[1] Kerstens HH, Kollers S, Kommadath A, Del Rosario M, Dibbits B, Kinders SM, Crooijmans RP, Groenen MA. Mining for single nucleotide polymorphisms in pig genome sequence data. BMC Genomics, 2009, 10: 4.[2] Hausman GJ, Campion DR, Buonomo FC. Concentration of insulin-like growth factors (IGF-I and IGF-II) in tissues of developing lean and obese pig fetuses. Growth Dev Aging, 1991, 55(1): 43-52.[3] Stinckens A, Luyten T, Bijttebier J, van den Maagdenberg K, Dieltiens D, Janssens S, de Smet S, Georges M, Buys N. Characterization of the complete porcine MSTN gene and expression levels in pig breeds differing in muscularity. Anim Genet, 2008, 39(6): 586-596.[4] Burgos C, Carrodeguas JA, Moreno C, Altarriba J, Tarrafeta L, Barcelona JA, López-Buesa P. Allelic incidence in several pig breeds of a missense variant of pig melanocortin-4 receptor (MC4R) gene associated with carcass and productive traits; its relation to IGF2 genotype. Meat Sci, 2006, 73(1): 144-150.[5] Stachowiak M, Szydlowski M, Obarzanek-Fojt M, Switonski M. An effect of a missense mutation in the porcine melanocortin-4 receptor (MC4R) gene on production traits in Polish pig breeds is doubtful. Anim Genet, 2006, 37(1): 55-57.[6] Song C, Gao B, Teng Y, Wang X, Wang Z, Li Q, Mi H, Jing R, Mao J. MspI polymorphisms in the 3rd intron of the swine POU1F1 gene and their associations with growth performance. J Appl Genet, 2005, 46(3): 285-289.[7] Yu TP, Sun HS, Wahls S, Sanchez-Serrano I, Rothschild MF, Tuggle CK. Cloning of the full length pig PIT1 (POU1F1) CDNA and a novel alternative PIT1 transcript, and functional studies of their encoded proteins. Anim Biotechnol, 2001, 12(1): 1-19.[8] He K, Wang Q, Yang Y, Wang MPan Y. A comparative study of mouse hepatic and intestinal gene expression profiles under PPARalpha knockout by gene set enrichment analysis. PPAR Res, 2011, 2011: 629728.[9] Moffett SP. The PPA R pathway to obesity and type-2 diabetes: A multi-locus approach to understanding complex disease. University of Pittsburgh, 2002.[10] Carrozzo R, Dionisi-Vici C, Steuerwald U, Lucioli S, Deodato F, Di Giandomenico S, Bertini E, Franke B, Kluijtmans LA, Meschini MC, Rizzo C, Piemonte F, Rodenburg R, Santer R, Santorelli FM, van Rooij A, de Vermunt Koning D, Morava E, Wevers RA. SUCLA2 mutations are associated with mild methylmalonic aciduria, Leigh-like encephalomyopathy, dystonia and deafness. Brain, 2007, 130(Pt 3): 862-874.[11] Sakamoto O, Ohura T, Murayama K, Ohtake A, Harashima H, Abukawa D, Takeyama J, Haginoya K, Miyabayashi S, Kure S. Neonatal lactic acidosis with methylmalonic aciduria due to novel mutations in the SUCLG1 gene. Pediatr Int, 2011, 53(6): 921-925.[12] Chandler RJ, Aswani V, Tsai MS, Falk M, Wehrli N, Stabler S, Allen R, Sedensky M, Kazazian HH, Venditti CP. Propionyl-CoA and adenosylcobalamin metabolism in Caenorhabditis elegans: evidence for a role of methylmalonyl-CoA epimerase in intermediary metabolism. Mol Genet Metab, 2006, 89(1-2): 64-73.[13] 王明辉. 候选基因集法及IGF1-FoxO通路与猪生长发育的关联研究[学位论文]. 上海: 上海交通大学, 2011.[14] Hu ZL, Dracheva S, Jang W, Maglott D, Bastiaansen J, Rothschild MF, Reecy JM. A QTL resource and comparison tool for pigs: PigQTLDB. Mamm Genome, 2005, 16(10): 792-800.[15] Calle ML, Urrea V, Malats N, van Steen K. mbmdr: an R package for exploring gene-gene interactions associated with binary or quantitative traits. Bioinformatics, 2010, 26(17): 2198-2199.[16] Perks CM, Denning-Kendall PA, Gilmour RS, Wathes DC. Localization of messenger ribonucleic acids for insulin-like growth factor I (IGF-I), IGF-II, and the type 1 IGF receptor in the ovine ovary throughout the estrous cycle. Endocrinology, 1995, 136(12): 5266-5273.[17] Figueroa JA, Lee AV, Jackson JG, Yee D. Proliferation of cultured human prostate cancer cells is inhibited by insulin- like growth factor (IGF) binding protein-1: evidence for an IGF-II autocrine growth loop. J Clin Endocrinol Metab, 1995, 80(12): 3476-3482.[18] Menuelle P, Binoux M, Plas C. Regulation by insulin-like growth factor (IGF) binding proteins of IGF-II-stimulated glycogenesis in cultured fetal rat hepatocytes. Endocrinology, 1995, 136(12): 5305-5310.[19] Yoshii Y, Waki A, Furukawa T, Kiyono Y, Mori T, Yoshii H, Kudo T, Okazawa H, Welch MJ, Fujibayashi Y. Tumor uptake of radiolabeled acetate reflects the expression of cytosolic acetyl-CoA synthetase: implications for the mechanism of acetate PET. Nucl Med Biol, 2009, 36(7): 771-777.[20] Luong A, Hannah VC, Brown MS, Goldstein JL. Molecular characterization of human acetyl-CoA synthetase, an enzyme regulated by sterol regulatory element-binding proteins. J Biol Chem, 2000, 275(34): 26458-26466.[21] Sone H, Shimano H, Sakakura Y, Inoue N, Amemiya-Kudo M, Yahagi N, Osawa M, Suzuki H, Yokoo T, Takahashi A, Iida K, Toyoshima H, Iwama A, Yamada N. Acetyl-coenzyme A synthetase is a lipogenic enzyme controlled by SREBP-1 and energy status. Am J Physiol Endocrinol Metab, 2002, 282(1): E222-E230.[22] Bobik TA, Rasche ME. Identification of the human methylmalonyl-CoA racemase gene based on the analysis of prokaryotic gene arrangements. Implications for decoding the human genome. J Biol Chem, 2001, 276(40): 37194-37198.[23] Montgomery JA, Mamer OA, Scriver CR. Metabolism of methylmalonic acid in rats. Is methylmalonyl-coenzyme a racemase deficiency symptomatic in man? J Clin Invest, 1983, 72(6): 1937-1947.[24] Naranjo V, Acevedo-Whitehouse K, Vicente J, Gortazar C, de la Fuente J. Influence of methylmalonyl-CoA mutase alleles on resistance to bovine tuberculosis in the European wild boar (Sus scrofa). Anim Genet, 2008, 39(3): 316-320.[25] Miller C, Wang L, Ostergaard E, Dan P, Saada A. The interplay between SUCLA2, SUCLG2, and mitochondrial DNA depletion. Biochim Biophys Acta, 2011, 1812(5): 625-629. |