch signalling is required for the self-renewal of pancreatic progenitors. Int J Dev Biol, 2006, 50(1): 17.
[33]Tennant BR, Islam R, Kramer MM, Merkulova Y, Kiang RL, Whiting CJ, Hoffman BG. The Transcription Factor Myt3 Acts as a Pro-Survival Factor in β-cells. PloS ONE, 2012, 7(12): e51501.
[34]Huang PY, He ZY, Ji SY, Sun HW, Xiang D, Liu CC, Hu YP, Wang X, Hui LJ. Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature, 2011, 475(7356): 386-389.
[35]Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell, 2010, 142(3): 375-386.
[36]Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4): 663-676.
[37]Zhou Q, Melton DA. Extreme makeover: converting one cell into another. Cell Stem Cell, 2008, 3(4): 382-388.
[38]Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA. In vivo reprogramming of adult pancreatic exocrine cells to β-cells. Nature, 2008, 455(7213): 627-632.
[39]Hesselson D, Anderson RM, Stainier DYR. Suppression of Ptf1a activity induces acinar-to-endocrine conversion. Curr Biol, 2011, 21(8): 712-717.
[40]Furuya F, Shimura H, Asami K, Ichijo S, Takahashi K., Kaneshige M, Oikawa Y, Aida K, Endo T, Kobayashi T. Ligand-bound thyroid hormone receptor contributes to reprogramming of pancreatic Acinar cells into insulin- producing cells. J Biol Chem, 2013, 288(22): 16155-16166.
[41]Collombat P, Xu X, Ravassard P, Sosa-Pineda B, Dussaud S, Billestrup N, Madsen OD, Serup P, Heimberg H, Mansouri A. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into α and subsequently β Cells. Cell, 2009, 138(3): 449-462.
[42]Thorel F, Népote V, Avril I, Kohno K, Desgraz R, Chera S, Herrera PL. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature, 2010, 464(7292): 1149-1154.
[43]Yang YP, Thorel F, Boyer DF, Herrera PL, Wright CV. Context-specific α-to-β-cell reprogramming by forced Pdx1 expression. Genes Dev, 2011, 25(16): 1680-1685. [44]Bramswig NC, Everett LJ, Schug J, Dorrell C, Liu C, Luo Y, Streeter PR, Naji A, Grompe K, Kaestner KH. Epigenomic plasticity enables human pancreatic α to β cell reprogramming. J Clin Invest, 2013, 123(3): 1275-1284.
[45]Ferber S, Halkin A, Cohen H, Ber I, Einav Y, Goldberg I, Barshack I, Seijffers R, Kopolovic J, Kaiser N, Karasik A. Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin- induced hyperglycemia. Nature Med, 2000, 6(5): 568-572.
[46]Kaneto H, Nakatani Y, Miyatsuka T, Matsuoka TA, Matsuhisa M, Hori M, Yamasaki Y. PDX-1/VP16 fusion protein, together with NeuroD or Ngn3, markedly induces insulin gene transcription and ameliorates glucose tolerance. Diabetes, 2005, 54(4): 1009-1022.
[47]Song YD, Lee EJ, Yashar P, Pfaff LE, Kim SY, Jameson JL. Islet cell differentiation in liver by combinatorial expression of transcription factors neurogenin-3, BETA2, and RIPE3b1. Biochem Biophys Res Commun, 2007, 354(2): 334-339.
[48]Motoyama H, Ogawa S, Kubo A, Miwa S, Nakayama J, Tagawa Y, Miyagawa S. In vitro reprogramming of adult hepatocytes into insulin-producing cells without viral vectors. Biochem Biophys Res Commun, 2009, 385(1): 123-128.
[49]Talchai C, Xuan SH, Kitamura T, DePinho RA, Accili D. Generation of functional insulin-producing cells in the gut by Foxo1 ablation. Nat Genet, 2012, 44(4): 406-412.
[50]Lee J, Sugiyama T, Liu Y, Wang J, Gu X, Lei J, Markmann JF, Miyazaki S, Miyazaki J, Szot GL, Bottino R, Kim SK. Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells. Elife, 2013, 19(2): e00940.
[51]Wang Q, Wang H, Sun Y, Li SW, Donelan W, Chang LJ Jin S, Terada N, Cheng H, Reeves W, Yang LJ. Reprogrammed pancreatic progenitor-like intermediate state of hepatic cells is more susceptible to pancreatic beta cell differentiation. J Cell Sci, 2013, 126(Pt 16): 3638-3648.
[52]Swales N, Martens GA, Bonné S, Heremans Y, Borup R, Van de Casteele M, Ling Z, Pipeleers D, Ravassard P, Nielsen F, Ferrer J, Heimberg H. Plasticity of adult human pancreatic duct cells by neurogenin3-mediated reprogramming. PloS ONE, 2012, 7(5): e37055.
[53]Dave SD, Vanikar AV, Trivedi HL. In-vitro generation of human adipose tissue derived insulin secreting cells: up-regula-tion of Pax-6, Ipf-1 and Isl-1. Cytotechnology, 2014, 66(2): 299-307.
[54]Katz LS, Geras-Raaka E, Gershengorn MC. Reprogramming adult human dermal fibroblasts to islet-like cells by epigenetic modification coupled to transcription factor modulation. Stem Cells Dve, 2013, 22(18): 2551-2560.
[55]Lima MJ, Muir KR, Docherty HM, Drummond R, McGowan NW, Forbes S, Heremans Y, Houbracken I, Ross JA, Forbes SJ, Ravassard P, Heimberg H, Casey J, Docherty K. Suppression of epithelial-to-mesenchymal transitioning enhances ex vivo reprogramming of human exocrine pancreatic tissue toward functional insulin- producing β-like cells. Diabetes, 2013, 62(8): 2821-2833. |