[1] Sethi S, Murphy TF. Bacterial infection in chronic obstructive pulmonary disease in 2000: a state-of-the-art review. Clin Microbiol Rev , 2001, 14(2): 336-363. [2] Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LVJ. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol , 2015, 13(1): 42-51. [3] Hampton T. Report reveals scope of US antibiotic resistance threat. JAMA , 2013, 310(16): 1661-1663. [4] Walsh CT, Garneau-Tsodikova S, Gatto JG Jr. Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Int Ed , 2005, 44(45): 7342-7372. [5] Tsuchido T, Takano M. Sensitization by heat treatment of Escherichia coli K-12 cells to hydrophobic antibacterial compounds. Antimicrob Agents Chemother , 1988, 32(11): 1680-1683. [6] Jackson LA, Pan JC, Day MW, Dyer DW. Control of RNA stability by NrrF, an iron-regulated small RNA in Neisseria gonorrhoeae . J Bacteriol, 2013, 195(22): 5166-5173. [7] Chuanchuen R, Karkhoff-Schweizer RR, Schweizer HP. High-level triclosan resistance in Pseudomonas aeruginosa is solely a result of efflux. Am J Infect Control , 2003, 31(2): 124-127. [8] Vranakis I, Goniotakis I, Psaroulaki A, Sandalakis V, Tselentis Y, Gevaert K, Tsiotis G. Proteome studies of bacterial antibiotic resistance mechanisms. J Proteomics , 2014, 97: 88-99. [9] Mc Dermott PF, Walker RD, White DG. Antimicrobials: modes of action and mechanisms of resistance. Int J Toxicol , 2003, 22(2): 135-143. [10] Bradford PA. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev , 2001, 14(4): 933-951. [11] Collier J. Epigenetic regulation of the bacterial cell cycle. Curr Opin Microbiol , 2009, 12(6): 722-729. [12] Heusipp G, Fälker S, Schmidt MA. DNA adenine methylation and bacterial pathogenesis. Int J Med Microbiol , 2007, 297(1): 1-7. [13] Low DA, Weyand NJ, Mahan MJ. Roles of DNA adenine methylation in regulating bacterial gene expression and virulence. Infect Immun , 2001, 69(12): 7197-7204. [14] Militello KT, Mandarano AH, Varechtchouk O, Simon RD. Cytosine DNA methylation influences drug resistance in Escherichia coli through increased sugE expression. FEMS Microbiol Lett , 2014, 350(1): 100-106. [15] Srikhanta YN, Maguire TL, Stacey KJ, Grimmond SM, Jennings MP. The phasevarion: a genetic system controlling coordinated, random switching of expression of multiple genes. Proc Natl Acad Sci USA , 2005, 102(15): 5547-5551. [16] Srikhanta YN, Fox KL, Jennings MP. The phasevarion: phase variation of type III DNA methyltransferases controls coordinated switching in multiple genes. Nat Rev Microbiol , 2010, 8(3): 196-206. [17] Seib KL, Pigozzi E, Muzzi A, Gawthorne JA, Delany I, Jennings MP, Rappuoli R. A novel epigenetic regulator associated with the hypervirulent Neisseria meningitidis clonal complex 41/44. FASEB J , 2011, 25(10): 3622-3633. [18] Srikhanta YN, Dowideit SJ, Edwards JL, Falsetta ML, Wu HJ, Harrison OB, Fox KL, Seib KL, Maguire TL, Wang AHJ, Maiden MC, Grimmond SM, Apicella MA, Jennings MP. Phasevarions mediate random switching of gene expression in pathogenic Neisseria . PLoS Pathog , 2009, 5(4): e1000400. [19] Jen FEC, Seib KL, Jennings MP. Phasevarions mediate epigenetic regulation of antimicrobial susceptibility in Neisseria meningitidis . Antimicrob Agents Chemother , 2014, 58(7): 4219-4221. [20] Okamoto S, Tamaru A, Nakajima C, Nishimura K, Tanaka Y, Tokuyama S, Suzuki Y, Ochi K. Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria. Mol Microbiol , 2007, 63(4): 1096-1106. [21] Nishimura K, Johansen SK, Inaoka T, Hosaka T, Tokuyama S, Tahara Y, Okamoto S, Kawamura F, Douthwaite S, Ochi K. Identification of the RsmG methyltransferase target as 16S rRNA nucleotide G527 and characterization of Bacillus subtilis r |