[1] Lurin C, Andres C, Aubourg S, Bellaoui M, Bitton F, Bruyere C, Caboche M, Debast C, Gualberto J, Hoffmann B, Lecharny A, Le Ret M, Martin-Magniette ML, Mireau H, Peeters N, Renou JP, Szurek B, Taconnat L, Small I. Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell, 2004, 16(8): 2089–2103. <\p>
[2] Saha D, Prasda AM, Srinivasan R. Pentatricopeptide repeat proteins and their emerging roles in plants. Plant Physiol Biochem, 2007, 45(8): 521–543. <\p>
[3] Schmitz-Lnneweber C, Small I. Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends Plant Sci, 2008, 13(12): 663–670. <\p>
[4] Wang Z, Zou Y, Li X, Zhang Q, Chen L, Wu H, Su D, Chen Y, Guo J, Luo D, Long Y, Zhong Y, Liu YG. Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell, 2006, 18(3): 676–687. <\p>
[5] 徐相波, 邱登林, 孙永堂, 王守经, 孙桂芝, 李新华. PPR基因家族的研究进展. 遗传, 2006, 28(6): 726–730. <\p>
[6] 何鹏, 陈海燕, 俞嘉宁. PPR蛋白参与RNA编辑机制的研究进展. 西北植物学报, 2013, 33(2): 415–421. <\p>
[7] Manthey GM, McEwen JE. The product of the nuclear gene PET309 is required for translation of mature mRNA and stability or production of intron-containing RNAs derived from the mitochondrial COX1 locus of Saccharomyces cerevisiae. EMBO J, 1995, 14(16): 4031–4043. <\p>
[8] Barkan A, Walker M, Nolasco M, Johnson D. A nuclear mutation in maize blocks the processing and translation of several chloroplast mRNAs and provides evidence for the differential translation of alternative mRNA forms. EMBO J, 1994, 13(13): 3170–3181. <\p>
[9] Small ID, Peeters N. The PPR motif-a TPR-related motif prevalent in plant organellar proteins. Trends Biochem Sci, 2000, 25(2): 46–47. <\p>
[10] Fujii S, Small I. The evolution of RNA editing and penta-tricopeptide repeat genes. New Phytologist, 2011, 191(1): 37–47. <\p>
[11] Tomato Genome Consortium. The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 2012, 485(7400): 635–641. <\p>
[12] Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer ELL, Eddy SR, Bateman A, Finn RD. The Pfam protein families database. Nucleic Acids Res, 2012, 40(D1): D290–D301. <\p>
[13] Finn RD, Clements J, Eddy SR. HMMER web server: in-teractive sequence similarity searching. Nucleic Acids Res, 2011, 39(Web Server issue): W29–W37. <\p>
[14] Thompson JD, Higgins DG, Gibson TJ. CLUSTALW: im-proving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res, 1994, 22(22): 4673–4680. <\p>
[15] Tamura K, Peterson D, Peterson N, Stecher G, Nei M, and Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 2011, 28(10): 2731–2739. <\p>
[16] Kozik A, Kochetkova E, Michelmore R. GenomePixelizer-a visualization program for comparative genomics within and between species. Bioinformatics, 2002, 18(2): 335–336. <\p>
[17] Small I, Peeters N, Legeai F, Lurin C. Predotar: a tool for rapidly screening proteomes for N-terminal targeting se-quences. Proteomics, 2004, 4(6): 1581–1590. <\p>
[18] Emanuelsson O, Nielsen H, von Heijne G. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci, 1999, 8(5): 978–984. <\p>
[19] McCarthy FM, Gresham CR, Buza TJ, Chouvarine P, Pillai |