[1] |
Gros A, Parkhurst MR, Tran E, Pasetto A, Robbins PF, Ilyas S, Prickett TD, Gartner JJ, Crystal JS, Roberts IM, Trebska-Mcgowan K, Wunderlich JR, Yang JC, Rosenberg SA . Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat Med, 2016,22(4):433-438.
|
[2] |
Malekzadeh P, Pasetto A, Robbins PF, Parkhurst MR, Paria BC, Jia L, Gartner JJ, Hill V, Yu Z, Restifo NP, Sachs A, Tran E, Lo W, Somerville RPT, Rosenberg SA, Deniger DC . Neoantigen screening identifies broad TP53 mutant immunogenicity in patients with epithelial cancers. J Clin Invest, 2019,129(3):1109-1114.
|
[3] |
Robbins PF, Lu YC, El-Gamil M, Li YF, Gross C, Gartner J, Lin JC, Teer JK, Cliften P, Tycksen E, Samuels Y, Rosenberg SA . Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med, 2013,19(6):747-752.
|
[4] |
Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, L?wer M, Bukur V, Tadmor AD, Luxemburger U, Schr?rs B, Omokoko T, Vormehr M, Albrecht C, Paruzynski A, Kuhn AN, Buck J, Heesch S, Schreeb KH, Müller F, Ortseifer I, Vogler I, Godehardt E, Attig S, Rae R, Breitkreuz A, Tolliver C, Suchan M, Martic G, Hohberger A, Sorn P, Diekmann J, Ciesla J, Waksmann O, Brück A K, Witt M, Zillgen M, Rothermel A, Kasemann B, Langer D, Bolte S, Diken M, Kreiter S, Nemecek R, Gebhardt C, Grabbe S, H?ller C, Utikal J, Huber C, Loquai C, Türeci O . Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature, 2017,547(7662):222-226.
|
[5] |
Tran E, Ahmadzadeh M, Lu YC, Gros A, Turcotte S, Robbins PF, Gartner JJ, Zheng Z, Li YF, Ray S, Wunderlich JR, Somerville RP, Rosenberg SA . Immunogenicity of somatic mutations in human gastrointestinal cancers. Science, 2015,350(6266):1387-1390.
|
[6] |
Tran E, Robbins PF, Lu YC, Prickett TD, Gartner JJ, Jia L, Pasetto A, Zheng Z, Ray S, Groh EM, Kriley IR, Rosenberg SA . T-Cell transfer therapy targeting mutant KRAS in cancer. N Engl J Med, 2016,375(23):2255-2262.
|
[7] |
Zacharakis N, Chinnasamy H, Black M, Xu H, Lu YC, Zheng Z, Pasetto A, Langhan M, Shelton T, Prickett T, Gartner J, Jia L, Trebska-Mcgowan K, Somerville RP, Robbins PF, Rosenberg SA, Goff SL, Feldman SA . Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nat Med, 2018,24(6):724-730.
|
[8] |
Strickland KC, Howitt BE, Shukla SA, Rodig S, Ritterhouse LL, Liu JF, Garber JE, Chowdhury D, Wu CJ , D'andrea AD. Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1/ PD-L1 in high grade serous ovarian cancer. Oncotarget, 2016,7(12):13587-13598.
|
[9] |
Lu HZ, Wang DK, Wang Z . Correlation analysis of the prognosis of HPV positive oropharyngeal cancer patients with T cell infiltration and neoantigen load. Hereditas (Beijing), 2019,41(8):725-735.
|
|
卢涣滋, 王迪侃, 王智 . HPV阳性口咽癌患者预后与T细胞浸润和新抗原负荷相关性分析. 遗传, 2019,41(8):725-735.
|
[10] |
Brown SD, Warren RL, Gibb EA, Martin SD, Spinelli JJ, Nelson BH, Holt RA . Neo-antigens predicted by tumor genome meta-analysis correlate with increased patient survival. Genome Res, 2014,24(5):743-750.
|
[11] |
Shukla SA, Howitt BE, Wu CJ, Konstantinopoulos PA . Predicted neoantigen load in non-hypermutated endometrial cancers: Correlation with outcome and tumor-specific genomic alterations. Gynecol Oncol Rep, 2016,19:42-45.
|
[12] |
Sa HL, Ma KW, Gao Y, Wang DQ . Predictive value of tumor mutation burden in immunotherapy for lung cancer. Chin J Lung Canc, 2019,22(6):380-384.
|
|
撒焕兰, 马克威, 高勇, 王德强 . 肿瘤突变负荷对肺癌免疫治疗疗效的预测价值. 中国肺癌杂志, 2019,22(6):380-384.
|
[13] |
Jurtz V, Paul S, Andreatta M, Marcatili P, Peters B, Nielsen M . NetMHCpan-4.0: Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J Immunol, 2017,199(9):3360-3368.
|
[14] |
Nielsen M, Andreatta M . NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets. Genome Med, 2016,8(1):33.
|
[15] |
Nielsen M, Lundegaard C, Blicher T, Lamberth K, Harndahl M, Justesen S, R?der G, Peters B, Sette A, Lund O, Buus S . NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence. PLoS One, 2007,2(8):e796.
|
[16] |
O'donnelL TJ, Rubinsteyn A, Bonsack M, Riemer AB, Laserson U, Hammerbacher J . MHCflurry: open-source class I MHC binding affinity prediction. Cell Syst, 2018,7(1):129-132 e4.
|
[17] |
Bulik-Sullivan B, Busby J, Palmer CD, Davis MJ, Murphy T, Clark A, Busby M, Duke F, Yang A, Young L, Ojo NC, Caldwell K, Abhyankar J, Boucher T, Hart MG, Makarov V, Montpreville VT, Mercier O, Chan TA, Scagliotti G, Bironzo P, Novello S, Karachaliou N, Rosell R, Anderson I, Gabrail N, Hrom J, Limvarapuss C, Choquette K, Spira A, Rousseau R, Voong C, Rizvi NA, Fadel E, Frattini M, Jooss K, Skoberne M, Francis J, Yelensky R . Deep learning using tumor HLA peptide mass spectrometry datasets improves neoantigen identification. Nat Biotechnol, 2018,37(1):55-63
|
[18] |
Gfeller D, Bassani-Sternberg M . Predicting antigen presentation—what could we learn from a million peptides? Front Immunol, 2018,9:1716.
|
[19] |
Bassani-Sternberg M, Chong C, Guillaume P, Solleder M, Pak H, Gannon PO, Kandalaft LE, Coukos G, Gfeller D . Deciphering HLA-I motifs across HLA peptidomes improves neo-antigen predictions and identifies allostery regulating HLA specificity. PLoS Comput Biol, 2017,13(8):e1005725.
|
[20] |
Gfeller D, Guillaume P, Michaux J, Pak HS, Daniel RT, Racle J, Coukos G and Bassani-Sternberg M. The length distribution and multiple specificity of naturally presented HLA-I ligands. J Immunol, 2018,201(12):3705-3716.
|
[21] |
Pearson H, Daouda T, Granados DP, Durette C, Bonneil E, Courcelles M, Rodenbrock A, Laverdure JP, Coté C, Mader S, Lemieux S, Thibault P, Perreault C . MHC class I-associated peptides derive from selective regions of the human genome. J Clin Invest, 2016,126(12):4690-4701.
|
[22] |
Bassani-Sternberg M, Pletscher-Frankild S, Jensen LJ, Mann M . Mass spectrometry of human leukocyte antigen class I peptidomes reveals strong effects of protein abundance and turnover on antigen presentation. Mol Cell Proteomics, 2015,14(3):658-673.
|
[23] |
Shao W, Pedrioli PGA, Wolski W, Scurtescu C, Schmid E, Vizcaíno JA, Courcelles M, Schuster H, Kowalewski D, Marino F, Arlehamn CSL, Vaughan K, Peters B, Sette A, Ottenhoff THM, Meijgaarden KE, Nieuwenhuizen N, Kaufmann SHE, Schlapbach R, Castle JC, Nesvizhskii A I, Nielsen M, Deutsch E W, Campbell D S, Moritz R L, Zubarev R A, Ytterberg A J, Purcell A W, Marcilla M, Paradela A, Wang Q, Costello CE, Ternette N, van Veelen PA, van Els CACM, Heck AJR, de Souza GA, Sollid LM, Admon A, Stevanovic S, Rammensee HG, Thibault P, Perreault C, Bassani-Sternberg M, Aebersold R, Caron E . The SysteMHC atlas project. Nucleic Acids Res, 2018,46(D1):D1237-D1247.
|
[24] |
Abelin JG, Keskin DB, Sarkizova S, Hartigan CR, Zhang W, Sidney J, Stevens J, Lane W, Zhang GL, Eisenhaure TM, Clauser KR, Hacohen N, Rooney MS, Carr SA, Wu CJ . Mass spectrometry profiling of HLA-Associated peptidomes in Mono-allelic cells enables more accurate epitope prediction. Immunity, 2017,46(2):315-326.
|
[25] |
Vita R, Overton JA, Greenbaum JA, Ponomarenko J, Clark JD, Cantrell JR, Wheeler DK, Gabbard JL, Hix D, Sette A, Peters B . The immune epitope database (IEDB) 3.0. Nucleic Acids Res, 2015,43(Database issue):D405-412.
|
[26] |
Rammensee HG, Friede T, Stevanoviíc S . MHC ligands and peptide motifs: first listing. Immunogenetics, 1995,41(4):178-228.
|
[27] |
Hunt DF, Henderson RA, Shabanowitz J, Sakaguchi K, Michel H, Sevilir N, Cox AL, Appella E, Engelhard VH . Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science, 1992,255(5049):1261-1263.
|
[28] |
Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia YQ, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mane D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viegas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng XQ. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv: 1603. 04467, 2016
|
[29] |
Trolle T, Mcmurtrey CP, Sidney J, Bardet W, Osborn SC, Kaever T, Sette A, Hildebrand WH, Nielsen M, Peters B . The length distribution of class I-restricted T cell epitopes is determined by both peptide supply and MHC allele- specific binding preference. J Immunol, 2016,196(4):1480-1487.
|
[30] |
Str?nen E, Toebes M, Kelderman S, van Buuren MM, Yang W, van Rooij N, Donia M, B?schen ML, Lund-Johansen F, Olweus J, Schumacher TN . Targeting of cancer neoantigens with donor-derived T cell receptor repertoires. Science, 2016,352(6291):1337-1341.
|
[31] |
Gros A, Parkhurst MR, Tran E, Pasetto A, Robbins PF, Ilyas S, Prickett TD, Gartner JJ, Crystal JS, Roberts IM . Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat Med, 2016,22(4):433-438.
|
[32] |
Hu WP, Qiu S, Li YP, Lin XX, Zhang L, Xiang HT, Han X, Chen L, Li S, Li WH, Ren Z, Hou GX, Lin ZL, Lu JL, Liu G, Li B, Lee LJ . EPIC: MHC-I epitope prediction integrating mass spectrometry derived motifs and tissue- specific expression profiles. bioRxiv, 2019,567081.
|
[33] |
Nielsen M, Lundegaard C, Lund O, Kesmir C . The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenetics, 2005,57(1-2):33-41.
|
[34] |
Müller M, Gfeller D, Coukos G, Bassani-Sternberg M . 'Hotspots' of antigen presentation revealed by human leukocyte antigen ligandomics for neoantigen prioritization. Front Immunol, 2017,8:1367.
|
[35] |
Mcgranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, Jamal-Hanjani M, Wilson GA, Birkbak NJ, Hiley CT, Watkins TB, Shafi S, Murugaesu N, Mitter R, Akarca AU, Linares J, Marafioti T, Henry JY, Van Allen EM, Miao D, Schilling B, Schadendorf D, Garraway LA, Makarov V, Rizvi NA, Snyder A, Hellmann MD, Merghoub T, Wolchok JD, Shukla SA, Wu CJ, Peggs KS, Chan TA, Hadrup SR, Quezada SA, Swanton C . Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science, 2016,351(6280):1463-1469.
|
[36] |
Calis JJ, Maybeno M, Greenbaum JA, Weiskopf D, de Silva AD, Sette A, Ke?mir C, Peters B . Properties of MHC class I presented peptides that enhance immunogenicity. PLoS ComputBiol, 2013,9(10):e1003266.
|
[37] |
Assarsson E, Sidney J, Oseroff C, Pasquetto V, Bui HH, Frahm N, Brander C, Peters B, Grey H, Sette A . A quantitative analysis of the variables affecting the repertoire of T cell specificities recognized after vaccinia virus infection. J Immunol, 2007,178(12):7890-7901.
|
[38] |
Bentzen AK, Such L, Jensen KK, Marquard AM, Jessen LE, Miller NJ, Church CD, Lyngaa R, Koelle DM, Becker JC, Linnemann C, Schumacher TNM, Marcatili P, Nghiem P, Nielsen M, Hadrup SR . T cell receptor fingerprinting enables in-depth characterization of the interactions governing recognition of peptide-MHC complexes. Nat Biotechnol, 2018,36(12):1191-11996.
|
[39] |
Bentzen AK, Marquard AM, Lyngaa R, Saini SK, Ramskov S, Donia M, Such L, Furness AJ, Mcgranahan N, Rosenthal R, Straten PT, Szallasi Z, Svane IM, Swanton C, Quezada SA, Jakobsen SN, Eklund AC, Hadrup SR . Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes. Nat Biotechnol, 2016,34(10):1037-1045.
|