遗传 ›› 2020, Vol. 42 ›› Issue (11): 1042-1061.doi: 10.16288/j.yczz.20-235
收稿日期:
2020-08-12
修回日期:
2020-10-19
出版日期:
2020-11-20
发布日期:
2020-11-03
通讯作者:
赵小立
E-mail:zhaoxiaoli@zju.edu.cn
作者简介:
蔡晨依,硕士研究生,专业方向:干细胞分化。E-mail: 基金资助:
Chenyi Cai, Feilong Meng, Lin Rao, Yunyue Liu, Xiaoli Zhao()
Received:
2020-08-12
Revised:
2020-10-19
Online:
2020-11-20
Published:
2020-11-03
Contact:
Zhao Xiaoli
E-mail:zhaoxiaoli@zju.edu.cn
Supported by:
摘要:
自2006年Takahashi和Yamanaka报道生成诱导多能干细胞(induced pluripotent stem cells, iPSCs)以来,多能干细胞领域进入了前所未有的发展状态,在疾病建模、药物发现以及细胞疗法等各方面都发挥重要作用,促进了细胞生物学和再生医学等学科的发展。目前,iPSCs技术已成为研究病理机制的重要工具,利用iPSCs技术筛选的新药物正在研发中,使用iPSCs衍生细胞的临床试验数量也在逐渐增长。iPSCs与基因编辑技术以及3D类器官相结合的最新研究进展促进了iPSCs在疾病研究中的进一步应用。本文介绍了近年来重编程方法的革新,分析了整合病毒载体系统、整合非病毒载体系统、非整合病毒载体系统以及非整合非病毒载体系统四种重编程方法的利弊;同时综述了iPSCs在疾病建模以及临床治疗等方面的最新研究进展,为促进iPSCs各领域的深入研究提供参考。
[本文已经撤稿,撤稿声明]
蔡晨依, 孟飞龙, 饶琳, 刘云玥, 赵小立. 诱导多能干细胞技术及其在疾病研究中的应用 【已撤稿】[J]. 遗传, 2020, 42(11): 1042-1061.
Chenyi Cai, Feilong Meng, Lin Rao, Yunyue Liu, Xiaoli Zhao. Induced pluripotent stem cell technology and its application in disease research [Retracted][J]. Hereditas(Beijing), 2020, 42(11): 1042-1061.
表1
用于人类iPSCs的基因编辑技术"
系统 | 酶 | 作用机理 | 参考文献 |
---|---|---|---|
ZFN | 锌指核酸酶 | 定制的锌指蛋白DNA结合模块融合到细菌内切酶FokI的切割域,诱导位点特异性DNA双链断裂(DSB),然后通过NHEJ进行DNA修复以产生小的插入和缺失突变(Indels)或引发HDR以引入精确的核苷酸修饰 | [ |
TALEN | 转录激活因子样 效应核酸酶 | 定制的TALE蛋白DNA结合模块融合到细菌核酸内切酶FokI中,诱导位点特异性DSB,然后通过NHEJ进行DNA修复引入Indels或通过HDR引入特异性DNA突变 | [ |
CRISPR/Cas9 | 野生型Cas9,Cas9 核酸内切酶 | RNA引导的位点特异性DNA切割触发NHEJ产生Indels或引发HDR来引入精确的DNA修饰 | [ |
Cas9 核酸内切酶 | 结合Cas9核酸内切酶和配对的sgRNA来诱导位点特异性DSB,成对的切割显著减少了脱靶效应(50到1500倍) | [ | |
eSpCas9 | 结构导向的蛋白质工程被用来创造spCas9变异体,这种变异体保持对靶点的严格切割的同时显著降低了脱靶效应 | [ | |
Cas9-VRER变体 | 这个被称为“CORRECT”的平台允许以精确的单等位基因或双等位基因的方式引入DNA修饰 | [ | |
CRISPR/Cas9/ 胞苷脱氨酶 | CRISPR/Cas9与胞 苷脱氨酶的融合体 | 碱基编辑方法可以直接将胞苷转化为尿苷,而不需要DSB和供体DNA模板 | [ |
[1] | Waddington CH . The strategy of the genes. Allen and Unwin: London, 1957, Reprinted 2014. |
[2] | Gurdon JB, Elsdale TR, Fischberg M . Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature, 1958,182(4627):64-65. |
[3] |
Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH,. Viable offspring derived from fetal and adult mammalian cells. Nature, 1997,385(6619):810-813.
doi: 10.1038/385810a0 pmid: 9039911 |
[4] | Evans MJ, Kaufman MH . Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981,292(5819):154-156. |
[5] | Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM . Embryonic stem cell lines derived from human blastocysts. Science, 1998,282(5391):1145-1147. |
[6] | Davis RL, Weintraub H, Lassar AB . Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell, 1987,51(6):987-1000. |
[7] | Takahashi K, Yamanaka S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006,126(4):663-676. |
[8] | Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S . Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007,131(5):861-872. |
[9] | Yu JY, Vodyanik MA, Smuga-Otto K, Antosiewicz- Bourget J, Frane JL, Tian SL, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA . Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007,318(5858):1917-1920. |
[10] |
Masui S, Nakatake Y, Toyooka Y, Shimosato D, Yagi R, Takahashi K, Okochi H, Okuda A, Matoba R, Sharov AA, Ko MS, Niwa H . Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol, 2007,9(6):625-635.
pmid: 17515932 |
[11] |
Nakagawa M, Takizawa N, Narita M, Ichisaka T, Yamanaka S . Promotion of direct reprogramming by transformation-deficient Myc. Proc Natl Acad Sci USA, 2010,107(32):14152-14157.
pmid: 20660764 |
[12] |
Niwa H, Ogawa K, Shimosato D, Adachi K . A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature, 2009,460(7251):118-122.
doi: 10.1038/nature08113 |
[13] | Takahashi K, Yamanaka S . A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol Cell Biol, 2016,17(3):183-193. |
[14] | Stadtfeld M, Hochedlinger K . Induced pluripotency: history, mechanisms, and application. Genes Dev, 2010,24(20):2239-2263. |
[15] |
Soufi A, Donahue G, Zaret KS . Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome. Cell, 2012,151(5):994-1004.
doi: 10.1016/j.cell.2012.09.045 pmid: 23159369 |
[16] |
Papp B, Plath K . Epigenetics of reprogramming to induced pluripotency. Cell, 2013,152(6):1324-1343.
doi: 10.1016/j.cell.2013.02.043 pmid: 23498940 |
[17] | Plath K, Lowry WE . Progress in understanding reprogramming to the induced pluripotent state. Nat Rev Genet, 2011,12(4):253-265. |
[18] |
Nakatake Y, Fukui N, Iwamatsu Y, Masui S, Takahashi K, Yagi R, Yagi K, Miyazaki JI, Matoba R, Ko MSH, Niwa H . Klf4 cooperates with Oct3/4 and Sox2 to activate the Lefty1 core promoter in embryonic stem cells. Mol Cell Biol, 2006,26(20):7772-7782.
doi: 10.1128/MCB.00468-06 pmid: 16954384 |
[19] | Jähner D, Stuhlmann H, Stewart CL, Harbers K, Löhler J, Simon I, Jaenisch R . De novo methylation and expression of retroviral genomes during mouse embryogenesis. Nature, 1982,298(5875):623-628. |
[20] | Matsui T, Leung D, Miyashita H, Maksakova IA, Miyachi H, Kimura H, Tachibana M, Lorincz MC, Shinkai Y . Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature, 2010,464(7290):927-931. |
[21] |
Stadtfeld M, Maherali N, Breault DT, Hochedlinger K . Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell, 2008,2(3):230-240.
pmid: 18371448 |
[22] |
Sridharan R, Tchieu J, Mason MJ, Yachechko R, Kuoy E, Horvath S, Zhou Q, Plath K . Role of the murine reprogramming factors in the induction of pluripotency. Cell, 2009,136(2):364-377.
pmid: 19167336 |
[23] |
Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S . Generation of mouse induced pluripotent stem cells without viral vectors. Science, 2008,322(5903):949-953.
pmid: 18845712 |
[24] | Lee CS, Bishop ES, Zhang RY, Yu XY, Farina EM, Yan SJ, Zhao C, Zheng ZY, Shu Y, Wu XY, Lei JY, Li YS, Zhang WW, Yang C, Wu K, Wu Y, Ho S, Athiviraham A, Lee MJ, Wolf JM, Reid RR, He TC . Adenovirus- mediated gene delivery: potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes Dis, 2017,4(2):43-63. |
[25] |
Somers A, Jean JC, Sommer CA, Omari A, Ford CC, Mills JA, Ying L, Sommer AG, Jean JM, Smith BW, Lafyatis R, Demierre MF, Weiss DJ, French DL, Gadue P, Murphy GJ, Mostoslavsky G, Kotton DN . Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette. Stem Cells, 2010,28(10):1728-1740.
pmid: 20715179 |
[26] |
Maherali N, Ahfeldt T, Rigamonti A, Utikal J, Cowan C, Hochedlinger K . A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell, 2008,3(3):340-345.
pmid: 18786420 |
[27] | Abbar AA, Nordin N, Ngai SC, Abdullah S . Production of lentiviral vector with polycistronic transcripts for reprogramming of mouse fibroblast cells. Pertanika J Sci Technol, 2018,26(2):627-640. |
[28] |
Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K . Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature, 2009,458(7239):771-775.
pmid: 19252477 |
[29] |
Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M, Isacson O, Jaenisch R . Parkinson's disease patient- derived induced pluripotent stem cells free of viral reprogramming factors. Cell, 2009,136(5):964-977.
pmid: 19269371 |
[30] |
Wernig M, Lengner CJ, Hanna J, Lodato MA, Steine E, Foreman R, Staerk J, Markoulaki S, Jaenisch R . A drug- inducible transgenic system for direct reprogramming of multiple somatic cell types. Nat Biotechnol, 2008,26(8):916-924.
doi: 10.1038/nbt1483 pmid: 18594521 |
[31] | Zhang X, De Los Angeles A, Zhang J,. The art of human induced pluripotent stem cells: the past, the present and the future. Open Stem Cell J, 2010,2:2-7. |
[32] | Li J, Song W, Pan GJ, Zhou J . Advances in understanding the cell types and approaches used for generating induced pluripotent stem cells. J Hematol Oncol, 2014,7:50. |
[33] |
Yamanaka S . A fresh look at iPS cells. Cell, 2009,137(1):13-17.
pmid: 19345179 |
[34] | Qian QJ, Che JQ, Ye LP, Zhong BX . The improvement and application of piggyBac transposon system in mammals. Hereditas(Beijing), 2014,36(10):965-973. |
钱秋杰, 车家倩, 叶露鹏, 钟伯雄 . piggyBac转座系统的功能改进及在哺乳动物中的应用. 遗传, 2014,36(10):965-973. | |
[35] | Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hämäläinen R, Cowling R, Wang W, Liu PT, Gertsenstein M, Kaji K, Sung HK, Nagy A . PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature, 2009,458(7239):766-770. |
[36] | Medvedev SP, Shevchenko AI, Zakian SM . Induced pluripotent stem cells: problems and advantages when applying them in regenerative medicine. Acta Nature, 2010,2(2):18-27. |
[37] |
Davis RP, Nemes C, Varga E, Freund C, Kosmidis G, Gkatzis K, de Jong D, Szuhai K, Dinnyés A, Mummery CL. Generation of induced pluripotent stem cells from human foetal fibroblasts using the Sleeping Beauty transposon gene delivery system. Differentiation, 2013,86(1-2):30-37.
pmid: 23933400 |
[38] |
Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K . Induced pluripotent stem cells generated without viral integration. Science, 2008,322(5903):945-949.
pmid: 18818365 |
[39] | Macarthur CC, Fontes A, Ravinder N, Kuninger D, Kaur J, Bailey M, Taliana A, Vemuri MC, Lieu PT . Generation of human-induced pluripotent stem cells by a nonintegrating RNA Sendai virus vector in feeder-free or xeno-free conditions. Stem Cells Int, 2012,2012:1-9. |
[40] |
Kawagoe S, Higuchi T, Otaka M, Shimada Y, Kobayashi H, Ida H, Ohashi T, Okano HJ, Nakanishi M, Eto Y . Morphological features of iPS cells generated from Fabry disease skin fibroblasts using Sendai virus vector (SeVdp). Mol Genet Metab, 2013,109(4):386-389.
doi: 10.1016/j.ymgme.2013.06.003 pmid: 23810832 |
[41] |
Yonemitsu Y, Kitson C, Ferrari S, Farley R, Griesenbach U, Judd D, Steel R, Scheid P, Zhu J, Jeffery PK, Kato A, Hasan MK, Nagai Y, Masaki I, Fukumura M, Hasegawa M, Geddes DM, Alton EW . Efficient gene transfer to airway epithelium using recombinant Sendai virus. Nat Biotechnol, 2000,18(9):970-973.
pmid: 10973218 |
[42] |
Takeda A, Igarashi H, Kawada M, Tsukamoto T, Yamamoto H, Inoue M, Iida A, Shu T, Hasegawa M, Matano T . Evaluation of the immunogenicity of replication-competent V-knocked-out and replication- defective F-deleted Sendai virus vector-based vaccines in macaques. Vaccine, 2008,26(52):6839-6843.
doi: 10.1016/j.vaccine.2008.09.074 pmid: 18930099 |
[43] | Nakanishi M, Otsu M . Development of Sendai virus vectors and their potential applications in gene therapy and regenerative medicine. Curr Gene Ther, 2012,12(5):410-416. |
[44] |
Yu JY, Hu KJ, Smuga-Otto K, Tian SL, Stewart R, Slukvin II, Thomson JA . Human induced pluripotent stem cells free of vector and transgene sequences. Science, 2009,324(5928):797-801.
pmid: 19325077 |
[45] |
Jia FJ, Wilson KD, Sun N, Gupta DM, Huang M, Li ZJ, Panetta NJ, Chen ZY, Robbins RC, Kay MA, Longaker MT, Wu JC . A nonviral minicircle vector for deriving human iPS cells. Nat Methods, 2010,7(3):197-199.
pmid: 20139967 |
[46] |
Zhou WB, Freed CR . Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells, 2009,27(11):2667-2674.
doi: 10.1002/stem.201 pmid: 19697349 |
[47] | Cho HJ, Lee CS, Kwon YW, Paek JS, Lee SH, Hur J, Lee EJ, Roh TY, Chu IS, Leem SH, Kim Y, Kang HJ, Park YB, Kim HS . Induction of pluripotent stem cells from adult somatic cells by protein-based reprogramming without genetic manipulation. Blood, 2010,116(3):386-395. |
[48] |
Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R, Kim KS . Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, 2009,4(6):472-476.
doi: 10.1016/j.stem.2009.05.005 pmid: 19481515 |
[49] | Mandal PK, Rossi DJ . Reprogramming human fibroblasts to pluripotency using modified mRNA. Nat Protoc, 2013,8(3):568-582. |
[50] | Ong SG, Lee WH, Kodo K, Wu JC . MicroRNA- mediated regulation of differentiation and trans- differentiation in stem cells. Adv Drug Deliv Rev, 2015,88:3-15. |
[51] |
Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen SB, Muhlestein W, Melton DA . Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol, 2008,26(11):1269-1275.
pmid: 18849973 |
[52] |
Huangfu D, Maehr R, Guo WJ, Eijkelenboom A, Snitow M, Chen AE, Melton DA . Induction of pluripotent stem cells by defined factors is greatly improved by small- molecule compounds. Nat Biotechnol, 2008,26(7):795-797.
doi: 10.1038/nbt1418 pmid: 18568017 |
[53] | Mali P, Chou BK, Yen J, Ye ZH, Zou JZ, Dowey S, Brodsky RA, Ohm JE, Yu W, Baylin SB, Yusa K, Bradley A, Meyers DJ, Mukherjee C, Cole PA, Cheng LZ . Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes. Stem Cells, 2010,28(4):713-720. |
[54] |
Yoshida Y, Takahashi K, Okita K, Ichisaka T, Yamanaka S . Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell, 2009,5(3):237-241.
pmid: 19716359 |
[55] |
Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M, Okita K, Yamanaka S . Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature, 2009,460(7259):1132-1135.
doi: 10.1038/nature08235 pmid: 19668191 |
[56] | Rais Y, Zviran A, Geula S, Gafni O, Chomsky E, Viukov S, Mansour AA, Caspi I, Krupalnik V, Zerbib M, Maza I, Mor N, Baran D, Weinberger L, Jaitin DA, Lara-Astiaso D, Blecher-Gonen R, Shipony Z, Mukamel Z, Hagai T, Gilad S, Amann-Zalcenstein D, Tanay A, Amit I, Novershtern N, Hanna JH . Deterministic direct reprogramming of somatic cells to pluripotency. Nature, 2013,502(7469):65-70. |
[57] |
Maekawa M, Yamaguchi K, Nakamura T, Shibukawa R, Kodanaka I, Ichisaka T, Kawamura Y, Mochizuki H, Goshima N, Yamanaka S . Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1. Nature, 2011,474(7350):225-229.
pmid: 21654807 |
[58] | Kunitomi A, Yuasa S, Sugiyama F, Saito Y, Seki T, Kusumoto D, Kashimura S, Takei M, Tohyama S, Hashimoto H, Egashira T, Tanimoto Y, Mizuno S, Tanaka S, Okuno H, Yamazawa K, Watanabe H, Oda M, Kaneda R, Matsuzaki Y, Nagai T, Okano H, Yagami KI, Tanaka M, Fukuda K . H1foo has a pivotal role in qualifying induced pluripotent stem cells. Stem Cell Reports, 2016,6(6):825-833. |
[59] |
Maherali N, Hochedlinger K . Tgfbeta signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc. Curr Biol, 2009,19(20):1718-1723.
doi: 10.1016/j.cub.2009.08.025 pmid: 19765992 |
[60] | Rajasingh J, Thangavel J, Siddiqui MR, Gomes I, Gao XP, Kishore R, Malik AB . Improvement of cardiac function in mouse myocardial infarction after transplantation of epigenetically-modified bone marrow progenitor cells. PLoS One, 2011,6(7):e22550. |
[61] |
Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, Zhang YZ, Yang WL, Gruber PJ, Epstein JA, Morrisey EE . Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell, 2011,8(4):376-388.
doi: 10.1016/j.stem.2011.03.001 pmid: 21474102 |
[62] | Hou PP, Li YQ, Zhang X, Liu C, Guan JY, Li HG, Zhao T, Ye JQ, Yang WF, Liu K, Ge J, Xu J, Zhang Q, Zhao Y, Deng HK . Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science, 2013,341(6146):651-654. |
[63] |
Hockemeyer D, Jaenisch R . Induced pluripotent stem cells meet genome editing. Cell Stem Cell, 2016,18(5):573-586.
pmid: 27152442 |
[64] |
Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver RC, Katibah GE, Amora R, Boydston EA, Zeitler B, Meng XD, Miller JC, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol, 2009,27(9):851-857.
doi: 10.1038/nbt.1562 pmid: 19680244 |
[65] |
Zou JZ, Maeder ML, Mali P, Pruett-Miller SM, Thibodeau-Beganny S, Chou BK, Chen GB, Ye ZH, Park IH, Daley GQ, Porteus MH, Joung JK, Cheng LZ . Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell, 2009,5(1):97-110.
doi: 10.1016/j.stem.2009.05.023 pmid: 19540188 |
[66] |
Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF . Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 2010,186(2):757-761.
pmid: 20660643 |
[67] |
Hockemeyer D, Wang HY, Kiani S, Lai CS, Gao Q, Cassady JP, Cost GJ, Zhang L, Santiago Y, Miller JC, Zeitler B, Cherone JM, Meng XD, Hinkley SJ, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R . Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol, 2011,29(8):731-734.
doi: 10.1038/nbt.1927 pmid: 21738127 |
[68] |
Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F . Multiplex genome engineering using CRISPR/Cas systems. Science, 2013,339(6121):819-823.
doi: 10.1126/science.1231143 pmid: 23287718 |
[69] |
Fu YF, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD . High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol, 2013,31(9):822-826.
doi: 10.1038/nbt.2623 pmid: 23792628 |
[70] |
Smith C, Gore A, Yan W, Abalde-Atristain L, Li Z, He CX, Wang Y, Brodsky RA, Zhang K, Cheng LZ, Ye ZH . Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell, 2014,15(1):12-13.
doi: 10.1016/j.stem.2014.06.011 pmid: 24996165 |
[71] |
Veres A, Gosis BS, Ding QR, Collins R, Ragavendran A, Brand H, Erdin S, Cowan CA, Talkowski ME, Musunuru K . Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell, 2014,15(1):27-30.
doi: 10.1016/j.stem.2014.04.020 pmid: 24996167 |
[72] |
Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F . Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 2013,154(6):1380-1389.
doi: 10.1016/j.cell.2013.08.021 pmid: 23992846 |
[73] |
Slaymaker IM, Gao LY, Zetsche B, Scott DA, Yan WX, Zhang F . Rationally engineered Cas9 nucleases with improved specificity. Science, 2016,351(6268):84-88.
doi: 10.1126/science.aad5227 pmid: 26628643 |
[74] |
Chen BH, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW, Park J, Blackburn EH, Weissman JS, Qi LS, Huang B . Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell, 2013,155(7):1479-1491.
doi: 10.1016/j.cell.2013.12.001 pmid: 24360272 |
[75] |
Paquet D, Kwart D, Chen A, Sproul A, Jacob S, Teo S, Olsen KM, Gregg A, Noggle S, Tessier-Lavigne M . Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature, 2016,533(7601):125-129.
doi: 10.1038/nature17664 pmid: 27120160 |
[76] |
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR . Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 2016,533(7603):420-424.
doi: 10.1038/nature17946 pmid: 27096365 |
[77] |
Ebert AD, Yu JY, Rose FF Jr, Mattis VB, Lorson CL, Thomson JA, Svendsen CN . Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature, 2009,457(7227):277-280.
pmid: 19098894 |
[78] |
Munsat TL, Davies KE . International SMA consortium meeting. Neuromuscul Disord, 1992,2(5-6):423-428.
doi: 10.1016/s0960-8966(06)80015-5 pmid: 1300191 |
[79] |
Yang XL, Pabon L, Murry CE . Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circ Res, 2014,114(3):511-523.
doi: 10.1161/CIRCRESAHA.114.300558 pmid: 24481842 |
[80] | Funakoshi S, Miki K, Takaki T, Okubo C, Hatani T, Chonabayashi K, Nishikawa M, Takei I, Oishi A, Narita M, Hoshijima M, Kimura T, Yamanaka S, Yoshida Y . Enhanced engraftment, proliferation, and therapeutic potential in heart using optimized human iPSC-derived cardiomyocytes. Sci Rep, 2016,6:19111. |
[81] |
Yang XL, Rodriguez M, Pabon L, Fischer KA, Reinecke H, Regnier M, Sniadecki NJ, Ruohola-Baker H, Murry CE . Tri-iodo-l-thyronine promotes the maturation of human cardiomyocytes-derived from induced pluripotent stem cells. J Mol Cell Cardiol, 2014,72:296-304.
doi: 10.1016/j.yjmcc.2014.04.005 pmid: 24735830 |
[82] |
Kamakura T, Makiyama T, Sasaki K, Yoshida Y, Wuriyanghai Y, Chen JR, Hattori T, Ohno S, Kita T, Horie M, Yamanaka S, Kimura T . Ultrastructural maturation of human-induced pluripotent stem cell-derived cardiomyocytes in a long-term culture. Circ J, 2013,77(5):1307-1314.
doi: 10.1253/circj.cj-12-0987 pmid: 23400258 |
[83] |
Nunes SS, Miklas JW, Liu J, Aschar-Sobbi R, Xiao Y, Zhang B, Jiang J, Massé S, Gagliardi M, Hsieh A, Thavandiran N, Laflamme MA, Nanthakumar K, Gross GJ, Backx PH, Keller G, Radisic M . Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat Methods, 2013,10(8):781-787.
doi: 10.1038/nmeth.2524 pmid: 23793239 |
[84] |
Pearson BL, Simon JM, McCoy ES, Salazar G, Fragola G, Zylka MJ. Identification of chemicals that mimic transcriptional changes associated with autism, brain aging and neurodegeneration. Nat Commun, 2016,7:11173.
pmid: 27029645 |
[85] |
Miller JD, Ganat YM, Kishinevsky S, Bowman RL, Liu B, Tu EY, Mandal PK, Vera E, Shim JW, Kriks S, Taldone T, Fusaki N, Tomishima MJ, Krainc D, Milner TA, Rossi DJ, Studer L . Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell, 2013,13(6):691-705.
doi: 10.1016/j.stem.2013.11.006 pmid: 24315443 |
[86] |
Kondo T, Asai M, Tsukita K, Kutoku Y, Ohsawa Y, Sunada Y, Imamura K, Egawa N, Yahata N, Okita K, Takahashi K, Asaka I, Aoi T, Watanabe A, Watanabe K, Kadoya C, Nakano R, Watanabe D, Maruyama K, Hori O, Hibino S, Choshi T, Nakahata T, Hioki H, Kaneko T, Naitoh M, Yoshikawa K, Yamawaki S, Suzuki S, Hata R, Ueno S, Seki T, Kobayashi K, Toda T, Murakami K, Irie K, Klein WL, Mori H, Asada T, Takahashi R, Iwata N, Yamanaka S, Inoue H . Modeling Alzheimer's disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness. Cell Stem Cell, 2013,12(4):487-496.
doi: 10.1016/j.stem.2013.01.009 |
[87] |
Soldner F, Stelzer Y, Shivalila CS, Abraham BJ, Latourelle JC, Barrasa MI, Goldmann J, Myers RH, Young RA, Jaenisch R . Parkinson-associated risk variant in distal enhancer of α-synuclein modulates target gene expression. Nature, 2016,533(7601):95-99.
pmid: 27096366 |
[88] |
Gandre-Babbe S, Paluru P, Aribeana C, Chou ST, Bresolin S, Lu L, Sullivan SK, Tasian SK, Weng JL, Favre H, Choi JK, French DL, Loh ML, Weiss MJ . Patient-derived induced pluripotent stem cells recapitulate hematopoietic abnormalities of juvenile myelomonocytic leukemia. Blood, 2013,121(24):4925-4929.
doi: 10.1182/blood-2013-01-478412 pmid: 23620576 |
[89] |
Malkin D . p53 and the Li-Fraumeni syndrome. Cancer Genet Cytogenet, 1993,66(2):83-92.
pmid: 8500106 |
[90] |
Lee DF, Su J, Kim HS, Chang B, Papatsenko D, Zhao RY, Yuan Y, Gingold J, Xia WY, Darr H, Mirzayans R, Hung MC, Schaniel C, Lemischka IR . Modeling familial cancer with induced pluripotent stem cells. Cell, 2015,161(2):240-254.
doi: 10.1016/j.cell.2015.02.045 pmid: 25860607 |
[91] |
McCauley HA, Wells JM . Pluripotent stem cell-derived organoids: using principles of developmental biology to grow human tissues in a dish. Development, 2017,144(6):958-962.
pmid: 28292841 |
[92] |
Dutta D, Heo I, Clevers H . Disease modeling in stem cell-derived 3D organoid systems. Trends Mol Med, 2017,23(5):393-410.
doi: 10.1016/j.molmed.2017.02.007 |
[93] |
Lee G, Papapetrou EP, Kim H, Chambers SM, Tomishima MJ, Fasano CA, Ganat YM, Menon J, Shimizu F, Viale A, Tabar V, Sadelain M, Studer L . Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature, 2009,461(7262):402-406.
doi: 10.1038/nature08320 pmid: 19693009 |
[94] |
Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP, Knoblich JA . Cerebral organoids model human brain development and microcephaly. Nature, 2013,501(7467):373-379.
doi: 10.1038/nature12517 |
[95] |
Quadrato G, Brown J, Arlotta P . The promises and challenges of human brain organoids as models of neuropsychiatric disease. Nat Med, 2016,22(11):1220-1228.
doi: 10.1038/nm.4214 pmid: 27783065 |
[96] |
Sloan SA, Darmanis S, Huber N, Khan TA, Birey F, Caneda C, Reimer R, Quake SR, Barres BA, Paşca SP . Human astrocyte maturation captured in 3D cerebral cortical spheroids derived from pluripotent stem cells. Neuron, 2017,95(4):779-790.
doi: 10.1016/j.neuron.2017.07.035 pmid: 28817799 |
[97] |
Gabriel E, Wason A, Ramani A, Gooi LM, Keller P, Pozniakovsky A, Poser I, Noack F, Telugu NS, Calegari F, Šarić T, Hescheler J, Hyman AA, Gottardo M, Callaini G, Alkuraya FS, Gopalakrishnan J . CPAP promotes timely cilium disassembly to maintain neural progenitor pool. EMBO J, 2016,35(8):803-819.
doi: 10.15252/embj.201593679 pmid: 26929011 |
[98] |
Bian S, Repic M, Guo ZM, Kavirayani A, Burkard T, Bagley JA, Krauditsch C, Knoblich JA . Genetically engineered cerebral organoids model brain tumor formation. Nat Methods, 2018,15(8):631-639.
doi: 10.1038/s41592-018-0070-7 pmid: 30038414 |
[99] |
Rashid ST, Corbineau S, Hannan N, Marciniak SJ, Miranda E, Alexander G, Huang-Doran I, Griffin J, Ahrlund-Richter L, Skepper J, Semple R, Weber A, Lomas DA, Vallier L . Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J Clin Invest, 2010,120(9):3127-3136.
doi: 10.1172/JCI43122 pmid: 20739751 |
[100] |
Ogawa M, Ogawa S, Bear CE, Ahmadi S, Chin S, Li B, Grompe M, Keller G, Kamath BM, Ghanekar A . Directed differentiation of cholangiocytes from human pluripotent stem cells. Nat Biotechnol, 2015,33(8):853-861.
doi: 10.1038/nbt.3294 pmid: 26167630 |
[101] |
Sampaziotis F, de Brito MC, Madrigal P, Bertero A, Saeb-Parsy K, Soares FAC, Schrumpf E, Melum E, Karlsen TH, Bradley JA, Gelson WT, Davies S, Baker A, Kaser A, Alexander GJ, Hannan NRF, Vallier L . Cholangiocytes derived from human induced pluripotent stem cells for disease modeling and drug validation. Nat Biotechnol, 2015,33(8):845-852.
doi: 10.1038/nbt.3275 pmid: 26167629 |
[102] |
Voges HK, Mills RJ, Elliott DA, Parton RG, Porrello ER, Hudson JE . Development of a human cardiac organoid injury model reveals innate regenerative potential. Development, 2017,144(6):1118-1127.
doi: 10.1242/dev.143966 pmid: 28174241 |
[103] |
Pagliuca FW, Millman JR, Gürtler M, Segel M, Van Dervort A, Ryu JH, Peterson QP, Greiner D, Melton DA . Generation of functional human pancreatic β cells in vitro. Cell, 2014,159(2):428-439.
doi: 10.1016/j.cell.2014.09.040 pmid: 25303535 |
[104] |
Hoang P, Wang J, Conklin BR, Healy KE, Ma Z . Generation of spatial-patterned early-developing cardiac organoids using human pluripotent stem cells. Nat Protoc, 2018,13(4):723-737.
doi: 10.1038/nprot.2018.006 pmid: 29543795 |
[105] |
Abilez OJ, Tzatzalos E, Yang HX, Zhao MT, Jung G, Zöllner AM, Tiburcy M, Riegler J, Matsa E, Shukla P, Zhuge Y, Chour T, Chen VC, Burridge PW, Karakikes I, Kuhl E, Bernstein D, Couture LA, Gold JD, Zimmermann WH, Wu JC . Passive stretch induces structural and functional maturation of engineered heart muscle as predicted by computational modeling. Stem Cells, 2018,36(2):265-277.
doi: 10.1002/stem.2732 pmid: 29086457 |
[106] |
Musah S, Mammoto A, Ferrante TC, Jeanty SSF, Hirano-Kobayashi M, Mammoto T, Roberts K, Chung S, Novak R, Ingram M, Fatanat-Didar T, Koshy S, Weaver JC, Church GM, Ingber DE . Mature induced-pluripotent- stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat Biomed Eng, 2017,1:0069.
doi: 10.1038/s41551-017-0069 pmid: 29038743 |
[107] |
Brown JA, Pensabene V, Markov DA, Allwardt V, Neely MD, Shi MJ, Britt CM, Hoilett OS, Yang Q, Brewer BM, Samson PC, McCawley LJ, May JM, Webb DJ, Li DY, Bowman AB, Reiserer RS, Wikswo JP. Recreating blood-brain barrier physiology and structure on chip: a novel neurovascular microfluidic bioreactor. Biomicrofluidics, 2015,9(5):054124.
doi: 10.1063/1.4934713 pmid: 26576206 |
[108] |
McCauley KB, Hawkins F, Serra M, Thomas DC, Jacob A, Kotton DN . Efficient derivation of functional human airway epithelium from pluripotent stem cells via temporal regulation of Wnt signaling. Cell Stem Cell, 2017,20(6):844-857.
doi: 10.1016/j.stem.2017.03.001 pmid: 28366587 |
[109] |
Jacob A, Morley M, Hawkins F, McCauley KB, Jean JC, Heins H, Na CL, Weaver TE, Vedaie M, Hurley K, Hinds A, Russo SJ, Kook S, Zacharias W, Ochs M, Traber K, Quinton LJ, Crane A, Davis BR, White FV, Wambach J, Whitsett JA, Cole FS, Morrisey EE, Guttentag SH, Beers MF, Kotton DN. Differentiation of human pluripotent stem cells into functional lung alveolar epithelial cells. Cell Stem Cell, 2017,21(4):472-488.
doi: 10.1016/j.stem.2017.08.014 pmid: 28965766 |
[110] |
Liu C, Oikonomopoulos A, Sayed N, Wu JC. Modeling human diseases with induced pluripotent stem cells: from 2D to 3D and beyond. Development, 2018, 145(5): dev156166.
doi: 10.1242/dev.157628 pmid: 29437830 |
[111] |
Sturgeon CM, Ditadi A, Awong G, Kennedy M, Keller G . Wnt signaling controls the specification of definitive and primitive hematopoiesis from human pluripotent stem cells. Nat Biotechnol, 2014,32(6):554-561.
doi: 10.1038/nbt.2915 pmid: 24837661 |
[112] |
Wang LS, Li L, Menendez P, Cerdan C, Bhatia M . Human embryonic stem cells maintained in the absence of mouse embryonic fibroblasts or conditioned media are capable of hematopoietic development. Blood, 2005,105(12):4598-4603.
doi: 10.1182/blood-2004-10-4065 pmid: 15718421 |
[113] |
Barker RA, Parmar M, Studer L, Takahashi J . Human trials of stem cell-derived dopamine neurons for Parkinson’s disease: dawn of a new era. Cell Stem Cell, 2017,21(5):569-573.
doi: 10.1016/j.stem.2017.09.014 pmid: 29100010 |
[114] |
Espuny-Camacho I, Michelsen KA, Gall D, Linaro D, Hasche A, Bonnefont J, Bali C, Orduz D, Bilheu A, Herpoel A, Lambert N, Gaspard N, Péron S, Schiffmann SN, Giugliano M, Gaillard A, Vanderhaeghen P . Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo. Neuron, 2013,77(3):440-456.
doi: 10.1016/j.neuron.2012.12.011 pmid: 23395372 |
[115] |
Yuan T, Liao W, Feng NH, Lou YL, Niu X, Zhang AJ, Wang Y, Deng ZF . Human induced pluripotent stem cell-derived neural stem cells survive, migrate, differentiate, and improve neurologic function in a rat model of middle cerebral artery occlusion. Stem Cell Res Ther, 2013,4(3):73.
doi: 10.1186/scrt224 pmid: 23769173 |
[116] |
Sundberg M, Bogetofte H, Lawson T, Jansson J, Smith G, Astradsson A, Moore M, Osborn T, Cooper O, Spealman R, Hallett P, Isacson O . Improved cell therapy protocols for Parkinson’s disease based on differentiation efficiency and safety of hESC-, hiPSC-, and non-human primate iPSC-derived dopaminergic neurons. Stem Cells, 2013,31(8):1548-1562.
doi: 10.1002/stem.1415 pmid: 23666606 |
[117] |
Donegan JJ, Lodge DJ . Cell-based therapies for the treatment of schizophrenia. Brain Res, 2017,1655:262-269.
doi: 10.1016/j.brainres.2016.08.010 pmid: 27544423 |
[118] |
Mansour AA, Gonçalves JT, Bloyd CW, Li H, Fernandes S, Quang D, Johnston S, Parylak SL, Jin X, Gage FH . An in vivo model of functional and vascularized human brain organoids. Nat Biotechnol, 2018,36(5):432-441.
doi: 10.1038/nbt.4127 pmid: 29658944 |
[119] |
Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogaeri T, Zhang RR, Ueno Y, Zheng YW, Koike N, Aoyama S, Adachi Y, Taniguchi H . Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature, 2013,499(7459):481-484.
doi: 10.1038/nature12271 pmid: 23823721 |
[120] |
Yang JY, Wang Y, Zhou T, Wong LY, Tian XY, Hong XY, Lai WH, Au KW, Wei R, Liu YQ, Cheng LH, Liang GC, Huang ZJ, Fan WX, Zhao P, Wang XW, Ibañez DP, Luo ZW, Li YY, Zhong XF, Chen SH, Wang DY, Li L, Lai LX, Qin BM, Bao XC, Hutchins AP, Siu CW, Huang Y, Esteban MA, Tse HF . Generation of human liver chimeric mice with hepatocytes from familial hypercholesterolemia induced pluripotent stem cells. Stem Cell Reports, 2017,8(3):605-618.
doi: 10.1016/j.stemcr.2017.01.027 pmid: 28262545 |
[121] |
Chao MP, Gentles AJ, Chatterjee S, Lan F, Reinisch A, Corces MR, Xavy S, Shen J, Haag D, Chanda S, Sinha R, Morganti RM, Nishimura T, Ameen M, Wu HD, Wernig M, Wu JC, Majeti R . Human AML-iPSCs reacquire leukemic properties after differentiation and model clonal variation of disease. Cell Stem Cell, 2017,20(3):329-344.
doi: 10.1016/j.stem.2016.11.018 pmid: 28089908 |
[122] |
Stricker SH, Feber A, Engström PG, Carén H, Kurian KM, Takashima Y, Watts C, Way M, Dirks P, Bertone P, Smith A, Beck S, Pollard SM . Widespread resetting of DNA methylation in glioblastoma-initiating cells suppresses malignant cellular behavior in a lineage- dependent manner. Genes Dev, 2013,27(6):654-669.
doi: 10.1101/gad.212662.112 pmid: 23512659 |
[123] |
Lee DF, Su J, Kim HS, Chang B, Papatsenko D, Zhao RY, Yuan Y, Gingold J, Xia WY, Darr H, Mirzayans R, Hung MC, Schaniel C, Lemischka IR . Modeling familial cancer with induced pluripotent stem cells. Cell, 2015,161(2):240-254.
doi: 10.1016/j.cell.2015.02.045 pmid: 25860607 |
[124] |
Kiskinis E, Eggan K . Progress toward the clinical application of patient-specific pluripotent stem cells. J Clin Invest, 2010,120(1):51-59.
doi: 10.1172/JCI40553 pmid: 20051636 |
[125] |
Lee AS, Tang C, Rao MS, Weissman IL, Wu JC . Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med, 2013,19(8):998-1004.
doi: 10.1038/nm.3267 pmid: 23921754 |
[126] |
Lund RJ, Närvä E, Lahesmaa R . Genetic and epigenetic stability of human pluripotent stem cells. Nat Rev Genet, 2012,13(10):732-744.
doi: 10.1038/nrg3271 |
[127] |
Hotta A, Yamanaka S . From genomics to gene therapy: induced pluripotent stem cells meet genome editing. Annu Rev Genet, 2015,49:47-70.
doi: 10.1146/annurev-genet-112414-054926 pmid: 26407033 |
[128] |
Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, Hong H, Nakagawa M, Tanabe K, Tezuka K, Shibata T, Kunisada T, Takahashi M, Takahashi J, Saji H, Yamanaka S . A more efficient method to generate integration-free human iPS cells. Nat Methods, 2011,8(5):409-412.
doi: 10.1038/nmeth.1591 pmid: 21460823 |
[129] |
Kim D, Lee DR, Kim HS, Yoo J, Jung SJ, Lim BY, Jang J, Kang HC, You S, Hwang DY, Leem JW, Nam TS, Cho SR, Kim DW . Highly pure and expandable PSA-NCAM- positive neural precursors from human ESC and iPSC-derived neural rosettes. PLoS One, 2012,7(7):e39715.
doi: 10.1371/journal.pone.0039715 pmid: 22911689 |
[130] |
Doi D, Samata B, Katsukawa M, Kikuchi T, Morizane A, Ono Y, Sekiguchi K, Nakagawa M, Parmar M, Takahashi J . Isolation of human induced pluripotent stem cell-derived dopaminergic progenitors by cell sorting for successful transplantation. Stem Cell Reports, 2014,2(3):337-350.
doi: 10.1016/j.stemcr.2014.01.013 |
[131] |
Finkbeiner SR, Hill DR, Altheim CH, Dedhia PH, Taylor MJ, Tsai Y, Chin AM, Mahe MM, Watson CL, Freeman JJ, Nattiv R, Thomson M, Klein OD, Shroyer NF, Helmrath MA, Teitelbaum DH, Dempsey PJ, Spence JR . Transcriptome-wide analysis reveals hallmarks of human intestine development and maturation in vitro and in vivo. Stem Cell Reports, 2015,4(6):1140-1155.
doi: 10.1016/j.stemcr.2015.04.010 |
[132] |
Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, Fujihara M, Akimaru H, Sakai N, Shibata Y, Terada M, Nomiya Y, Tanishima S, Nakamura M, Kamao H, Sugita S, Onishi A, Ito T, Fujita K, Kawamata S, Go MJ, Shinohara C, Hata KI, Sawada M, Yamamoto M, Ohta S, Ohara Y, Yoshida K, Kuwahara J, Kitano Y, Amano N, Umekage M, Kitaoka F, Tanaka A, Okada C, Takasu N, Ogawa S, Yamanaka S, Takahashi M . Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med, 2017,376(11):1038-1046.
doi: 10.1056/NEJMoa1608368 pmid: 28296613 |
[133] |
Kuriyan AE, Albini TA, Townsend JH, Rodriguez M, Pandya HK, Leonard RE, Parrott MB, Rosenfeld PJ, Flynn HW Jr, Goldberg JL . Vision loss after intravitreal injection of autologous “Stem Cells” for AMD. N Engl J Med, 2017,376(11):1047-1053.
doi: 10.1056/NEJMoa1609583 pmid: 28296617 |
[134] |
Cell Stem Cell Editorial Team. 10 Questions: Clinical Outlook for iPSCs. Cell Stem Cell, 2016,18(2):170-173.
doi: 10.1016/j.stem.2016.01.023 pmid: 26849303 |
[135] |
Themeli M, Kloss CC, Ciriello G, Fedorov VD, Perna F, Gonen M, Sadelain M . Generation of tumor-targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy. Nat Biotechnol, 2013,31(10):928-933.
doi: 10.1038/nbt.2678 pmid: 23934177 |
[136] |
Nianias A, Themeli M . Induced pluripotent stem cell (iPSC)-derived lymphocytes for adoptive cell immunotherapy: recent advances and challenges. Curr Hematol Malig Rep, 2019,14(4):261-268.
doi: 10.1007/s11899-019-00528-6 pmid: 31243643 |
[137] |
Minagawa A, Yoshikawa T, Yasukawa M, Hotta A, Kunitomo M, Iriguchi S, Takiguchi M, Kassai Y, Imai E, Yasui Y, Kawai Y, Zhang R, Uemura Y, Miyoshi H, Nakanishi M, Watanabe A, Hayashi A, Kawana K, Fujii T, Nakatsura T, Kaneko S. Enhancing T cell receptor stability in rejuvenated iPSC-derived T cells improves their use in cancer immunotherapy. Cell Stem Cell, 2018, 23(6): 850-858.e4.
doi: 10.1016/j.stem.2018.10.005 pmid: 30449714 |
[138] | News and events. CiRA, Kyoto University . 2019. Available at: (accessed September25, 2019). |
[139] |
Morvan MG, Lanier LL . NK cells and cancer: you can teach innate cells new tricks. Nat Rev Cancer, 2016,16(1):7-19.
doi: 10.1038/nrc.2015.5 pmid: 26694935 |
[140] |
Lupo KB, Matosevic S . Natural killer cells as allogeneic effectors in adoptive cancer immunotherapy. Cancers (Basel), 2019,11(6):769.
doi: 10.3390/cancers11060769 |
[141] |
Chen S, Sun H, Miao K, Deng CX . CRISPR-Cas9: from genome editing to cancer research. Int J Biol Sci, 2016,12(12):1427-1436.
doi: 10.7150/ijbs.17421 pmid: 27994508 |
[142] |
Li Y, Hermanson DL, Moriarity BS, Kaufman DS. Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell, 2018, 23(2): 181-192.e5.
doi: 10.1016/j.stem.2018.06.002 pmid: 30082067 |
[143] |
Lo Sardo V, Ferguson W, Erikson GA, Topol EJ, Baldwin KK, Torkamani A . Influence of donor age on induced pluripotent stem cells. Nature Biotechnology, 2017,35(1):69-74.
doi: 10.1038/nbt.3749 pmid: 27941802 |
[144] |
Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell, 2011,144(5):646-674.
doi: 10.1016/j.cell.2011.02.013 |
[1] | 田智琛, 尹晓娟. 诱导多能干细胞在儿童疾病的应用研究进展[J]. 遗传, 2023, 45(1): 42-51. |
[2] | 崔浩亮, 史佩华, 高锦春, 张新博, 赵顺然, 陶晨雨. 细胞重编程过程中核小体定位改变研究进展[J]. 遗传, 2022, 44(3): 208-215. |
[3] | 敖政, 陈祥, 吴珍芳, 李紫聪. 体细胞克隆猪发育异常研究进展[J]. 遗传, 2020, 42(10): 993-1003. |
[4] | 黄星卫, 程香荣, 王楠, 张雨薇, 廖辰, 金连弘, 雷蕾. 组蛋白H3变体H3.3及其在细胞重编程中的作用[J]. 遗传, 2018, 40(3): 186-196. |
[5] | 康岚, 陈嘉瑜, 高绍荣. 中国细胞重编程和多能干细胞研究进展[J]. 遗传, 2018, 40(10): 825-840. |
[6] | 张玲, 何建波. GATA6在肝脏发育中的作用及调控机制[J]. 遗传, 2018, 40(1): 22-32. |
[7] | 贾振伟. 线粒体与多潜能干细胞功能[J]. 遗传, 2016, 38(7): 603-611. |
[8] | 敖政, 刘德武, 蔡更元, 吴珍芳, 李紫聪. 克隆哺乳动物的胎盘发育缺陷[J]. 遗传, 2016, 38(5): 402-410. |
[9] | 任才芳,孙红艳,王立中,张国敏,樊懿萱,颜光耀,王丹,王锋. iPSCs遗传稳定性与重编程机制的研究进展[J]. 遗传, 2014, 36(9): 879-887. |
[10] | 曹明君, 董焕生, 潘庆杰, 王红军, 董晓. 胰腺早期发育及终末分化细胞重编程为胰岛β细胞的研究进展[J]. 遗传, 2014, 36(6): 511-518. |
[11] | 宋红卫, 安铁洙, 朴善花, 王春生. 哺乳动物DNA甲基化及其在体细胞诱导重编程中的作用[J]. 遗传, 2014, 36(5): 431-438. |
[12] | 马克学, 马克世, 席兴字. 表观遗传跨代继承表型研究进展[J]. 遗传, 2014, 36(5): 476-484. |
[13] | 纪慧丽, 卢晟盛, 潘登科. 体细胞核移植后表观遗传重编程的异常及其修复[J]. 遗传, 2014, 36(12): 1211-1218. |
[14] | 范宗兴,朱化彬,杜卫华. 细胞抽提物诱导的体细胞重编程[J]. 遗传, 2013, 35(3): 262-268. |
[15] | 孙红艳,王锋,曹文广. 细胞命运转变——谱系重编程技术研究进展[J]. 遗传, 2012, 34(8): 985-992. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: