[1] Braunwald E, Bristow MR. Congestive heart failure: fifty years of progress. Circulation, 2000, 102(20 Suppl 4): 14-23.[2] Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science, 2001, 294(5543): 853-858.[3] Thum T, Catalucci D, Bauersachs J. MicroRNAs: novel regulators in cardiac development and disease. Car-diovasc Res, 2008, 79(4): 562-570.[4] Yang BF, Lu YJ, Wang ZG. Control of cardiac excitability by microRNAs. Cardiovasc Res, 2008, 79(4): 571-580.[5] Wang J, Song Y, Zhang Y, Xiao H, Sun Q, Hou N, Guo S, Wang Y, Fan K, Zhan D, Zha G, Cao Y, Li Z, Cheng X, Zhang Y, Yang X. Cardiomyocyte overexpression of miR-27b induces cardiac hypertrophy and dysfunction in mice. Cell Research, 2011, .[6] Subramaniam A, Jones WK, Gulick J, Wert S, Neumann J, Robbins J. Tissue-specific regulation of the alpha-myosin heavy chain gene promoter in transgenic mice. J Biol Chem, 1999, 266(36): 24613-24620.[7] Zhao ZM, Hou N, Sun YX, Teng Y, Yang X. Atp4b promoter directs the expression of Cre recombinase in gastric parietal cells of transgenic mice. J Genet Genomics, 2010, 37(9): 647-652.[8] 程萱, 陈红星, 杨晓, 谭晓红, 黄培堂. 提高制备转基因小鼠效率的研究. 中国实验动物学报, 2001, 9(3): 160-163.[9] Wang J, Xu N, Feng X, Hou N, Zhang J, Cheng X, Chen Y, Zhang Y, Yang X. Targeted disruption of Smad4 in cardiomyocytes results in cardiac hypertrophy and heart failure. Circ Res, 2005, 97(8): 821-828.[10] Van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD, Richardson JA, Olson EN. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA, 2006, 103(48): 18255-18260.[11] Sayed D, Hong C, Chen IY, Lypowy J, Abdellatif M. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res, 2007, 100(3): 416-424.[12] Carè A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND, Elia L, Latronico MV, Høydal M, Autore C, Russo MA, Dorn GW 2nd, Ellingsen O, Ruiz-Lozano P, Peterson KL, Croce CM, Peschle C, Condorelli G. MicroRNA-133 controls cardiac hypertrophy. Nat Med, 2007, 13(5): 613-618.[13] Van Rooij E, Sutherland LB, Qi XX, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a MicroRNA. Science, 2007, 316(5824): 575-579.[14] Callis TE, Pandya K, Seok HY, Tang RH, Tatsuguchi M, Huang ZP, Chen JF, Deng ZL, Gunn B, Shumate J, Willis MS, Selzman CH, Wang DZ. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest, 2009, 119(9): 2772-2786.[15] da Costa Martins PA, Salic K, Gladka MM, Armand AS, Leptidis S, Azzouzi H, Hansen A, Coenende Roo CJ, Bierhuizen MF, van der Nagel R, van Kuik J, de Weger R, de Bruin A, Condorelli G, Arbones ML, Eschenhagen T, De Windt LJ. MicroRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling. Nat Cell Biol, 2010, 12(12): 1220-1227.[16] Tsuchiya Y, Nakajima M, Takagi S, Taniya T, Yokoi T. MicroRNA regulates the expression of human cytochrome P450 1B1. Cancer Res, 2006, 66(18): 9090-9098.[17] Karbiener M, Fischer C, Nowitsch S, Opriessnig P, Papak C, Ailhaud G, Dani C, Amri EZ, Scheideler M. microRNA miR-27b impairs human adipocyte differentiation and targets PPARγ. Biochem Biophys Res Commun, 2009, 390(2): 247-251.[18] Latronico MVG, Catalucci D, Condorelli G. Emerging role of microRNAs in cardiovascular biology. Cir Res, 2007, 101(12): 1225-1236.[19] Crist CG, Montarras D, Pallafacchina G, Rocancourt D, Cumano A, Conway SJ, Buckingham M. Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression. Proc Natl Acad Sci USA |