遗传 ›› 2013, Vol. 35 ›› Issue (10): 1143-1152.doi: 10.3724/SP.J.1005.2013.01143
• 综述 • 下一篇
汤琳琳1, 刘琼1,2, 步世忠1,2, 徐雷艇1,2, 王钦文1,2, 麦一峰3, 段世伟1,2
收稿日期:
2013-04-25
修回日期:
2013-07-04
出版日期:
2013-10-20
发布日期:
2013-10-25
通讯作者:
段世伟, 博士, 研究员, 研究方向:遗传学。
E-mail:duanshiwei@nbu.edu.cn
作者简介:
汤琳琳, 硕士研究生, 专业方向:内科学。E-mail: tll318@163.com
基金资助:
国家自然科学基金项目(编号:31100919), 浙江省自然科学基金杰出青年项目(编号:LR13H020003), 宁波市科技局/农业与社会发展攻关项目(编号:2012C50032), 宁波市自然科学基金项目(编号:2007A610077, 200701A6304004), 宁波大学重点学科项目(编号:XKL11D2117)和宁波大学王宽诚幸福基金项目资助
TANG Lin-Lin1, LIU Qiong1,2, BU Shi-Zhong1,2, XU Lei-Ting1,2, WANG Qin-Wen1,2, MAI Yi-Feng3, DUAN Shi-Wei1,2
Received:
2013-04-25
Revised:
2013-07-04
Online:
2013-10-20
Published:
2013-10-25
摘要:
2 型糖尿病(Type 2 diabetes mellitus, T2DM)是由于遗传与环境因素共同作用而引起葡萄糖代谢紊乱的疾病。DNA甲基化修饰的研究发现环境因素可以通过影响DNA甲基化修饰, 显著地增加T2DM的患病风险。目前, T2DM环境相关基因的DNA甲基化修饰研究已在人及动物的不同组织中取得进展。此外, T2DM相关基因的甲基化研究主要集中在糖代谢、能量代谢、炎症等。文章系统地综述了目前T2DM致病环境因素与DNA甲基化研究进展。
汤琳琳 刘琼 步世忠 徐雷艇 王钦文 麦一峰 段世伟. 2型糖尿病环境因素与DNA甲基化的研究进展[J]. 遗传, 2013, 35(10): 1143-1152.
TANG Lin-Lin LIU Qiong BU Shi-Zhong XU Lei-Ting WANG Qin-Wen MAI Yi-Feng DUAN Shi-Wei. The effect of environmental factors and DNA methylation on type 2 diabetes mellitus[J]. HEREDITAS, 2013, 35(10): 1143-1152.
[1] Drong AW, Lindgren CM, McCarthy MI. The genetic and epigenetic basis of type 2 diabetes and obesity. Clin Pharmacol Ther, 2012, 92(6): 707-715.<\p> [2] Murea M, Ma LJ, Freedman BI. Genetic and environmental factors associated with type 2 diabetes and diabetic vascular complications. Rev Diabet Stud, 2012, 9(1): 6-22.<\p> [3] Scheen AJ, Junien C.[Epigenetics, interface between environment and genes: role in complex diseases]. Rev Med Liege, 2012, 67(5-6): 250-257.<\p> [4] Yagi S, Hirosawa M, Shiota K. DNA methylation profile: a composer-, conductor-, and player-orchestrated Mammalian genome consisting of genes and transposable genetic elements. J Reprod Dev, 2012, 58(3): 265-273.<\p> [5] Keating ST, El-Osta A. Epigenetic changes in diabetes. Clin Genet, 2013, 84(1): 1–10.<\p> [6] Melmed S, Polonsky KS, Larsen PR, Kronenberg HM. Williams textbook of endocrinology. 12th ed. Philadelphia: Elsevier/Saunders, 2012: 1371–1435.<\p> [7] http://www.who.int/mediacentre/factsheets/fs312/en/.<\p> [8] Teljeur C, Smith SM, Paul G, Kelly A, O'Dowd T. Multimorbidity in a cohort of patients with type 2 diabetes. Eur J Gen Pract, 2013, 19(1): 17-22.<\p> [9] Tarride JE, Hopkins R, Blackhouse G, Bowen JM, Bischof M, Von Keyserlingk C, O'Reilly D, Xie F, Goeree R. A review of methods used in long-term cost-effectiveness models of diabetes mellitus treatment. Pharmacoeconomics, 2010, 28(4): 255-277.<\p> [10] Hale PJ, Lopez-Yunez AM, Chen JY. Genome-wide meta-analysis of genetic susceptible genes for Type 2 Diabetes. BMC Syst Biol, 2012, 6 (Suppl. 3): S16.<\p> [11] Campión J, Milagro F, Martínez JA. Epigenetics and obesity. Prog Mol Biol Transl Sci, 2010, 94: 291-347.<\p> [12] Alibegovic AC, Sonne MP, Hojbjerre L, Bork-Jensen J, Jacobsen S, Nilsson E, Faerch K, Hiscock N, Mortensen B, Friedrichsen M, Stallknecht B, Dela F, Vaag A. Insulin resistance induced by physical inactivity is associated with multiple transcriptional changes in skeletal muscle in young men. Am J Physiol Endocrinol Metab, 2010, 299(5): E752-E763.<\p> [13] Alasaari JS, Lagus M, Ollila HM, Toivola A, Kivim?ki M, Vahtera J, Kronholm E, H?rm? M, Puttonen S, Paunio T. Environmental stress affects DNA methylation of a CpG rich promoter region of serotonin transporter gene in a nurse cohort. PLoS ONE, 2012, 7(9): e45813.<\p> [14] Kosik KS, Rapp PR, Raz N, Small SA, Sweatt JD, Tsai LH. Mechanisms of age-related cognitive change and targets for intervention: epigenetics. J Gerontol A Biol Sci Med Sci, 2012, 67(7): 741-746.<\p> [15] Nugent BM, McCarthy MM. Epigenetic underpinnings of developmental sex differences in the brain. Neuroendocrinology, 2011, 93(3): 150-158.<\p> [16] Reddington JP, Pennings S, Meehan RR. Non-canonical functions of the DNA methylome in gene regulation. Biochem J, 2013, 451(1): 13-23.<\p> [17] Holliday R. Epigenetics: a historical overview. Epigenetics, 2006, 1(2): 76-80.<\p> [18] Kar S, Deb M, Sengupta D, Shilpi A, Parbin S, Torrisani J, Pradhan S, Patra SK. An insight into the various regulatory mechanisms modulating human DNA methyltransferase 1 stability and function. Epigenetics, 2012, 7(9): 994-1007.<\p> [19] Chédin F. The DNMT3 family of mammalian de novo DNA methyltransferases. Prog Mol Biol Transl Sci, 2011, 101: 255-285.<\p> [20] Shen LL, Kondo Y, Guo Y, Zhang JX, Zhang L, Ahmed S, Shu JM, Chen XL, Waterland RA, Issa JPJ. Genome-wide profiling of DNA methylation reveals a class of normally methylated CpG island promoters. PLoS Genet, 2007, 3(10): 2023-2036.<\p> [21] Wang LQ, Liang R, Chim CS. Methylation of tumor suppressor microRNAs: lessons from lymphoid malignancies. Expert Rev Mol Diagn, 2012, 12(7): 755-765.<\p> [22] Liu L, Li YY, Tollefsbol TO. Gene-environment interactions and epigenetic basis of human diseases. Curr Issues Mol Biol, 2008, 10(1-2): 25-36.<\p> [23] Zhao JY, Goldberg J, Bremner JD, Vaccarino V. Global DNA methylation is associated with insulin resistance: a monozygotic twin study. Diabetes, 2012, 61(2): 542-546.<\p> [24] Simmons RA. Programming of DNA methylation in type 2 diabetes. Diabetologia, 2013, 56(5): 947-948.<\p> [25] Volkmar M, Dedeurwaerder S, Cunha DA, Ndlovu MN, Defrance M, Deplus R, Calonne E, Volkmar U, Igoillo- Esteve M, Naamane N, Del Guerra S, Masini M, Bugliani M, Marchetti P, Cnop M, Eizirik DL, Fuks F. DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients. EMBO J, 2012, 31(6): 1405-1426.<\p> [26] Cordero P, Campion J, Milagro FI, Goyenechea E, Steemburgo T, Javierre BM, Martinez JA. Leptin and TNF-alpha promoter methylation levels measured by MSP could predict the response to a low-calorie diet. J Physiol Biochem, 2011, 67(3): 463-470.<\p> [27] Bouchard L, Thibault S, Guay SP, Santure M, Monpetit A, St-Pierre J, Perron P, Brisson D. Leptin gene epigenetic adaptation to impaired glucose metabolism during pregnancy. Diabetes Care, 2010, 33(11): 2436-2441.<\p> [28] Holness MJ, Sugden MC. Epigenetic regulation of metabolism in children born small for gestational age. Curr Opin Clin Nutr Metab Care, 2006, 9(4): 482-488.<\p> [29] Fradin D, Le Fur S, Mille C, Naoui N, Groves C, Zelenika D, McCarthy MI, Lathrop M, Bougnères P. Association of the CpG methylation pattern of the proximal insulin gene promoter with type 1 diabetes. PLoS ONE, 2012, 7(5): e36278.<\p> [30] Yang BT, Dayeh TA, Kirkpatrick CL, Taneera J, Kumar R, Groop L, Wollheim CB, Nitert MD, Ling C. Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA1c levels in human pancreatic islets. Diabetologia, 2011, 54(2): 360-367.<\p> [31] Toperoff G, Aran D, Kark JD, Rosenberg M, Dubnikov T, Nissan B, Wainstein J, Friedlander Y, Levy-Lahad E, Glaser B, Hellman A. Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood. Hum Mol Genet, 2012, 21(2): 371-383.<\p> [32] Yang BT, Dayeh TA, Volkov PA, Kirkpatrick CL, Malmgren S, Jing XJ, Renstr?m E, Wollheim CB, Nitert MD, Ling C. Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients with type 2 diabetes. Mol Endocrinol, 2012, 26(7): 1203-1212.<\p> [33] Travers ME, Mackay DJG, Dekker Nitert M, Morris AP, Lindgren CM, Berry A, Johnson PR, Hanley N, Groop LC, McCarthy MI, Gloyn AL. Insights into the molecular mechanism for type 2 diabetes susceptibility at the KCNQ1 locus from temporal changes in imprinting status in human islets. Diabetes, 2013, 62(3): 987-992.<\p> [34] Jeppesen C, Bjerregaard P, Jorgensen ME. Dietary patterns in Greenland and their relationship with type 2 diabetes mellitus and glucose intolerance. Public Health Nutr, 2013: 1-9, doi:10.1017/S136898001300013X.<\p> [35] Nauta AJ, Ben Amor K, Knol J, Garssen J, van der Beek E. Relevance of pre- and postnatal nutrition to development and interplay between the microbiota and metabolic and immune systems. Am J Clin Nutr, 2013, 98(2): 586S–593S.<\p> [36] Simmons RA. Developmental origins of beta-cell failure in type 2 diabetes: the role of epigenetic mechanisms. Pediatr Res, 2007, 61(5 Pt 2): 64R–67R.<\p> [37] Barnett M, Bermingham E, McNabb W, Bassett S, Armstrong K, Rounce J, Roy N. Investigating micronutrients and epigenetic mechanisms in relation to inflammatory bowel disease. Mutat Res, 2010, 690(1-2): 71-80.<\p> [38] Thompson RF, Fazzari MJ, Niu H, Barzilai N, Simmons RA, Greally JM. Experimental intrauterine growth restriction induces alterations in DNA methylation and gene expression in pancreatic islets of rats. J Biol Chem, 2010, 285(20): 15111-15118.<\p> [39] Ng SF, Lin RC, Laybutt DR, Barres R, Owens JA, Morris MJ. Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature, 2010, 467(7318): 963-966.<\p> [40] Sandovici I, Smith NH, Nitert MD, Ackers-Johnson M, Uribe-Lewis S, Ito Y, Jones RH, Marquez VE, Cairns W, Tadayyon M, O'Neill LP, Murrell A, Ling C, Constancia M, Ozanne SE. Maternal diet and aging alter the epigenetic control of a promoter-enhancer interaction at the Hnf4a gene in rat pancreatic islets. Proc Natl Acad Sci USA, 2011, 108(13): 5449-5454.<\p> [41] Br?ns C, Jacobsen S, Nilsson E, Ronn T, Jensen CB, Storgaard H, Poulsen P, Groop L, Ling C, Astrup A, Vaag A. Deoxyribonucleic acid methylation and gene expression of PPARGC1A in human muscle is influenced by high-fat overfeeding in a birth-weight-dependent manner. J Clin Endocrinol Metab, 2010, 95(6): 3048-3056.<\p> [42] Jacobsen SC, Br?ns C, Bork-Jensen J, Ribel-Madsen R, Yang B, Lara E, Hall E, Calvanese V, Nilsson E, Jorgensen SW, Mandrup S, Ling C, Fernandez AF, Fraga MF, Poulsen P, Vaag A. Effects of short-term high-fat overfeeding on genome-wide DNA methylation in the skeletal muscle of healthy young men. Diabetologia, 2012, 55(12): 3341-3349.<\p> [43] Jiang MH, Zhang YH, Liu M, Lan MS, Fei J, Fan WW, Gao X, Lu DR. Hypermethylation of hepatic glucokinase and L-type pyruvate kinase promoters in high-fat diet- induced obese rats. Endocrinology, 2011, 152(4): 1284-1289.<\p> [44] Morand-Fehr P, Bas P, Hervieu J, Sauvant D.[Estimation of the lipid content of lactating goats using various methods which give information about lipid metabolism or body status]. Reprod Nutr Dev, 1990, (Suppl. 2): 255s–256s.<\p> [45] Ghoshal K, Li X, Datta J, Bai S, Pogribny I, Pogribny M, Huang Y, Young D, Jacob ST. A folate- and methyl- deficient diet alters the expression of DNA methyltransferases and methyl CpG binding proteins involved in epigenetic gene silencing in livers of F344 rats. J Nutr, 2006, 136(6): 1522-1527.<\p> [46] Junien C, Gallou-Kabani C, Vigé A, Gross MS.[Nutritionnal epigenomics: consequences of unbalanced diets on epigenetics processes of programming during lifespan and between generations]. Ann Endocrinol (Paris), 2005, 66(2 Pt 3): 2S19-2S28.<\p> [47] Cooper WN, Khulan B, Owens S, Elks CE, Seidel V, Prentice AM, Belteki G, Ong KK, Affara NA, Constancia M, Dunger DB. DNA methylation profiling at imprinted loci after periconceptional micronutrient supplementation in humans: results of a pilot randomized controlled trial. FASEB J, 2012, 26(5): 1782-1790.<\p> [48] Park JH, Stoffers DA, Nicholls RD, Simmons RA. Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. J Clin Invest, 2008, 118(6): 2316-2324.<\p> [49] Ivanova E, Chen JH, Segonds-Pichon A, Ozanne SE, Kelsey G. DNA methylation at differentially methylated regions of imprinted genes is resistant to developmental programming by maternal nutrition. Epigenetics, 2012, 7(10): 1200-1210.<\p> [50] Blumentals WA, Hwu P, Kobayashi N, Ogura E. Obesity in hospitalized type 2 diabetes patients: A descriptive study. Med Sci Monit, 2013, 19: 359-365.<\p> [51] Barnes SK, Ozanne SE. Pathways linking the early environment to long-term health and lifespan. Prog Biophys Mol Biol, 2011, 106(1): 323-336.<\p> [52] R?nn T, Poulsen P, Hansson O, Holmkvist J, Almgren P, Nilsson P, Tuomi T, Isomaa B, Groop L, Vaag A, Ling C. Age influences DNA methylation and gene expression of COX7A1 in human skeletal muscle. Diabetologia, 2008, 51(7): 1159-1168.<\p> [53] Tarry-Adkins JL, Ozanne SE. Mechanisms of early life programming: current knowledge and future directions. Am J Clin Nutr, 2011, 94(Suppl. 6): 1765S–1771S.<\p> [54] Ozanne SE, Constancia M. Mechanisms of disease: the developmental origins of disease and the role of the epigenotype. Nat Clin Pract Endocrinol Metab, 2007, 3(7): 539-546.<\p> [55] Zeng Y, Gu P, Liu K, Huang P. Maternal protein restriction in rats leads to reduced PGC-1α expression via altered DNA methylation in skeletal muscle. Mol Med Rep, 2013, 7(1): 306–312.<\p> [56] Szarc vel Szic K, Ndlovu MN, Haegeman G, Vanden Berghe W. Nature or nurture: let food be your epigenetic medicine in chronic inflammatory disorders. Biochem Pharmacol, 2010, 80(12): 1816-1832.<\p> [57] Choi YS, Kim S, Pak YK. Mitochondrial transcription factor A (mtTFA) and diabetes. Diabetes Res Clin Pract, 2001, 54 (Suppl. 2): S3-S9.<\p> [58] Jiang MH, Fei J, Lan MS, Lu ZP, Liu M, Fan WW, Gao X, Lu DR. Hypermethylation of hepatic Gck promoter in ageing rats contributes to diabetogenic potential. Diabetologia, 2008, 51(8): 1525-1533.<\p> [59] Nitert MD, Dayeh T, Volkov P, Elgzyri T, Hall E, Nilsson E, Yang BT, Lang S, Parikh H, Wessman Y, Weishaupt H, Attema J, Abels M, Wierup N, Almgren P, Jansson PA, Ronn T, Hansson O, Eriksson KF, Groop L, Ling C. Impact of an exercise intervention on DNA methylation in skeletal muscle from first-degree relatives of patients with type 2 diabetes. Diabetes, 2012, 61(12): 3322-3332.<\p> [60] Ling C, Poulsen P, Simonsson S, R?nn T, Holmkvist J, Almgren P, Hagert P, Nilsson E, Mabey AG, Nilsson P, Vaag A, Groop L. Genetic and epigenetic factors are associated with expression of respiratory chain component NDUFB6 in human skeletal muscle. J Clin Invest, 2007, 117(11): 3427-3435.<\p> [61] Ronn T, Volkov P, Daveg?rdh C, Dayeh T, Hall E, Olsson AH, Nilsson E, Tornberg ?, Dekker Nitert M, Eriksson KF, Jones HA, Groop L, Ling C. A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet, 2013, 9(6): e1003572.<\p> [62] Van Dij JW, Manders RJ, Canfora EE, Mechelen WV, Hartgens F, Stehouwer CD, Van Loon LJ. Exercise and 24-h Glycemic control: Equal effects for all Type 2 diabetes patients? Med Sci Sports Exerc, 2013, 45(4): 628-635.<\p> [63] Heraclides AM, Chandola T, Witte DR, Brunner EJ. Work stress, obesity and the risk of type 2 diabetes: gender- specific bidirectional effect in the Whitehall II study. Obesity, 2012, 20(2): 428-433.<\p> [64] Iordanidou M, Tavridou A, Petridis I, Arvanitidis KI, Christakidis D, Vargemezis V, Manolopoulos VG. The serotonin transporter promoter polymorphism (5-HTTLPR) is associated with type 2 diabetes. Clin Chim Acta, 2010, 411(3-4): 167-171.<\p> [65] Cosgrove MP, Sargeant LA, Caleyachetty R, Griffin SJ. Work-related stress and Type 2 diabetes: systematic review and meta-analysis. Occup Med (Lond), 2012, 62(3): 167-173.<\p> [66] Nakhjavani M, Morteza A, Jenab Y, Ghaneei A, Esteghamati A, Karimi M, Farokhian A. Gender difference in albuminuria and ischemic heart disease in type 2 diabetes. Clin Med Res, 2012, 10(2): 51-56.<\p> [67] Ahmed S, Ahmad SA. Gender difference and relationship of insulin resistance with microalbuminuria type-2 diabetes. J Coll Physicians Surg Pak, 2010, 20(1): 26-32.<\p> [68] 盛正妍 王, 邵安华. 2型糖尿病遗传学上性别差异的探讨. 上海预防医学杂志, 2000, 12(1): 42-44.<\p> [69] Jiang DJ, Zheng DW, Wang LY, Huang Y, Liu HB, Xu LT, Liao Q, Liu PP, Shi XB, Wang ZY, Sun LB, Zhou QY, Li N, Le YP, Ye M, Shao GF, Duan SW. Elevated PLA2G7 Gene Promoter Methylation as a Gender-Specific Marker of Aging Increases the Risk of Coronary Heart Disease in Females. PLoS ONE, 2013, 8(3): e59752.<\p> [70] Zhang LN, Wang LY, Yuan F, Xu LT, Xin YF, Fei LJ, Zhong QL, Huang Y, Hao LM, Qiu XJ, Le YP, Ye M, Duan SW. Lower ADD1 gene promoter DNA methylation increases the risk of essential hypertension. PLoS ONE, 2013, 8(5): e63455.<\p> [71] Gilbert ER, Liu DM. Epigenetics: the missing link to understanding β-cell dysfunction in the pathogenesis of type 2 diabetes. Epigenetics, 2012, 7(8): 841-852.<\p> [72] Ling C, Del Guerra S, Lupi R, R?nn T, Granhall C, Luthman H, Masiello P, Marchetti P, Groop L, Del Prato S. Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia, 2008, 51(4): 615-622.<\p> [73] Gillberg L, Jacobsen S, Ribel-Madsen R, Gjesing AP, Boesgaard TW, Ling C, Pedersen O, Hansen T, Vaag A. Does DNA methylation of PPARGC1A influence insulin action in first degree relatives of patients with type 2 diabetes? PLoS ONE, 2013, 8(3): e58384.<\p> [74] Ribel-Madsen R, Fraga MF, Jacobsen S, Bork-Jensen J, Lara E, Calvanese V, Fernandez AF, Friedrichsen M, Vind BF, Hojlund K, Beck-Nielsen H, Esteller M, Vaag A, Poulsen P. Genome-wide analysis of DNA methylation differences in muscle and fat from monozygotic twins discordant for type 2 diabetes. PLoS ONE, 2012, 7(12): e51302.<\p> [75] Kulkarni SS, Salehzadeh F, Fritz T, Zierath JR, Krook A, Osler ME. Mitochondrial regulators of fatty acid metabolism reflect metabolic dysfunction in type 2 diabetes mellitus. Metabolism, 2012, 61(2): 175-185.<\p> [76] Inder WJ, Obeyesekere VR, Jang C, Saffery R. Evidence for transcript-specific epigenetic regulation of glucocorticoid- stimulated skeletal muscle 11β-hydroxysteroid dehydrogenase-1 activity in type 2 diabetes. Clin Epigenetics, 2012, 4(1): 24.<\p> [77] Barrès R, Osler ME, Yan J, Rune A, Fritz T, Caidahl K, Krook A, Zierath JR. Non-CpG methylation of the PGC- 1α promoter through DNMT3B controls mitochondrial density. Cell Metab, 2009, 10(3): 189-198.<\p> [78] Pinnick KE, Karpe F. DNA methylation of genes in adipose tissue. Proc Nutr Soc, 2011, 70(1): 57-63.<\p> [79] Liu ZH, Chen LL, Deng XL, Song HJ, Liao YF, Zeng TS, Zheng J, Li HQ. Methylation status of CpG sites in the MCP-1 promoter is correlated to serum MCP-1 in Type 2 diabetes. J Endocrinol Invest, 2012, 35(6): 585-589.<\p> [80] Nikolajczyk BS, Jagannathan-Bogdan M, Shin H, Gyurko R. State of the union between metabolism and the immune system in type 2 diabetes. Genes Immun, 2011, 12(4): 239-250.<\p> [81] Shoemaker R, Deng J, Wang W, Zhang K. Allele-specific methylation is prevalent and is contributed by CpG-SNPs in the human genome. Genome Res, 2010, 20(7): 883-889.<\p> [82] Heyn H, Vidal E, Sayols S, Sanchez-Mut JV, Moran S, Medina I, Sandoval J, Simo-Riudalbas L, Szczesna K, Huertas D, Gatto S, Matarazzo MR, Dopazo J, Esteller M. Whole-genome bisulfite DNA sequencing of a DNMT3B mutant patient. Epigenetics, 2012, 7(6): 542-550.<\p> [83] Bashtrykov P, Jankevicius G, Smarandache A, Jurkowska RZ, Ragozin S, Jeltsch A. Specificity of Dnmt1 for methylation of hemimethylated CpG sites resides in its catalytic domain. Chem Biol, 2012, 19(5): 572-578.<\p> [84] Dayeh TA, Olsson AH, Volkov P, Almgren P, R?nn T, Ling C. Identification of CpG-SNPs associated with type 2 diabetes and differential DNA methylation in human pancreatic islets. Diabetologia, 2013, 56(5): 1036-1046.<\p> [85] Sun J, Xu Y, Zhu Y, Lu H. Methylenetetrahydrofolate reductase gene polymorphism, homocysteine and risk of macroangiopathy in Type 2 diabetes mellitus. J Endocrinol Invest, 2006, 29(9): 814-820.<\p> [86] Lillycrop KA, Burdge GC. Epigenetic mechanisms linking early nutrition to long term health. Best Pract Res Clin Endocrinol Metab, 2012, 26(5): 667-676.<\p> [87] 陈旋常. 表观遗传学在2 型糖尿病领域的研究进展. 现代生物医学进展, 2012, 12(29): 5782-5785.<\p> [88] Steves CJ, Spector TD, Jackson SHD. Ageing, genes, environment and epigenetics: what twin studies tell us now, and in the future. Age Ageing, 2012, 41(5): 581-586.<\p> [89] Tseng CH. Diabetes, insulin use, smoking, and pancreatic cancer mortality in Taiwan. Acta Diabetol, 2013 doi:10.1007/ s00592-013-0471-0.<\p> [90] Garcia-Ruiz C, Fernandez-Checa JC. To binge or not to binge: Binge drinking disrupts glucose homeostasis by impairing hypothalamic but not liver insulin signaling. Hepatology, 2013.<\p> [91] Mitic T, Emanueli C. Diabetes-induced epigenetic signature in vascular cells. Endocr Metab Immune Disord Drug Targets, 2012, 12(2): 107-117.<\p> |
[1] | 张競文,续倩,李国亮. 癌症发生发展中的表观遗传学研究[J]. 遗传, 2019, 41(7): 567-581. |
[2] | 马志鹏, 陈军. 无义突变与“遗传补偿效应”[J]. 遗传, 2019, 41(5): 359-364. |
[3] | 黄鑫,陈永强,徐国良,彭淑红. 脂肪组织DNA甲基化与糖尿病和肥胖的发生发展[J]. 遗传, 2019, 41(2): 98-110. |
[4] | 潘云枫, 王演怡, 陈静雯, 范怡梅. 线粒体代谢介导的表观遗传改变与衰老研究[J]. 遗传, 2019, 41(10): 893-904. |
[5] | 鞠君毅,赵权. γ-珠蛋白基因表达调控机制与临床应用[J]. 遗传, 2018, 40(6): 429-444. |
[6] | 薛宪词,于黎. 昆虫非遗传多型性研究进展[J]. 遗传, 2017, 39(9): 798-809. |
[7] | 刘福林, 周瑾, 张蔚, 汪晖. 胎盘发育过程中的表观遗传学改变及其相关疾病[J]. 遗传, 2017, 39(4): 263-275. |
[8] | 岳敏, 杨禹, 郭改丽, 秦曦明. 哺乳动物生物钟的遗传和表观遗传研究进展[J]. 遗传, 2017, 39(12): 1122-1137. |
[9] | 刘辰东, 杨露, 蒲红州, 杨琼, 黄文耀, 赵雪, 朱砺, 张顺华. 运动对骨骼肌基因表达的表观遗传调控作用[J]. 遗传, 2017, 39(10): 888-896. |
[10] | 张轲, 冯光德, 张宝云, 向伟, 陈龙, 杨芳, 储明星, 王凭青. 表观遗传标记在猪分子育种中的研究与应用前景[J]. 遗传, 2016, 38(7): 634-643. |
[11] | 李元丰, 韩玉波, 曹鹏博, 孟金凤, 李海北, 秦庚, 张锋, 靳光付, 杨勇, 邬玲仟, 平杰, 周钢桥. 2015年中国医学遗传学研究领域若干重要进展[J]. 遗传, 2016, 38(5): 363-390. |
[12] | 张笑, 贾桂芳. RNA表观遗传修饰:N6-甲基腺嘌呤[J]. 遗传, 2016, 38(4): 275-288. |
[13] | 方科, 张凯翔, 王建, 付志猛, 赵湘辉. 表观遗传学新标记--5-羟甲基胞嘧啶检测方法的研究进展[J]. 遗传, 2016, 38(3): 206-216. |
[14] | 朱屹然,张美玲,翟志超,赵云蛟,马馨. 生殖细胞及早期胚胎基因组印记的表观调控[J]. 遗传, 2016, 38(2): 103-108. |
[15] | 刘姝丽,张胜利,俞英. 同卵双胞胎在复杂性状DNA甲基化调控机制研究中的应用[J]. 遗传, 2016, 38(12): 1043-1055. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: