遗传 ›› 2025, Vol. 47 ›› Issue (10): 1118-1131.doi: 10.16288/j.yczz.24-327
寇玉晨1(), 谢一宁1, 袁艳辉1, 单晓昳2, 张曦1(
)
收稿日期:
2024-11-12
修回日期:
2025-01-20
出版日期:
2025-10-20
发布日期:
2025-03-19
通讯作者:
张曦,博士,讲师,研究方向:分子细胞生物学。E-mail: zhangxi@bjfu.edu.cn作者简介:
寇玉晨,硕士研究生,专业方向:细胞生物学。E-mail: KYC3230189@bjfu.edu.cn
基金资助:
Yuchen Kou1(), Yining Xie1, Yanhui Yuan1, Xiaoyi Shan2, Xi Zhang1(
)
Received:
2024-11-12
Revised:
2025-01-20
Published:
2025-10-20
Online:
2025-03-19
Supported by:
摘要:
氮素是植物生长不可或缺的大量元素,而硝酸盐是植物主要的氮素来源,其供需关系对植物发育起决定性影响。NRT1/PTR家族(nitrate transporter 1/peptide transporter family,NPF)作为主要的硝酸盐转运家族,在硝酸盐摄取过程中扮演着关键的角色。在植物研究中,该类蛋白可通过蛋白翻译后修饰来调控其功能,进而调控硝酸盐感知、摄取以及植物发育。NRT1.1(NPF6.3/CHL1)是NPF的重要成员之一,兼具硝酸盐转运和感受器的双重功能。本文综述了拟南芥(Arabidopsis thaliana)、水稻(Oryza sativa)和玉米(Zea mays)等NPF硝酸盐转运蛋白家族在调节硝酸盐摄取及利用中的作用,总结了蛋白翻译后的修饰对硝酸盐转运与植物发育的影响。最后,展望了在树木中开展相关研究的前景,以期为提高树木氮肥利用效率、增强其抗逆能力和生态环境保护提供科学依据和技术支持。
寇玉晨, 谢一宁, 袁艳辉, 单晓昳, 张曦. 植物硝酸盐转运蛋白家族NPF及其蛋白修饰调控机制研究进展[J]. 遗传, 2025, 47(10): 1118-1131.
Yuchen Kou, Yining Xie, Yanhui Yuan, Xiaoyi Shan, Xi Zhang. Plant nitrate transport family NPF and its regulatory mechanism of protein modification[J]. Hereditas(Beijing), 2025, 47(10): 1118-1131.
表1
拟南芥NRT1家族成员"
原基因 名称 | 统一后 新名称 | 基因号 | 亲和性 | 表达 部位 | 功能 | 参考文献 |
---|---|---|---|---|---|---|
NRT1.1 | NPF6.3 | AT1G12110.1 | 高、低 | 根表皮细胞、保卫细胞 | 硝酸盐吸收,抗旱,种子休眠,生长素积累,调控开花时间,非生物胁迫耐受性诱导 | [ |
NRT1.2 | NPF4.6 | AT1G69850.1 | 低 | 根毛、表皮 | 根部硝酸盐转运,转运ABA | [ |
NRT1.3 | NPF6.4 | AT3G21670.1 | 低 | 茎 | 转运硝酸盐 | [ |
NRT1.4 | NPF6.2 | AT2G26690.1 | 低 | 叶柄、叶脉 | 叶柄储存硝酸盐,将硝酸盐分配到叶片 | [ |
NRT1.5 | NPF7.3 | AT1G32450.1 | 低 | 木质部中柱鞘、根 | 负载硝酸盐到木质部;转运吲哚-3-丁酸 | [ |
NRT1.6 | NPF2.12 | AT1G27080.1 | 低 | 果实维管束 | 胚中硝酸盐转运和胚胎发育 | [ |
NRT1.7 | NPF2.13 | AT1G69870.1 | 低 | 叶脉韧皮部 | 老叶硝酸盐的重新利用 | [ |
NRT1.8 | NPF7.2 | AT4G21680.1 | 低 | 木质部 | 木质部硝酸盐转运 | [ |
NRT1.9 | NPF2.9 | AT1G18880.1 | 低 | 根部伴胞 | 木质部硝酸盐负载到韧皮部 | [ |
NRT1.10 | NPF2.11 | AT5G62680.1 | 低 | 茎 | 转运硫配糖体 | [ |
NRT1.11 | NPF1.2 | AT1G52190.1 | 低 | 韧皮部 | 重新分配木质部硝酸盐 | [ |
NRT1.12 | NPF1.1 | AT3G16180.1 | 低 | 韧皮部 | 重新分配木质部硝酸盐 | [ |
NRT1.13 | NPF4.4 | AT1G33440.1 | 低 | 叶柄、果荚、茎 | 种子休眠,调控开花时间 | [ |
NRT1.14 | NPF4.3 | AT1G59740.1 | 低 | ‒ | ‒ | ‒ |
NRT1.15 | NPF5.14 | AT1G72120.1 | 低 | ‒ | ‒ | ‒ |
NRT1.16 | NPF5.13 | AT1G72125.1 | 低 | ‒ | ‒ | ‒ |
[1] |
Crawford NM. Nitrate: nutrient and signal for plant growth. Plant Cell, 1995, 7(7): 859-868.
pmid: 7640524 |
[2] |
Chen KE, Chen HY, Tseng CS, Tsay YF. Improving nitrogen use efficiency by manipulating nitrate remobilization in plants. Nat Plants, 2020, 6(9): 1126-1135.
pmid: 32868892 |
[3] |
Xu GH, Fan XR, Miller AJ. Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol, 2012, 63: 153-182.
pmid: 22224450 |
[4] |
Wang YY, Cheng YH, Chen KE, Tsay YF. Nitrate transport, signaling, and use efficiency. Annu Rev Plant Biol, 2018, 69: 85-122.
pmid: 29570365 |
[5] |
Léran S, Varala K, Boyer JC, Chiurazzi M, Crawford N, Daniel-Vedele F, David L, Dickstein R, Fernandez E, Forde B, Gassmann W, Geiger D, Gojon A, Gong JM, Halkier BA, Harris JM, Hedrich R, Limami AM, Rentsch D, Seo M, Tsay YF, Zhang MY, Coruzzi G, Lacombe B. A unified nomenclature of nitrate transporter 1/peptide transporter family members in plants. Trends Plant Sci, 2014, 19(1): 5-9.
pmid: 24055139 |
[6] |
Kumar A, Sandhu N, Kumar P, Pruthi G, Singh J, Kaur S, Chhuneja P. Genome-wide identification and in silico analysis of NPF, NRT2, CLC and SLAC1/SLAH nitrate transporters in hexaploid wheat (Triticum aestivum). Sci Rep, 2022, 12(1): 11227.
pmid: 35781289 |
[7] |
Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova K, Tillard P, Leon S, Ljung K, Zazimalova E, Benkova E, Nacry P, Gojon A. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev Cell, 2010, 18(6): 927-937.
pmid: 20627075 |
[8] |
Mounier E, Pervent M, Ljung K, Gojon A, Nacry P. Auxin-mediated nitrate signalling by NRT1.1 participates in the adaptive response of Arabidopsis root architecture to the spatial heterogeneity of nitrate availability. Plant Cell Environ, 2014, 37(1): 162-174.
pmid: 23731054 |
[9] |
Ho CH, Lin SH, Hu HC, Tsay YF. CHL1 functions as a nitrate sensor in plants. Cell, 2009, 138(6): 1184-1194.
pmid: 19766570 |
[10] |
Fan XR, Feng HM, Tan YW, Xu YL, Miao QS, Xu GH. A putative 6-transmembrane nitrate transporter OsNRT1.1b plays a key role in rice under low nitrogen. J Integr Plant Biol, 2016, 58(6): 590-599.
pmid: 26220694 |
[11] |
Cao HR, Liu Z, Guo J, Jia ZT, Shi YD, Kang K, Peng WS, Wang ZK, Chen LM, Neuhaeuser B, Wang Y, Liu XG, Hao DY, Yuan LX. ZmNRT1.1B (ZmNPF6.6) determines nitrogen use efficiency via regulation of nitrate transport and signalling in maize. Plant Biotechnol J, 2024, 22(2): 316-329.
pmid: 37786281 |
[12] |
Corratgé-Faillie C, Lacombe B. Substrate(un)specificity of Arabidopsis NRT1/PTR FAMILY (NPF) proteins. J Exp Bot, 2017, 68(12): 3107-3113.
pmid: 28186545 |
[13] |
Lee S, Tri Le Q, Yang SY, Hwang KY, Lee H. Arabidopsis ecotype Ct-1, with its altered nitrate sensing ability, exhibits enhanced growth under low nitrate conditions in comparison to Col-0. Plant Sci, 2023, 336: 111827.
pmid: 37586419 |
[14] |
Nour-Eldin HH, Andersen TG, Burow M, Madsen SR, Jørgensen ME, Olsen CE, Dreyer I, Hedrich R, Geiger D, Halkier BA. NRT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds. Nature, 2012, 488(7412): 531-534.
pmid: 22864417 |
[15] |
Li ZH, Zhu MQ, Huang JQ, Jiang S, Xu S, Zhang ZH, He WC, Huang WC. Genome-wide comprehensive analysis of the nitrogen metabolism toolbox reveals its evolution and abiotic stress responsiveness in rice (Oryza sativa L.). Int J Mol Sci, 2023, 24(1): 288.
pmid: 36613735 |
[16] |
Puccio G, Ingraffia R, Giambalvo D, Frenda AS, Harkess A, Sunseri F, Mercati F. Exploring the genetic landscape of nitrogen uptake in durum wheat: genome-wide characterization and expression profiling of NPF and NRT2 gene families. Front Plant Sci, 2023, 14: 1302337.
pmid: 38023895 |
[17] |
Wang HD, Wan YF, Buchner P, King R, Ma HX, Hawkesford MJ. Phylogeny and gene expression of the complete nitrate transporter 1/peptide transporter family in Triticum aestivum. J Exp Bot, 2020, 71(15): 4531-4546.
pmid: 32462194 |
[18] |
Dong Q, Wang GX, Iqbal A, Muhammad N, Wang XR, Gui HP, Zhang HH, Kayoumu M, Li XT, Zhang XL, Song MZ. Identification and expression analysis of the NPF genes in cotton. Int J Mol Sci, 2022, 23(22): 14262.
pmid: 36430741 |
[19] |
Jia LH, Hu DS, Wang JB, Liang YY, Li F, Wang Y, Han YL. Genome-wide identification and functional analysis of nitrate transporter genes (NPF, NRT2 and NRT3) in maize. Int J Mol Sci, 2023, 24(16): 12941.
pmid: 37629121 |
[20] |
Wang XL, Cai XF, Xu CX, Wang QH. Identification and characterization of the NPF, NRT2 and NRT3 in spinach. Plant Physiol Biochem, 2021, 158: 297-307.
pmid: 33243709 |
[21] | Li WM, Yan MK, Hu BY, Priyadarshani SVGN, Hou ZM, Ojolo SP, Xiong JJ, Zhao HM, Qin Y. Characterization and the expression analysis of nitrate transporter (NRT) gene family in pineapple. Trop Plant Biol, 2018, 11: 177-191. |
[22] |
Wang Q, Liu CH, Dong QL, Huang D, Li CY, Li PM, Ma FW. Genome-wide identification and analysis of apple nitrate transporter 1/peptide transporter family (NPF) genes reveals MdNPF6.5 confers high capacity for nitrogen uptake under low-nitrogen conditions. Int J Mol Sci, 2018, 19(9): 2761.
pmid: 30223432 |
[23] | Liu X, Gao Y, Li K, Yin Y, Liu J, Zhu Y. Complex phylogeny and expression patterns of the nitrate transporter 1/peptide transporter family genes in tomato. Russ J Plant Physiol, 2022, 69: 47. |
[24] |
Zhang MY, Zhang WY, Zheng ZJ, Zhang ZP, Hua B, Liu JX, Miao MM. Genome-Wide identification and expression analysis of NPF genes in cucumber (Cucumis sativus L.). Plants-Basel, 2023, 12(6): 1252.
pmid: 36986940 |
[25] |
Bai H, Euring D, Volmer K, Janz D, Polle A. The nitrate transporter (NRT) gene family in poplar. PLoS One, 2013, 8(8): e72126.
pmid: 23977227 |
[26] |
Wang YX, Wei K, Ruan L, Bai PX, Wu LY, Wang LY, Cheng H. Systematic investigation and expression profiles of the nitrate transporter 1/peptide transporter family (NPF) in tea plant (Camellia sinensis). Int J Mol Sci, 2022, 23(12): 6663.
pmid: 35743106 |
[27] | Li YB, Dong ZK, Han S, Wang L, Zhang YT, Yang Q, Huang HH, Zhang JH. Identification and expression analysis of NRT/NPF gene family in Phoebe bournei. J Agric Biotechnol, 2023, 31(10): 2072-2086. |
李翼贝, 童再康, 韩双, 王立, 韩潇, 张毓婷, 杨琪, 黄华宏, 张俊红. 闽楠NRT/NPF基因家族鉴定与表达分析. 农业生物技术学报, 2023, 31(10): 2072-2086. | |
[28] |
Guo FO, Young J, Crawford NM. The nitrate transporter AtNRT1.1 (CHL1) functions in stomatal opening and contributes to drought susceptibility in Arabidopsis. Plant Cell, 2003, 15(1): 107-117.
pmid: 12509525 |
[29] |
Liu KH, Huang CY, Tsay YF. CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake. Plant Cell, 1999, 11(5): 865-874.
pmid: 10330471 |
[30] |
Guo FQ, Wang R, Chen M, Crawford NM. The Arabidopsis dual-affinity nitrate transporter gene AtNRT1.1 (CHL1) is activated and functions in nascent organ development during vegetative and reproductive growth. Plant Cell, 2001, 13(8): 1761-1777.
pmid: 11487691 |
[31] |
Mao QQ, Guan MY, Lu KX, Du ST, Fan SK, Ye YQ, Lin XY, Jin CW. Inhibition of nitrate transporter 1.1-controlled nitrate uptake reduces cadmium uptake in Arabidopsis. Plant Physiol, 2014, 166(2): 934-944.
pmid: 25106820 |
[32] | Abouelsaad I, Weihrauch D, Renault S. Effects of salt stress on the expression of key genes related to nitrogen assimilation and transport in the roots of the cultivated tomato and its wild salt-tolerant relative. Sci Hortic, 2016, 211: 70-78. |
[33] |
Fang XZ, Tian WH, Liu XX, Lin XY, Jin CW, Zheng SJ. Alleviation of proton toxicity by nitrate uptake specifically depends on nitrate transporter 1.1 in Arabidopsis. New Phytol, 2016, 211(1): 149-158.
pmid: 26864608 |
[34] |
Huang NC, Liu KH, Lo HJ, Tsay YF. Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake. Plant Cell, 1999, 11(8): 1381-1392.
pmid: 10449574 |
[35] |
Tong WRN, Imai A, Tabata R, Shigenobu S, Yamaguchi K, Yamada M, Hasebe M, Sawa S, Motose H, Takahashi T. Polyamine resistance is increased by mutations in a nitrate transporter gene NRT1.3 (AtNPF6.4) in Arabidopsis thaliana. Front Plant Sci, 2016, 7: 834.
pmid: 27379127 |
[36] |
Chiu CC, Lin CS, Hsia AP, Su RC, Lin HL, Tsay YF. Mutation of a nitrate transporter, AtNRT1:4, results in a reduced petiole nitrate content and altered leaf development. Plant Cell Physiol, 2004, 45(9): 1139-1148.
pmid: 15509836 |
[37] |
Dechorgnat J, Nguyen CT, Armengaud P, Jossier M, Diatloff E, Filleur S, Daniel-Vedele F. From the soil to the seeds: the long journey of nitrate in plants. J Exp Bot, 2011, 62(4): 1349-1359.
pmid: 21193579 |
[38] |
Rolly NK, Yun BW. Regulation of nitrate (NO3-) transporters and glutamate synthase-encoding genes under drought stress in Arabidopsis: the regulatory role of AtbZIP62 transcription factor. Plants (Basel), 2021, 10(10): 2149.
pmid: 34685959 |
[39] |
Watanabe S, Takahashi N, Kanno Y, Suzuki H, Aoi Y, Takeda-Kamiya N, Toyooka K, Kasahara H, Hayashi K, Umeda M, Seo M. The Arabidopsis NRT1/PTR FAMILY protein NPF7.3/NRT1.5 is an indole-3-butyric acid transporter involved in root gravitropism. Proc Natl Acad Sci USA, 2020, 117(49): 31500-31509.
pmid: 33219124 |
[40] |
Almagro A, Lin SH, Tsay YF. Characterization of the Arabidopsis nitrate transporter NRT1.6 reveals a role of nitrate in early embryo development. Plant Cell, 2008, 20(12): 3289-3299.
pmid: 19050168 |
[41] |
Fan SC, Lin CS, Hsu PK, Lin SH, Tsay YF. The Arabidopsis nitrate transporter NRT1.7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate. Plant Cell, 2009, 21(9): 2750-2761.
pmid: 19734434 |
[42] |
Li JY, Fu YL, Pike SM, Bao J, Tian W, Zhang Y, Chen CZ, Zhang Y, Li HM, Huang J, Li LG, Schroeder JI, Gassmann W, Gonga JM. The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance. Plant Cell, 2010, 22(5): 1633-1646.
pmid: 20501909 |
[43] |
Wang YY, Tsay YF. Arabidopsis nitrate transporter NRT1.9 is important in phloem nitrate transport. Plant Cell, 2011, 23(5): 1945-1957.
pmid: 21571952 |
[44] |
Wang YY, Hsu PK, Tsay YF. Uptake, allocation and signaling of nitrate. Trends Plant Sci, 2012, 17(8): 458-467.
pmid: 22658680 |
[45] |
Hsu PK, Tsay YF. Two phloem nitrate transporters, NRT1.11 and NRT1.12, are important for redistributing xylem-borne nitrate to enhance plant growth. Plant Physiol, 2013, 163(2): 844-856.
pmid: 24006285 |
[46] |
Chen HY, Lin SH, Cheng LH, Wu JJ, Lin YC, Tsay YF. Potential transceptor AtNRT1.13 modulates shoot architecture and flowering time in a nitrate-dependent manner. Plant Cell, 2021, 33(5): 1492-1505.
pmid: 33580260 |
[47] |
Tsay YF, Chiu CC, Tsai CB, Ho CH, Hsu PK. Nitrate transporters and peptide transporters. FEBS Lett, 2007, 581(12): 2290-2300.
pmid: 17481610 |
[48] |
Kou YC, Su BD, Yang SY, Gong W, Zhang X, Shan XY. Phosphorylation of Arabidopsis NRT1.1 regulates plant stomatal aperture and drought resistance in low nitrate condition. BMC Plant Biol, 2025, 25(1): 95.
pmid: 39844057 |
[49] |
Léran S, Muños S, Brachet C, Tillard P, Gojon A, Lacombe B. Arabidopsis NRT1.1 is a bidirectional transporter involved in root-to-shoot nitrate translocation. Mol Plant, 2013, 6(6): 1984-1987.
pmid: 23645597 |
[50] |
Liu KH, Tsay YF. Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. EMBO J, 2003, 22(5): 1005-1013.
pmid: 12606566 |
[51] |
Vidal EA, Alvarez JM, Araus V, Riveras E, Brooks MD, Krouk G, Ruffel S, Lejay L, Crawford NM, Coruzzi GM, Gutiérrez RA. Nitrate in 2020: thirty years from transport to signaling networks. Plant Cell, 2020, 32(7): 2094-2119.
pmid: 32169959 |
[52] |
Forde BG. Local and long-range signaling pathways regulating plant responses to nitrate. Annu Rev Plant Biol, 2002, 53: 203-224.
pmid: 12221973 |
[53] |
Wang W, Hu B, Li AF, Chu CC. NRT1.1s in plants: functions beyond nitrate transport. J Exp Bot, 2020, 71(15): 4373-4379.
pmid: 31832669 |
[54] |
Bouguyon E, Perrine-Walker F, Pervent M, Rochette J, Cuesta C, Benkova E, Martinière A, Bach L, Krouk G, Gojon A, Nacry P. Nitrate controls root development through posttranscriptional regulation of the NRT1.1/ NPF6.3 transporter/sensor. Plant Physiol, 2016, 172(2): 1237-1248.
pmid: 27543115 |
[55] |
Tsay YF, Schroeder JI, Feldmann KA, Crawford NM. The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell, 1993, 72(5): 705-713.
pmid: 8453665 |
[56] | Liu XY, Cui HQ, Li AN, Zhang M, Teng YB. The nitrate transporter NRT1.1 is involved in iron deficiency responses in Arabidopsis. J Plant Nutr Soil Sci, 2015, 178(4): 601-608. |
[57] |
Kanstrup C, Nour-Eldin HH. The emerging role of the nitrate and peptide transporter family: NPF in plant specialized metabolism. Curr Opin Plant Biol, 2022, 68: 102243.
pmid: 35709542 |
[58] |
Fang XZ, Fang SQ, Ye ZQ, Liu D, Zhao KL, Jin CW. NRT1.1 Dual-affinity nitrate transport/signalling and its roles in plant abiotic stress resistance. Front Plant Sci, 2021, 12: 715694.
pmid: 34497626 |
[59] |
Plett D, Toubia J, Garnett T, Tester M, Kaiser BN, Baumann U. Dichotomy in the NRT gene families of dicots and grass species. PLoS One, 2010, 5(12): e15289.
pmid: 21151904 |
[60] |
Wang W, Hu B, Yuan DY, Liu YQ, Che RH, Hu YC, Ou SJ, Liu YX, Zhang ZH, Wang HR, Li H, Jiang ZM, Zhang ZL, Gao XK, Qiu YH, Meng XB, Liu YX, Bai Y, Liang Y, Wang YQ, Zhang LH, Li LG, Sodmergen, Jing HC, Li JY, Chu CC. Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice. Plant Cell, 2018, 30(3): 638-651.
pmid: 29475937 |
[61] |
Hu B, Wang W, Ou SJ, Tang JY, Li H, Che RH, Zhang ZH, Chai XY, Wang HR, Wang YQ, Liang CZ, Liu LC, Piao ZZ, Deng QY, Deng K, Xu C, Liang Y, Zhang LH, Li LG, Chu CC. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat Genet, 2015, 47(7): 834-838.
pmid: 26053497 |
[62] |
Yan Y, Zhang ZH, Sun HW, Liu XJ, Xie JP, Qiu YH, Chai TY, Chu CC, Hu B. Nitrate confers rice adaptation to high ammonium by suppressing its uptake but promoting its assimilation. Mol Plant, 2023, 16(12): 1871-1874.
pmid: 37994015 |
[63] |
Hu B, Jiang ZM, Wang W, Qiu YH, Zhang ZH, Liu YQ, Li AF, Gao XK, Liu LC, Qian YW, Huang XH, Yu FF, Kang S, Wang YQ, Xie JP, Cao SY, Zhang LH, Wang YC, Xie Q, Kopriva S, Chu CC. Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants. Nat Plants, 2019, 5(6): 637-637.
pmid: 30911122 |
[64] |
Wen ZY, Tyerman SD, Dechorgnat J, Ovchinnikova E, Dhugga KS, Kaiser BN. Maize NPF6 proteins are homologs of Arabidopsis CHL1 that are selective for both nitrate and chloride. Plant Cell, 2017, 29(10): 2581-2596.
pmid: 28887406 |
[65] |
Wang HH, Wang W, Xie ZC, Yang YX, Dai HY, Shi F, Ma L, Sui ZF, Xia C, Kong XY, Zhang LC. Overexpression of rice OsNRT1.1A/OsNPF6.3 enhanced the nitrogen use efficiency of wheat under low nitrogen conditions. Planta, 2024, 259(6): 127.
pmid: 38637411 |
[66] |
Nadeem F, Ahmad Z, Wang RF, Han JN, Shen Q, Chang FR, Diao XM, Zhang FS, Li XX. Foxtail millet [Setaria italica (L.) Beauv.] grown under low nitrogen shows a smaller root system, enhanced biomass accumulation, and nitrate transporter expression. Front Plant Sci, 2018, 9: 205.
pmid: 29520286 |
[67] |
Siddiqui MN, Pandey K, Bhadhury SK, Sadeqi B, Schneider M, Sanchez-Garcia M, Stich B, Schaaf G, Léon J, Ballvora A. Convergently selected NPF2.12 coordinates root growth and nitrogen use efficiency in wheat and barley. New Phytol, 2023, 238(5): 2175-2193.
pmid: 36808608 |
[68] |
Morére-Le Paven MC, Viau L, Hamon A, Vandecasteele C, Pellizzaro A, Bourdin C, Laffont C, Lapied B, Lepetit M, Frugier F, Legros C, Limami AM. Characterization of a dual-affinity nitrate transporter MtNRT1.3 in the model legume Medicago truncatula. J Exp Bot, 2011, 62(15): 5595-5605.
pmid: 21862482 |
[69] | Wang YQ, Shen Y, Qian J, Liu WT, Zhao JQ, Sun SN. Effects of nitrogen forms on plant growth, expression of nitrate transporter gene MtNRT1.3, and nitrogen absorption in Medicago sativa L. Acta Agrestia Sinica, 2019, 27(5): 1172-1180. |
王玉强, 沈宇, 钱进, 刘文涛, 赵国琦, 孙盛楠. 不同形态氮肥对紫花苜蓿生长、硝酸盐转运蛋白基因MtNRT1.3表达及氮吸收的影响. 草地学报, 2019, 27(5): 1172-1180. | |
[70] |
Wang M, Zhang PL, Liu Q, Li GJ, Di DW, Xia GM, Kronzucker HJ, Fang S, Chu JF, Shi WM. TaANR1- TaBG1 and TaWabi5-TaNRT2s/NARs link ABA metabolism and nitrate acquisition in wheat roots. Plant Physiol, 2020, 182(3): 1440-1453.
pmid: 31937682 |
[71] |
Liu GD, Rui L, Yang YY, Liu RX, Li HL, Ye F, You CX, Zhang S. Identification and functional characterization of MdNRT1.1 in nitrogen utilization and abiotic stress tolerance in Malus domestica. Int J Mol Sci, 2023, 24(11): 9291.
pmid: 37298242 |
[72] | Yang YY, Hu YF, Wan Q, Li RL, Wang F, Ruan JY. Cloning and expression analysis of nitrate transporter NRT1.1 gene in tea plant (Camellia sinensis (L.)). J Tea Sci, 2016, 36(5): 505-512. |
杨亦扬, 胡雲飞, 万青, 李容云, 王枫, 阮建云. 茶树硝态氮转运蛋白NRT1.1基因的克隆及表达分析. 茶叶科学, 2016, 36(5): 505-512. | |
[73] |
Maghiaoui A, Gojon A, Bach L. NRT1.1-centered nitrate signaling in plants. J Exp Bot, 2020, 71(20): 6226-6237.
pmid: 32870279 |
[74] |
Parker JL, Newstead S. Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1. Nature, 2014, 507(7490): 68-72.
pmid: 24572366 |
[75] |
Sun J, Bankston JR, Payandeh J, Hinds TR, Zagotta WN, Zheng N. Crystal structure of the plant dual-affinity nitrate transporter NRT1.1. Nature, 2014, 507(7490): 73-77.
pmid: 24572362 |
[76] |
Rashid M, Bera S, Banerjee M, Medvinsky AB, Sun GQ, Li BL, Sljoka A, Chakraborty A. Feedforward control of plant nitrate transporter NRT1.1 biphasic adaptive activity. Biophys J, 2020, 118(4): 898-908.
pmid: 31699333 |
[77] |
Zhang X, Cui YN, Yu M, Su BD, Gong W, Baluska F, Komis G, Samaj J, Shan XY, Lin JX. Phosphorylation- mediated dynamics of nitrate transceptor NRT1.1 regulate auxin flux and nitrate signaling in lateral root growth. Plant Physiol, 2019, 181(2): 480-498.
pmid: 31431511 |
[78] |
Ma QJ, Zhao CY, Hu S, Zuo KJ. Arabidopsis calcium- dependent protein kinase CPK6 regulates drought tolerance under high nitrogen by the phosphorylation of NRT1.1. J Exp Bot, 2023, 74(18): 5682-5693.
pmid: 37463320 |
[79] |
Wang PC, Hsu CC, Du YY, Zhu PP, Zhao CZ, Fu X, Zhang CG, Paez JS, Macho AP, Tao WA, Zhu JK. Mapping proteome-wide targets of protein kinases in plant stress responses. Proc Natl Acad Sci USA, 2020, 117(6): 3270-3280.
pmid: 31992638 |
[80] |
Bouguyon E, Brun F, Meynard D, Kubeš M, Pervent M, Leran S, Lacombe B, Krouk G, Guiderdoni E, Zažímalová E, Hoyerová K, Nacry P, Gojon A. Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1. Nat Plants, 2015, 1: 15015.
pmid: 27246882 |
[81] | Shen JQ, Zheng ZZ, Pan WH, Pan JJ. Functions and action mechanisms of CBL-CIPK signaling system in plants. J Plant Physiol, 2014, 50(5): 641-650. |
沈金秋, 郑仲仲, 潘伟槐, 潘建伟. 植物CBL-CIPK信号系统的功能及其作用机理. 植物生理学报, 2014, 50(5): 641-650. | |
[82] |
Zhang CX, Beckmann L, Kudla J, Batistič O. N-terminal S-acylation facilitates tonoplast targeting of the calcium sensor CBL6. FEBS Lett, 2017, 591(22): 3745-3756.
pmid: 29023681 |
[83] |
Batistic O, Sorek N, Schültke S, Yalovsky S, Kudla J. Dual fatty acyl modification determines the localization and plasma membrane targeting of CBL/CIPK Ca2+ signaling complexes in Arabidopsis. Plant Cell, 2008, 20(5): 1346-1362.
pmid: 18502848 |
[84] |
Liu WW, Sun Q, Wang K, Du QG, Li WX. Nitrogen limitation adaptation (NLA) is involved in source-to-sink remobilization of nitrate by mediating the degradation of NRT1.7 in Arabidopsis. New Phytol, 2017, 214(2): 734-744.
pmid: 28032637 |
[85] | Wang XL, Wang ET. NRT1.1B connects root microbiota and nitrogen use in rice. Chin Bull Bot, 2019, 54(3): 285-287. |
王孝林, 王二涛. 根际微生物促进水稻氮利用的机制. 植物学报, 2019, 54(3): 285-287. | |
[86] |
Zhang JY, Liu YX, Zhang N, Hu B, Jin T, Xu HR, Qin Y, Yan PX, Zhang XN, Guo XX, Hui J, Cao SY, Wang X, Wang C, Wang H, Qu BY, Fan GY, Yuan LX, Garrido-Oter R, Chu CC, Bai Y. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat Biotechnol, 2019, 37(6): 676-684.
pmid: 31036930 |
[87] |
Luo X, Mazer SJ, Guo H, Zhang N, Weiner J, Hu SJ. Nitrogen: phosphorous supply ratio and allometry in five alpine plant species. Ecol Evol, 2016, 6(24): 8881-8892.
pmid: 28035276 |
[88] |
Lv QD, Zhong YJ, Wang YG, Zhang L, Shi J, Wu ZC, Liu Y, Mao CZ, Yi KK, Wu P. SPX4 negatively regulates phosphate signaling and homeostasis through its interaction with PHR2 in rice. Plant Cell, 2014, 26(4): 1586-1597.
pmid: 24692424 |
[89] |
Konishi M, Okitsu T, Yanagisawa S. Nitrate-responsive NIN-like protein transcription factors perform unique and redundant roles in Arabidopsis. J Exp Bot, 2021, 72(15): 5735-5750.
pmid: 34050740 |
[90] |
Feng HM, Fan XR, Miller AJ, Xu GH. Plant nitrogen uptake and assimilation: regulation of cellular pH homeostasis. J Exp Bot, 2020, 71(15): 4380-4392.
pmid: 32206788 |
[91] |
Lillo C, Meyer C, Lea US, Provan F, Oltedal S. Mechanism and importance of post-translational regulation of nitrate reductase. J Exp Bot, 2004, 55(401): 1275-1282.
pmid: 15107452 |
[92] |
Park BS, Song JT, Seo HS. Arabidopsis nitrate reductase activity is stimulated by the E3 SUMO ligase AtSIZ1. Nat Commun, 2011, 2: 400.
pmid: 21772271 |
[93] |
Kim JY, Park BS, Park SW, Lee HY, Song JT, Seo HS. Nitrate reductases are relocalized to the nucleus by AtSIZ1 and their levels are negatively regulated by COP1 and ammonium. Int J Mol Sci, 2018, 19(4): 1202.
pmid: 29662028 |
[94] |
Sun C, Lei Y, Li BS, Gao Q, Li YJ, Cao W, Yang C, Li HC, Wang ZW, Li Y, Wang YP, Liu J, Zhao KT, Gao CX. Precise integration of large DNA sequences in plant genomes using PrimeRoot editors. Nat Biotechnol, 2024, 42(2): 316-327.
pmid: 37095350 |
[95] |
Shen C, Li Q, An Y, Zhou YY, Zhang Y, He F, Chen LY, Liu C, Mao W, Wang XF, Liang HY, Yin WL, Xia XL. The transcription factor GNC optimizes nitrogen use efficiency and growth by up-regulating the expression of nitrate uptake and assimilation genes in poplar. J Exp Bot, 2022, 73(14): 4778-4792.
pmid: 35526197 |
[1] | 谢龙祥, 于召箫, 郭思瑶, 李萍, AbualgasimElgailiAbdalla, 谢建平. 表观遗传和蛋白质翻译后修饰在细菌耐药中的作用[J]. 遗传, 2015, 37(8): 793-800. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: