遗传 ›› 2020, Vol. 42 ›› Issue (9): 882-888.doi: 10.16288/j.yczz.20-077
曹岚1,3, 李志强2,3, 师咏勇3, 刘赟4
收稿日期:
2020-03-18
修回日期:
2020-05-22
出版日期:
2020-09-20
发布日期:
2020-08-28
作者简介:
曹岚,博士,研究方向:复杂疾病的遗传学。E-mail: 基金资助:
Lan Cao1,3, Zhiqiang Li2,3, Yongyong Shi3, Yun Liu4
Received:
2020-03-18
Revised:
2020-05-22
Online:
2020-09-20
Published:
2020-08-28
Supported by:
摘要:
多项观察性研究表明,端粒长度缩短与2型糖尿病(type 2 diabetes, T2D)之间存在关联。然而,传统观察性研究结果常受到混杂因素和反向因果关联的影响,端粒长度与T2D是否存在因果关联尚不明确。本研究在中国汉族人群中利用孟德尔随机化(Mendelian randomization, MR)和多基因风险评分(polygenic risk score, PRS)方法探索端粒长度与T2D的因果关系。MR研究选取8个与端粒长度相关的独立遗传变异作为工具变量,利用2632例中国汉族人群T2D全基因组关联研究(genome-wide association study, GWAS)数据,检验遗传预测的端粒长度与T2D的关系。利用中国汉族人群GWAS数据,采用PRS分析评价端粒长度PRS与T2D的关系。MR研究共纳入1318例T2D患者和1314例正常对照,逆方差加权、MR-Egger回归、简单中位数和加权中位数法估计的OR值分别为0.78 (95% CI: 0.36~1.68, P = 0.522)、0.23 (95% CI: 0.01~7.64, P = 0.412)、0.60 (95% CI: 0.28~ 1.28, P = 0.185)和0.64 (95% CI: 0.31~1.33, P = 0.233),遗传预测的较长端粒长度与T2D之间不存在关联。PRS分析未发现端粒长度PRS与T2D显著关联的一致结果。本研究采用MR和PRS方法未发现端粒长度与T2D具有因果关联,后续研究中增大样本量有助于得出更可靠的结论。
曹岚, 李志强, 师咏勇, 刘赟. 端粒长度与2型糖尿病:孟德尔随机化研究与多基因风险评分分析[J]. 遗传, 2020, 42(9): 882-888.
Lan Cao, Zhiqiang Li, Yongyong Shi, Yun Liu. Telomere length and type 2 diabetes: Mendelian randomization study and polygenic risk score analysis[J]. Hereditas(Beijing), 2020, 42(9): 882-888.
表1
与端粒长度相关的遗传变异"
SNP | Chr. | 临近基因 | 效应等位基因 | MAF | 端粒长度 | T2D | ||
---|---|---|---|---|---|---|---|---|
β* | P值 | β | P值 | |||||
rs10936599 | 3 | TERC | C | 0.252 | 0.117 | 2.54×10-31 | -0.038 | 0.53 |
rs2736100 | 5 | TERT | C | 0.486 | 0.094 | 4.38×10-19 | -0.053 | 0.37 |
rs7675998 | 4 | NAF1 | G | 0.217 | 0.090 | 4.35×10-16 | -0.077 | 0.32 |
rs4387287 | 10 | OBFC1 | A | NA | 0.100 | 2.33×10-11 | -0.114 | 0.17 |
rs8105767 | 19 | ZNF208 | G | 0.291 | 0.058 | 1.11×10-09 | -0.027 | 0.69 |
rs755017 | 20 | RTEL1 | G | 0.131 | 0.074 | 6.71×10-09 | 0.095 | 0.12 |
rs3027234 | 17 | CTC1 | C | 0.179 | 0.057 | 2.29×10-08 | -0.323 | 0.04 |
rs11125529 | 2 | ACYP2 | A | 0.142 | 0.067 | 4.48×10-08 | 0.135 | 0.08 |
[1] |
NCD Risk Factor Collaboration(NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet, 2016,387(10027):1513-1530.
pmid: 27061677 |
[2] |
Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, Malanda B,. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract, 2018,138:271-281.
pmid: 29496507 |
[3] |
Bragg F, Holmes MV, Iona A, Guo Y, Du HD, Chen YP, Bian Z, Yang L, Herrington W, Bennett D, Turnbull I, Liu YM, Feng SX, Chen JS, Clarke R, Collins R, Peto R, Li LM, Chen ZM , China Kadoorie Biobank Collaborative Group. Association between diabetes and cause-specific mortality in rural and urban areas of China. JAMA, 2017,317(3):280-289.
pmid: 28114552 |
[4] |
Gao KP, Ren YC, Wang JJ, Liu ZC, Li JN, Li LL, Wang BY, Li H, Wang YX, Cao YK, Ohno K, Zhai RH, Liang Z . Interactions between genetic polymorphisms of glucose metabolizing genes and smoking and alcohol consumption in the risk of type 2 diabetes mellitus. Appl Physiol Nutr Metab, 2017,42(12):1316-1321.
pmid: 28806535 |
[5] | Huang X, Chen YQ, Xu GL, Peng SH . DNA methylation in adipose tissue and the development of diabetes and obesity. Hereditas(Beijing), 2019,41(2):98-110. |
黄鑫, 陈永强, 徐国良, 彭淑红 . 脂肪组织DNA甲基化与糖尿病和肥胖的发生发展. 遗传, 2019,41(2):98-110. | |
[6] | Wang YZ, Zhang YM, Dong XL, Wang XC, Zhu JF, Wang N, Jiang F, Chen Y, Jiang QW, Fu CW . Modification effects of T2DM-susceptible SNPs on the reduction of blood glucose in response to lifestyle interventions. Hereditas(Beijing), 2020,42(5):483-493. |
王玉琢, 张一鸣, 董晓莲, 王学才, 朱建福, 王娜, 江峰, 陈跃, 姜庆五, 付朝伟 . 2型糖尿病易感基因SNP位点对生活方式干预降低血糖应答效果的修饰效应. 遗传, 2020,42(5):483-493. | |
[7] | Han CY, Zhang M, Luo XP, Wang CJ, Yin L, Pang C, Feng TP, Ren YC, Wang BY, Zhang L, Li LL, Yang XY, Zhang HY, Zhao Y, Zhou JM, Xie ZH, Zhao JZ, Hu DS . Secular trends in the prevalence of type 2 diabetes in adults in China from 1995 to 2014: A meta-analysis. J Diabetes, 2017,9(5):450-461. |
[8] |
Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, Meyne J, Ratliff RL, Wu JR . A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA, 1988,85(18):6622-6626.
pmid: 3413114 |
[9] | Wolkowitz OM, Reus VI, Mellon SH . Of sound mind and body: depression, disease, and accelerated aging. Dialogues Clin Neurosci, 2011,13(1):25-39. |
[10] | Aviv A . Genetics of leukocyte telomere length and its role in atherosclerosis. Mutat Res, 2012,730(1-2):68-74. |
[11] |
Sampson MJ, Winterbone MS, Hughes JC, Dozio N, Hughes DA . Monocyte telomere shortening and oxidative DNA damage in type 2 diabetes. Diabetes Care, 2006,29(2):283-289.
pmid: 16443874 |
[12] |
Zee RY, Castonguay AJ, Barton NS, Germer S, Martin M . Mean leukocyte telomere length shortening and type 2 diabetes mellitus: a case-control study. Transl Res, 2010,155(4):166-169.
pmid: 20303464 |
[13] |
Zhao JZ, Miao K, Wang HR, Ding H, Wang DW . Association between telomere length and type 2 diabetes mellitus: a meta-analysis. PLoS One, 2013,8(11):e79993.
pmid: 24278229 |
[14] |
D'Mello MJJ, Ross SA, Briel M, Anand SS, Gerstein H, Paré G,. Association between shortened leukocyte telomere length and cardiometabolic outcomes: systematic review and meta-analysis. Circ Cardiovasc Genet, 2015,8(1):82-90.
pmid: 25406241 |
[15] |
Dudbridge F . Polygenic epidemiology. Genet Epidemiol, 2016,40(4):268-272.
pmid: 27061411 |
[16] | Meng LX, Que XM, Gao X, Wang T . Childhood obesity and coronary artery disease: a Mendelian randomization study. Chin J Epidemiol, 2019,40(7):839-843. |
孟玲先, 阙喜妹, 高雪, 王彤 . 儿童肥胖与冠状动脉疾病的孟德尔随机化研究. 中华流行病学杂志, 2019,40(7):839-843. | |
[17] |
Polimanti R, Ratanatharathorn A, Maihofer AX, Choi KW, Stein MB, Morey RA, Logue MW, Nievergelt C M, Stein DJ, Koenen KC, Gelernter J, Psychiatric Genomics Consortium Posttraumatic Stress Disorder Working Group. Association of economic status and educational attainment with posttraumatic stress disorder: a Mendelian randomization study. JAMA Netw Open, 2019,2(5):e193447.
pmid: 31050786 |
[18] |
Colodro-Conde L, Couvy-Duchesne B, Whitfield JB, Streit F, Gordon S, Kemper KE, Yengo L, Zheng ZL, Trzaskowski M, de Zeeuw EL, Nivard MG, Das M, Neale RE, MacGregor S, Olsen CM, Whiteman DC, Boomsma DI, Yang J, Rietschel M, McGrath JJ, Medland SE, Martin NG,. Association between population density and genetic risk for schizophrenia. JAMA Psychiatry, 2018,75(9):901-910.
pmid: 29936532 |
[19] | Chen X, Yazdani S, Piehl F, Magnusson PKE, Fang F,. Polygenic link between blood lipids and amyotrophic lateral sclerosis. Neurobiol Aging, 2018, 67: 202. e1-202. e6. |
[20] |
Liu Y, Zhou DZ, Zhang D, Chen Z, Zhao T, Zhang Z, Ning M, Hu X, Yang YF, Zhang ZF, Yu L, He L, Xu H . Variants in KCNQ1 are associated with susceptibility to type 2 diabetes in the population of mainland China. Diabetologia, 2009,52(7):1315-1321.
pmid: 19448982 |
[21] |
Liu Y, Cao L, Li ZQ, Zhou DZ, Liu WQ, Shen Q, Wu YT, Zhang D, Hu X, Wang T, Ye JY, Weng XL, Zhang H, Zhang D, Zhang Z, Liu FT, He L, Shi YY . A genome-wide association study identifies a locus on TERT for mean telomere length in Han Chinese. PLoS One, 2014,9(1):e85043.
pmid: 24465473 |
[22] | Didelez V, Sheehan N . Mendelian randomization as an instrumental variable approach to causal inference. Stat Methods Med Res, 2007,16(4):309-330. |
[23] | International Schizophrenia Consortium, Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, Sullivan PF, Sklar P, . Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, 2009,460(7256):748-752. |
[24] | So HC, Chau KL, Ao FK, Mo CH, Sham PC . Exploring shared genetic bases and causal relationships of schizophrenia and bipolar disorder with 28 cardiovascular and metabolic traits. Psychol Med, 2019,49(8):1286-1298. |
[25] | Euesden J, Lewis CM, O'Reilly PF, . PRSice: Polygenic Risk Score software. Bioinformatics, 2015,31(9):1466-1468. |
[26] | Codd V, Nelson CP, Albrecht E, Mangino M, Deelen J, Buxton JL, Hottenga JJ, Fischer K, Esko T, Surakka I, Broer L, Nyholt DR, Leach IM, Salo P, Hägg S, Matthews MK, Palmen J, Norata GD, O'Reilly PF, Saleheen D, Amin N, Balmforth AJ, Beekman M, de Boer RA, Böhringer S, Braund PS, Burton PR, de Craen AJ, Denniff M, Dong Y, Douroudis K, Dubinina E, Eriksson JG, Garlaschelli K, Guo DH, Hartikainen AL, Henders AK, Houwing- Duistermaat JJ, Kananen L, Karssen LC, Kettunen J, Klopp N, Lagou V, van Leeuwen EM, Madden PA, Mägi R, Magnusson PK, Männistö S, McCarthy MI, Medland SE, Mihailov E, Montgomery GW, Oostra BA, Palotie A, Peters A, Pollard H, Pouta A, Prokopenko I, Ripatti S, Salomaa V, Suchiman HE, Valdes AM, Verweij N, Viñuela A, Wang XL, Wichmann HE, Widen E, Willemsen G, Wright MJ, Xia K, Xiao XJ, van Veldhuisen DJ, Catapano AL, Tobin MD, Hall AS, Blakemore AI, van Gilst WH, Zhu HD, Erdmann J, Reilly MP, Kathiresan S, Schunkert H, Talmud PJ, Pedersen NL, Perola M, Ouwehand W, Kaprio J, Martin NG, van Duijn CM, Hovatta I, Gieger C, Metspalu A, Boomsma DI, Jarvelin MR, Slagboom PE, Thompson JR, Spector TD, van der Harst P, Samani NJ,. Identification of seven loci affecting mean telomere length and their association with disease. Nat Genet, 2013,45(4): 422-7, 427e1-2. |
[27] | Mangino M, Hwang SJ, Spector TD, Hunt SC, Kimura M, Fitzpatrick AL, Christiansen L, Petersen I, Elbers CC, Harris T, Chen W, Srinivasan SR, Kark JD, Benetos A, El Shamieh S, Visvikis-Siest S, Christensen K, Berenson GS, Valdes AM, Viñuela A, Garcia M, Arnett DK, Broeckel U, Province MA, Pankow JS, Kammerer C, Liu Y, Nalls M, Tishkoff S, Thomas F, Ziv E, Psaty BM, Bis JC, Rotter JI, Taylor KD, Smith E, Schork NJ, Levy D, Aviv A . Genome-wide meta-analysis points to CTC1 and ZNF676 as genes regulating telomere homeostasis in humans. Hum Mol Genet, 2012,21(24):5385-5394. |
[28] | Levy D, Neuhausen SL, Hunt SC, Kimura M, Hwang SJ, Chen W, Bis JC, Fitzpatrick AL, Smith E, Johnson AD, Gardner JP, Srinivasan SR, Schork N, Rotter JI, Herbig U, Psaty BM, Sastrasinh M, Murray SS, Vasan RS, Province MA, Glazer NL, Lu XB, Cao XJ, Kronmal R, Mangino M, Soranzo N, Spector TD, Berenson GS, Aviv A . Genome- wide association identifies OBFC1 as a locus involved in human leukocyte telomere biology. Proc Natl Acad Sci USA, 2010,107(20):9293-9298. |
[29] | Shen Q, Zhao XZ, Yu L, Zhang Z, Zhou DZ, Kan MY, Zhang D, Cao L, Xing QH, Yang YF, Xu H, He L, Liu Y . Association of leukocyte telomere length with type 2 diabetes in mainland Chinese populations. J Clin Endocrinol Metab, 2012,97(4):1371-1374. |
[30] | Telomeres Mendelian Randomization Collaboration, Haycock PC, Burgess S, Nounu A, Zheng J, Okoli GN, Bowden J, Wade KH, Timpson NJ, Evans DM, Willeit P, Aviv A, Gaunt TR, Hemani G, Mangino M, Ellis HP, Kurian KM, Pooley KA, Eeles RA, Lee JE, Fang SY, Chen WV, Law MH, Bowdler LM, Iles MM, Yang Q, Worrall BB, Markus HS, Hung RJ, Amos CI, Spurdle AB, Thompson DJ, O'Mara TA, Wolpin B, Amundadottir L, Stolzenberg-Solomon R, Trichopoulou A, Onland-Moret NC, Lund E, Duell EJ, Canzian F, Severi G, Overvad K, Gunter MJ, Tumino R, Svenson U, van Rij A, Baas AF, Bown MJ, Samani NJ, van t'Hof FNG, Tromp G, Jones GT, Kuivaniemi H, Elmore JR, Johansson M, Mckay J, Scelo G, Carreras-Torres R, Gaborieau V, Brennan P, Bracci PM, Neale RE, Olson SH, Gallinger S, Li D, Petersen GM, Risch HA, Klein AP, Han J, Abnet CC, Freedman ND, Taylor PR, Maris JM, Aben KK, Kiemeney LA, Vermeulen SH, Wiencke JK, Walsh KM, Wrensch M, Rice T, Turnbull C, Litchfield K, Paternoster L, Standl M, Abecasis GR, SanGiovanni JP, Li Y, Mijatovic V, Sapkota Y, Low SK, Zondervan KT, Montgomery GW, Nyholt DR, van Heel DA, Hunt K, Arking DE, Ashar FN, Sotoodehnia N, Woo D, Rosand J, Comeau ME, Brown WM, Silverman EK, Hokanson JE, Cho MH, Hui J, Ferreira MA, Thompson PJ, Morrison AC, Felix JF, Smith NL, Christiano AM, Petukhova L, Betz RC, Fan X, Zhang XJ, Zhu CH, Langefeld CD, Thompson SD, Wang FJ, Lin X, Schwartz DA, Fingerlin T, Rotter JI, Cotch MF, Jensen RA, Munz M, Dommisch H, Schaefer AS, Han F, Ollila HM, Hillary RP, Albagha O, Ralston SH, Zeng CJ, Zheng W, Shu XO, Reis A, Uebe S, Hüffmeier U, Kawamura Y, Otowa T, Sasaki T, Hibberd ML, Davila S, Xie G, Siminovitch K, Bei JX, Zeng YX, Försti A, Chen BW, Landi S, Franke A, Fischer A, Ellinghaus D, Flores C, Noth I, Ma SF, Foo JN, Liu J, Kim JW, Cox DG, Delattre O, Mirabeau O, Skibola CF, Tang CS, Garcia-Barcelo M, Chang KP, Su WH, Chang YS, Martin NG, Gordon S, Wade TD, Lee C, Kubo M, Cha PC, Nakamura Y, Levy D, Kimura M, Hwang SJ, Hunt S, Spector T, Soranzo N, Manichaikul AW, Barr RG, Kahali B, Speliotes E, Yerges-Armstrong LM, Cheng CY, Jonas JB, Wong TY, Fogh I, Lin K, Powell JF, Rice K, Relton CL, Martin RM, Davey Smith G . Association between telomere length and risk of cancer and non-neoplastic diseases: a Mendelian randomization study. JAMA Oncol, 2017,3(5):636-651. |
[31] | Shen Q, Zhang Z, Yu L, Cao L, Zhou DZ, Kan MY, Li BJ, Zhang D, He L, Liu Y . Common variants near TERC are associated with leukocyte telomere length in the Chinese Han population. Eur J Hum Genet, 2011,19(6):721-723. |
[32] | Machiela MJ, Hsiung CA, Shu XO, Seow WJ, Wang ZM, Matsuo K, Hong YC, Seow A, Wu C, Hosgood HD, Chen KX, Wang JC, Wen WQ, Cawthon R, Chatterjee N, Hu W, Caporaso NE, Park JY, Chen CJ, Kim YH, Kim YT, Landi MT, Shen HB, Lawrence C, Burdett L, Yeager M, Chang IS, Mitsudomi T, Kim HN, Chang GC, Bassig BA, Tucker M, Wei FS, Yin ZH, An SJ, Qian BY, Lee VH, Lu DR, Liu JJ, Jeon HS, Hsiao CF, Sung JS, Kim JH, Gao YT, Tsai YH, Jung YJ, Guo H, Hu ZB, Hutchinson A, Wang WC, Klein RJ, Chung CC, Oh IJ, Chen KY, Berndt SI, Wu W, Chang J, Zhang XC, Huang MS, Zheng H, Wang JW, Zhao XY, Li YQ, Choi JE, Su WC, Park KH, Sung SW, Chen YM, Liu L, Kang CH, Hu LM, Chen CH, Pao W, Kim YC, Yang TY, Xu J, Guan P, Tan W, Su J, Wang CL, Li HX, Sihoe AD, Zhao ZH, Chen Y, Choi YY, Hung JY, Kim JS, Yoon HI, Cai QY, Lin CC, Park IK, Xu P, Dong J, Kim C, He Q, Perng RP, Kohno T, Kweon SS, Chen CY, Vermeulen RC, Wu JJ, Lim WY, Chen KC, Chow WH, Ji BT, Chan JK, Chu MJ, Li YJ, Yokota J, Li J, Chen H, Xiang YB, Yu CJ, Kunitoh H, Wu G, Jin L, Lo YL, Shiraishi K, Chen YH, Lin HC, Wu TC, Wong MP, Wu YL, Yang PC, Zhou BS, Shin MH, Fraumeni JF Jr, Zheng W, Lin DX, Chanock SJ, Rothman N, Lan Q . Genetic variants associated with longer telomere length are associated with increased lung cancer risk among never-smoking women in Asia: a report from the female lung cancer consortium in Asia. Int J Cancer, 2015,137(2):311-319. |
[1] | 吕承安, 王若然, 孟卓贤. 2型糖尿病进程中胰岛β细胞功能变化的分子机制[J]. 遗传, 2022, 44(10): 840-852. |
[2] | 曾之扬, 陆佳微, 曹希雅, 王芯悦, 李大力. 一种GLP-1过表达肠类器官构建的方法[J]. 遗传, 2021, 43(7): 694-703. |
[3] | 王玉琢, 张一鸣, 董晓莲, 王学才, 朱建福, 王娜, 江峰, 陈跃, 姜庆五, 付朝伟. 2型糖尿病易感基因SNP位点对生活方式干预降低血糖应答效果的修饰效应[J]. 遗传, 2020, 42(5): 483-492. |
[4] | 弓弦,张超,伊利亚斯·艾萨,时瑛,杨雪唯,努尔斯曼古丽奥斯曼,关亚群,徐书华. 2型糖尿病易感候选基因在世界不同人群中的多样性比较分析[J]. 遗传, 2016, 38(6): 543-559. |
[5] | 张君, 张望强, 丁毓磊, 许彭, 王婷婷, 徐文静, 陆环, 刘宗智, 谢建新. 腹部脂肪组织APN基因DNA甲基化及mRNA表达与维吾尔族T2DM的相关性[J]. 遗传, 2015, 37(3): 269-275. |
[6] | 吴日,马超,李晓丹,段会坤,姬艳丽,王宇,姜苹哲,王海松,屠培培,李淼,尼钢钢,马百成,李明刚. 长效促胰岛素降糖酵母的构建及其对糖尿病模型小鼠的治疗效果[J]. 遗传, 2015, 37(2): 183-191. |
[7] | 刘舒媛,张昌军,彭海英,黄小琴,孙浩,林克勤,黄铠,褚嘉祐,杨昭庆. 精子端粒长度与特发性男性不育相关[J]. 遗传, 2015, 37(11): 1137-1142. |
[8] | 汤琳琳 刘琼 步世忠 徐雷艇 王钦文 麦一峰 段世伟. 2型糖尿病环境因素与DNA甲基化的研究进展[J]. 遗传, 2013, 35(10): 1143-1152. |
[9] | 蒲连美,南楠,杨泽,金泽宁. SUMO4基因多态性与2型糖尿病的关系[J]. 遗传, 2012, 34(3): 315-325. |
[10] | 汤晓丽,邓立彬,李桂林,刘双梅,林加日,谢金燕,刘俊,孔繁君,梁尚栋. 2型糖尿病早期大鼠外周神经节基因表达谱分析[J]. 遗传, 2012, 34(2): 198-207. |
[11] | 王敏,彭婵,屈亚莉,黄青阳. 中国汉族人群ENPP1基因K121Q多态与2型糖尿病的关联及Meta分析[J]. 遗传, 2010, 32(8): 808-816. |
[12] | 陈芳建,俞红,樊璠,吕建新. 线粒体基因组D-Loop区基因多态性与2型糖尿病的相关性[J]. 遗传, 2009, 31(3): 265-272. |
[13] | 苏燕,彭姝彬,李智琼,黄青阳. PPARGC1A基因Thr394Thr/Gly482Ser多态性与2型糖尿病的关联研究[J]. 遗传, 2008, 30(3): 304-308. |
[14] | 杜纪坤,黄青阳,李守华,熊国梅. 脂蛋白脂酶基因HindⅢ酶切多态性与2型糖尿病的关联研究[J]. 遗传, 2007, 29(8): 929-929―933. |
[15] | 程祖建,杨滨,刘奇才,江凌,谢海花,欧启水. 一个2型糖尿病家系中新发现的线粒体DNA G7444A 突变分析[J]. 遗传, 2007, 29(4): 433-437. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: