[1] 杨明功. 糖尿病流行现状及防治对策. 疾病控制杂志, 2000, 4(3): 193-196.[2] Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Com-plications Research Group. Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus. JAMA, 2002, 287(19): 2563-2569.[3] Smith AG, Russell J, Feldman EL, Goldstein J, Peltier A, Smith S, Hamwi J, Pollari D, Bixby B, Howard J, Sin-gleton JR. Lifestyle intervention for pre-diabetic neu-ropathy. Diabetes Care, 2006, 29(6): 1294-1299.[4] Zochodne DW. Diabetic neuropathies: features and mechanisms. Brain Pathol, 1999, 9(2): 369-391.[5] Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature, 2001, 414(6865): 813-820.[6] Yasuda H, Terada M, Maeda K, Kogawa S, Sanada M, Haneda M, Kashiwagi A, Kikkawa R. Diabetic neuropathy and nerve regeneration. Prog Neurobiol, 2003, 69(4): 229-285.[7] Vincent AM, Russell JW, Low P, Feldman EL. Oxidative Stress in the pathogenesis of diabetic neuropathy. Endocr Rev, 2004, 25(4): 612-628.[8] Sun B, Zhang F, Wu SK, Guo XH, Zhang LL, Jiang ZF, Wang DM, Song ST. Gene expression profiling for breast cancer prognosis in Chinese populations. Breast J, 2011, 17(2): 172-179.[9] Rivas LA, Aguirre J, Blanco Y, González-Toril E, Parro V. Graph-based deconvolution analysis of multiplex sandwich microarray immunoassays: applications for environmental monitoring. Environ Microbiol, 2011, 13(6): 1421-1432.[10] Al-Mulla F. Microarray-based CGH and copy number analysis of FFPE samples. Methods Mol Biol, 2011, 724: 131-145.[11] Werner T. Next generation sequencing allows deeper analysis and understanding of genomes and transcriptomes including aspects to fertility. Reprod Fertil Dev, 2011, 23(1): 75-80.[12] Morel PA, Srinivas M, Turner MS, Fuschiotti P, Munshi R, Bahar I, Feili-Hariri M, Ahrens ET. Gene expression analysis of dendritic cells that prevent diabetes in NOD mice: analysis of chemokines and costimulatory molecules. J Leukoc Biol, 2011, 90(3): 539-550.[13] Ye CW, Li XJ, Wang YY, Zhang YY, Cai MY, Zhu BY, Mu PW, Xia X, Zhao Y, Weng JP, Gao X, Wen XQ. Diabetes causes multiple genetic alterations and downregulates expression of DNA repair genes in the prostate. Lab Invest, 2011, 91(9): 1363-1374.[14] Pande M, Hur J, Hong Y, Backus C, Hayes JM, Oh SS, Kretzler M, Feldman EL. Transcriptional profiling of dia-betic neuropathy in the BKS db/db mouse: a model of type 2 diabetes. Diabetes, 2011, 60(7): 1981-1989.[15] 韦安阳, 罗新贵, 杨勇, 何书华, 张涛, 刘洋. 糖尿病性勃起功能障碍大鼠的基因表达谱芯片数据分析. 南方医科大学学报, 2011, 31(4): 694-697.[16] Salbaum JM, Kruger C, Zhang X, Delahaye NA, Pavlinkova G, Burk DH, Kappen C. Altered gene expression and spongiotrophoblast differentiation in placenta from a mouse model of diabetes in pregnancy. Diabetologia, 2011, 54(7): 1909-1920.[17] Zheng SR, Huang Y, Yang L, Chen T, Xu JX, Epstein PN. Uninephrectomy of diabetic OVE26 mice greatly accelerates albuminuria, fibrosis, inflammatory cell infiltration and changes in gene expression. Nephron Exp Nephrol, 2011, 119(1): e21-e32.[18] Voisine P, Ruel M, Khan TA, Bianchi C, Xu SH, Kohane I, Libermann TA, Otu H, Saltiel AR, Sellke FW,. Differences in gene expression profiles of diabetic and nondiabetic patients undergoing cardiopulmonary bypass and cardioplegic arrest. Circulation, 2004, 110(11 Suppl. 1): II280-II286.[19] 徐叔云, 卞如濂, 陈修. 药理实验方法学(第三版). 北京: 人民卫生出版社, 2002: 1516-1522.[20] Mohan V, Sandeep S, Deepa R, Shah B, Varghese C Varghese. Epidemiology of type 2 diabetes: Indian sce-nario. Indian J Med Res, 2007, 125(3): 217-230.[21] 唐玲, 陈兴宝, 陈慧云, 赵鲁勇, 胡善联. 中国城市2型糖尿病及其并发症的经济负担. 中国卫生经济, 2003, 22(12): 21-23.[22] Srinivasan K, Viswanad B, Asrat L, Kaul CL, Ramarao P. Combination of high-fat dietfed and low-dose strepto-zotocin-treated rat: A model for type 2 diabetes and phar-macological screening. Pharmacol Res, 2005, 52(4): 313-320.[23] Sugano M, Yamato H, Hayashi T, Ochiai H, Kakuchi J, Goto S, Nishijima F, Iino N, Kazama JJ, Takeuchi T, Mokuda O, Ishikawa T, Okazaki R. High-fat diet in low-dose-streptozotocin-treated heminephrectomized rats induces all features of human type 2 diabetic nephropathy: a new rat model of diabetic nephropathy. Nutr Metab Cardiovasc Dis, 2006, 16(7): 477-484.[24] 孙晓芳, 赵长勇, 陈晖, 王道荣. 高糖高脂饮食加链尿佐菌素建立实验性大鼠2型糖尿病模型. 南京医科大学学报 (自然科学版), 2009, 29(6): 797-806.[25] Bai B, Liu YH, Liu HQ. Effect of nitric oxide on the expression of apelin receptor mRNA in rat caudate nucleus. Neurosci Bull, 2007, 23(3): 180-184.[26] Wen YD, Zhang HL, Qin ZH. Inflammatory mechanism in ischemic neuronal injury. Neurosci Bull, 2006, 22(3): 171-182.[27] Kärvestedt L, Mårtensson E, Grill V, Elofsson S, von Wendt G, Hamsten A, Brismar K. Peripheral sensory neu-ropathy associates with micro- or macroangiopathy: re-sults from a population-based study of type 2 diabetic pa-tients in Sweden. Diabetes Care, 2009, 32(2): 317-322.[28] 徐咏平, 邓康平, 张木勋. 糖尿病周围血管病变对周围神经病变的影响. 中国康复, 2007, 22(2): 85-87.[29] Biessels GJ, Cristino NA, Rutten GJ, Hamers FPT, Erkel-ens DW, Gispen WH. Neurophysiological changes in the central and peripheral nervous system of streptozoto-cin-diabetic rats. Brain, 1999, 122(4): 757-768.[30] 朱红艳, 朱清, 钱东生. 实验性糖尿病早期大鼠背根神经节一氧化氮合酶基因表达的变化. 南通医学院学报, 2004, 24(3): 245-247.[31] Wang HJ, Jin YX, Shen W, Neng J, Wu T, Li YJ, Fu ZW. Low dose streptozotocin (STZ) combined with high en-ergy intake can effectively induce type 2 diabetes through altering the related gene expression. Asia Pac J Clin Nutr, 2007, 16(Suppl. 1): 412-417.[32] 杨妤欣. 2型糖尿病大鼠早期骨微结构改变及BMP-2的基因表达[学位论文]. 重庆: 重庆医科大学, 2005.[33] 赵策瑶, 邓又斌, 熊莉, 余芬, 伍玉晗, 朱英, 毕小军. 超声斑点追踪技术评价2型糖尿病患者心脏局部收缩功能. 中国超声医学杂志, 2009, 25(4): 373-375.[34] 朱明德. 现代临床生化化学. 上海: 上海医科大学出版社, 1996: 88.[35] 王颜刚, 王伟, 于宏伟, 袁鹰, 闫胜利. 糖尿病患者血清肌酸激酶变化的意义. 中华内科杂志, 1997, 36(7): 482-483.[36] Savabi F, Kirsch A. Alteration of the phosphocreatine en-ergy shuttle components in diabetic rat heart. J Mol Cell Cardiol, 1991, 23(11): 1323-1333.[37] Andres RH, Ducray AD, Schlattner U, Wallimann T, Widme HR. Functions and effects of creatine in the central nervous system. Brain Res Bull, 2008, 76(4): 329-343.[38] Klupa T, Malecki MT, Pezzolesi M, Ji L, Curtis S, Langefeld CD, Rich SS, Warram JH, Krolewski AS. Fur-ther evidence for a susceptibility locus for type 2 diabetes on chromosome 20q13.1-q13.2. Diabetes, 2000, 49(12): 2212-2216.[39] Beale EG, Harvey BJ, Forest C. PCK1 and PCK2 as candidate diabetes and obesity genes. Cell Biochem Biophys, 2007, 48(2-3): 89-95.[40] Kempf K, Rose B, Herder C, Kleophas U, Martin S, Kolb H. Inflammation in metabolic syndrome and type 2 diabetes - impact of dietary glucose. Ann N Y Acad Sci, 2006, 1084: 30-48.[41] Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest, 2005, 115(5): 1111-1119.[42] Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 2005, 54(6): 1615-1625.[43] Brown JA, Wysolmerski RB, Bridgman PC. Dorsal root ganglion neurons react to semaphorin 3A application through a biphasic response that requires multiple myosin II isoforms. Mol Biol Cell, 2009, 20(4): 1167-1179.[44] Kuczmarski ER, Rosenbaum JL. Studies on the organization and localization of actin and myosin in neurons. J Cell Biol, 1979, 80(2): 356-371.[45] Rex CS, Gavin CF, Rubio MD, Kramar EA, Chen LY, Jia YS, Huganir RL, Muzyczka N, Gall CM, Miller CA, Lynch G, Rumbaugh G. Myosin IIb regulates actin dynamics during synaptic plasticity and memory formation. Neuron, 2010, 67(4): 603-617.[46] Takagishi Y, Futaki S, Itoh K, Espreafico EM, Murakami N, Murata Y, Mochida S. Localization of myosin II and V isoforms in cultured rat sympathetic neurones and their potential involvement in presynaptic function. J Physiol, 2005, 569(Pt 1): 195-208.[47] Solecki DJ, Trivedi N, Govek EE, Kerekes RA, Gleason SS, Hatten ME. Myosin II motors and F-actin dynamics drive the coordinated movement of the centrosome and soma during CNS glial-guided neuronal migration. Neuron, 2009, 63(1): 63-80.[48] Haviv L, Gillo D, Backouche F, Bernheim-Groswasser A. A cytoskeletal demolition worker: myosin II acts as an ac-tin depolymerization agent. J Mol Biol, 2008, 375(2): 325-330.[49] Wylie SR, Chantler PD. Separate but linked functions of conventional myosins modulate adhesion and neurite out-growth. Nat Cell Biol, 2001, 3(1): 88-92.[50] Rudolf R, Bittins CM, Gerdes HH. The role of myosin V in exocytosis and synaptic plasticity. J Neurochem, 2011, 116(2): 177-191.[51] Bridgman PC, Elkin LL. Axonal myosins. J Neuro-cytol, 2000, 29(11-12): 831-841.[52] Rochlin MW, Itoh K, Adelstein RS, Bridgman PC. Local-ization of myosin II A and B isoforms in cultured neurons. J Cell Sci, 1995, 108 (Pt 12): 3661-3670.[53] Medeiros NA, Burnette DT, Forscher P. Myosin II functions in actin-bundle turnover in neuronal growth cones. Nat Cell Biol, 2006, 8(3): 216-226.[54] Morales M, Colicos MA, Goda Y. Actin-dependent regulation of neurotransmitter release at central synapses. Neuron, 2000, 27(3): 539-550.[55] Yamada KM, Spooner BS, Wessells NK. Axon growth: roles of microfilaments and microtubules. Proc Natl Acad Sci USA, 1970, 66(4): 1206-1212.[56] Korobova F, Svitkina T. Molecular architecture of synaptic actin cytoskeleton in hippocampal neurons reveals a mechanism of dendritic spine morphogenesis. Mol Biol Cell, 2010, 21(1): 165-176.[57] Tomlinson DR, Gardiner NJ. Glucose neurotoxicity. Nat Rev Neurosci, 2008, 9(1): 36-45.[58] Obrosova IG, Mabley JG, Zsengellér Z, Charniauskaya T, Abatan OI, Groves JT, Szabó C. Role for nitrosative stress in diabetic neuropathy: evidence from studies with a per-oxynitrite decomposition catalyst. FASEB J, 2005, 19(3): 401-403.[59] Weiswasser JM, Arora S, Shuman C, Kellicut D, Sidawy AN. Diabetic neuropathy. Semin Vasc Surg, 2003, 16(1): 27-35.[60] Price SA, Agthong S, Middlemas AB, Tomlinson DR. Mitogen-activated protein kinase p38 mediates reduced nerve conduction velocity in experimental diabetic neuropathy: interactions with aldose reductase. Diabetes, 2004, 53(7): 1851-1856.[61] Lieth E, Barber AJ, Xu B, Dice C, Ratz MJ, Tanase D, Strother JM. Glial reactivity and impaired glutamate me-tabolism in short-term experimental diabetic retinopathy. Penn State Retina Research Group. Diabetes, 1998, 47(5): 815-820[62] Price SA, Zeef LA, Wardleworth L, Hayes A, Tomlinson DR. Identification of changes in gene expression in dorsal root ganglia in diabetic neuropathy: correlation with functional deficits. J Neuropathol Exp Neurol, 2006, 65(7): 722-732.[63] Zhu Q, Gu JH, Zhu HY, Xu JL. Identification of differen-tially expressed genes in dorsal root ganglion in early diabetic rats. Neurosci Bull, 2008, 24(4): 219-224.[64] 杜纪坤, 黄青阳, 李守华, 熊国梅. 脂蛋白脂酶基因HindⅢ酶切多态性与2型糖尿病的关联研究. 遗传, 2007, 29(8): 929-933.[65] 苏燕, 彭姝彬, 李智琼, 黄青阳. PPARGC1A基因Thr394Thr/Gly482Ser多态性与2型糖尿病的关联研究. 遗传, 2008, 30(3): 304-308.[66] 王艳, 张军, 黄青阳. 脂联素基因单核苷酸多态性T45G与湖北汉族人2型糖尿病的遗传关联研究. 遗传, 2008, 30(6): 711-715.[67] 王敏, 彭婵, 屈亚莉, 黄青阳. 中国汉族人群ENPP1基因K121Q多态与2型糖尿病的关联及Meta分析. 遗传, 2010, 32(8): 808-816.[68] Huang QY, Cheng MR, Ji SL. Linkage and association studies of the susceptibility genes for type 2 diabetes. Acta Genet Sin, 2006, 33(7): 573-589.[69] Safranow K, Suchy J, Jakubowska K, Olszewska M, Bińczak-Kuleta A, Kurzawski G, Rzeuski R, Czy?ycka E, ?oniewska B, Kornacewicz-Jach Z, Ciechanowicz A, Chlubek D. AMPD1 gene mutations are associated with obesity and diabetes in Polish patients with cardiovascular diseases. J Appl Genet, 2011, 52(1): 67-76.[70] Tsai FJ, Yang CF, Chen CC, Chuang LM, Lu CH, Chang CT, Wang TY, Chen RH, Shiu CF, Liu YM, Chang CC, Chen P, Chen CH, Fann CSJ, Chen YT, Wu JY. A genome- wide association study identifies susceptibility variants for type 2 diabetes in Han Chinese. PLoS Genet, 2010, 6(2): e1000847.[71] Below JE, Gamazon ER, Morrison JV, Konkashbaev A, Pluzhnikov A, McKeigue PM, Parra EJ, Elbein SC, Hallman DM, Nicolae DL, Bell GI, Cruz M, Cox NJ, Hanis CL. Genome-wide association and meta-analysis in populations from Starr County, Texas, and Mexico City identify type 2 diabetes susceptibility loci and enrichment for expression quantitative trait loci in top signals. Diabetologia, 2011, 54(8): 2047-2055. |