[1] Schechter AN. Hemoglobin research and the origins of molecular medicine. Blood, 2008, 112(10): 3927–3938.
[2] Manca L, Masala B. Disorders of the synthesis of human fetal hemoglobin. IUBMB Life, 2008, 60(2): 94–111.
[3] Higgs DR, Wood WG. Genetic complexity in sickle cell disease. Proc Natl Acad Sci USA, 2008, 105(33): 11595–11596.
[4] Rund D, Fucharoen S. Genetic modifiers in hemoglobinopathies. Curr Mol Med, 2008, 8(7): 600–608.
[5] Menzel S, Thein SL. Genetic architecture of hemoglobin F control. Curr Opin Hematol, 2009, 16(3): 179–186.
[6] 严卫丽. 复杂疾病全基因组关联研究进展—— 研究设计和遗传标记. 遗传, 2008, 30(4): 400–406.
[7] Thein SL, Sampietro M, Rohde K, Rochette J, Weatherall DJ, Lathrop GM, Demenais F. Detection of a major gene for heterocellular hereditary persistence of fetal hemoglobin after accounting for genetic modifiers. Am J Hum Genet, 1994, 54(2): 214–228.
[8] Craig JE, Rochette J, Fisher CA, Weatherall DJ, Marc S, Lathrop GM, Demenais F, Thein S. Dissecting the loci controlling fetal haemoglobin production on chromosomes 11p and 6q by the regressive approach. Nat Genet, 1996, 12(1): 58–64.
[9] Dover GJ, Smith KD, Chang YC, Purvis S, Mays A, Meyers DA, Sheils C, Serjeant G. Fetal hemoglobin levels in sickle cell disease and normal individuals are partially controlled by an X-linked gene located at Xp22.2. Blood, 1992, 80(3): 816-824.
[10] Garner CP, Tatu T, Best S, Creary L, Thein SL. Evidence of genetic interaction between the beta-globin complex and chromosome 8q in the expression of fetal hemoglobin. Am J Hum Genet, 2002, 70(3): 793–799.
[11] Sebastiani P, Wang L, Nolan VG, Melista E, Ma Q, Baldwin CT, Steinberg MH. Fetal hemoglobin in sickle cell anemia: Bayesian modeling of genetic associations. Am J Hematol, 2008, 83(3): 189–195.
[12] Garner C, Mitchell J, Hatzis T, Reittie J, Farrall M, Thein SL. Haplotype mapping of a major quantitative-trait locus for fetal hemoglobin production, on chromosome 6q23. Am J Hum Genet, 1998, 62(6): 1468–1474.
[13] Close J, Game L, Clark B, Bergounioux J, Gerovassili A, Thein SL. Genome annotation of a 1.5 Mb region of human chromosome 6q23 encompassing a quantitative trait locus for fetal hemoglobin expression in adults. BMC Genomics, 2004, 31, 5(1): 33.
[14] Kuroyanagi Y, Kaneko Y, Muta K, Park BS, Moi P, Ausenda S, Cappellini MD, Ikuta T. cAMP differentially regulates gamma-globin gene expression in erythroleukemic cells and primary erythroblasts through c-Myb expression. Biochem Biophys Res Commun, 2006, 344(3): 1038–1047.
[15] Iliadou A, Evans DM, Zhu G, Duffy DL, Frazer IH, Montgomery GW, Martin NG. Genomewide scans of red cell indices suggest linkage on chromosome 6q23. J Med Genet, 2007, 44(1): 24–30.
[16] Pandit RA, Svasti S, Sripichai O, Munkongdee T, Triwitayakorn K, Winichagoon P, Fucharoen S, Peerapittayamongkol C. Association of SNP in exon 1 of HBS1L with hemoglobin F level in beta0-thalassemia/hemoglobin E. Int J Hematol, 2008, 88(4): 357–361.
[17] Jiang J, Best S, Menzel S, Silver N, Lai MI, Surdulescu GL, Spector TD, Thein SL. cMYB is involved in the regulation of fetal hemoglobin production in adults. Blood, 2006, 108(3): 1077–1083.
[18] Thein SL, Menzel S, Peng X, Best S, Jiang J, Close J, Silver N, Gerovasilli A, Ping C, Yamaguchi M, Wahlberg K, Ulug P, Spector TD, Garner C, Matsuda F, Farrall M, Lathrop M.Intergenic variants of HBS1L-MYB are responsible for a major quantitative trait locus on chromosome 6q23 influencing fetal hemoglobin levels in adults. Proc Natl Acad Sci USA, 2007, 104(27): 11346–11351.
[19] Menzel S, Jiang J, Silver N, Gallagher J, Cunningham J, Surdulescu G, Lathrop M, Farrall M, Spector TD, Thein SL. The HBS1L-MYB intergenic region on chromosome 6q23.3 influences erythrocyte, |