[1] | Sabath DE . Molecular diagnosis of thalassemias and hemoglobinopathies: an ACLPS critical review. Am J Clin Pathol, 2017, 148(1):6-15. | [2] | Weatherall DJ . Hemoglobinopathies worldwide: present and future. Curr Mol Med, 2008, 8(7):592-599. | [3] | Srivastava A, Shaji RV . Cure for thalassemia major-from allogeneic hematopoietic stem cell transplantation to gene therapy. Haematologica, 2017, 102(2):214-223. | [4] | Canver MC, Orkin SH . Customizing the genome as therapy for the β-hemoglobinopathies. Blood, 2016, 127(21):2536-2545. | [5] | Bauer DE, Orkin SH . Hemoglobin switching's surprise: the versatile transcription factor BCL11A is a master repressor of fetal hemoglobin. Curr Opin Genet Dev, 2015, 33:62-70. | [6] | Makis A, Hatzimichael E, Papassotiriou I, Voskaridou E . 2017 Clinical trials update in new treatments of β-thalassemia. Am J Hematol, 2016, 91(11):1135-1145. | [7] | Cavazzana M, Antoniani C, Miccio A . Gene therapy for β-hemoglobinopathies. Mol Ther, 2017, 25(5):1142-1154. | [8] | Sander JD, Joung JK . CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol, 2014, 32(4):347-355. | [9] | Komor AC, Badran AH, Liu DR . CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell, 2017, 168(1-2):20-36. | [10] | Qu L , Li HS , Jiang YH , Dong CS . The molecular mechanism of CRISPR/Cas9 system and its application in gene therapy of human diseases. Hereditas (Beijing), 2015, 37( 10): 974- 982. | [10] | 璩良, 李华善, 姜运涵, 董春升 . CRISPR/Cas9系统的分子机制及其在人类疾病基因治疗中的应用. 遗传, 2015, 37( 10): 974- 982. [DOI] | [11] | Park CY, Kim DH, Son JS, Sung JJ, Lee J, Bae S, Kim JH, Kim DW, Kim JS . Functional correction of large factor VIII gene chromosomal inversions in hemophilia a patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell, 2015, 17(2):213-220. | [12] | Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, Spratt SK, Surosky RT, Giedlin MA, Nichol G, Holmes MC, Gregory PD, Ando DG, Kalos M, Collman RG, Binder-Scholl G, Plesa G, Hwang WT, Levine BL, June CH . Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med, 2014, 370(10):901-910. | [13] | Han YL , Li QW . Application progress of CRISPR/Cas9 genome editing technology in the treatment of HIV-1 infection. Hereditas (Beijing), 2016, 38( 1): 9- 16. | [13] | 韩英伦, 李庆伟 . CRISPR/Cas9基因组编辑技术在HIV-1感染治疗中的应用进展. 遗传, 2016, 38( 1): 9- 16. doi: | [14] | Li S , Yang YY , Qiu Y , Chen YH , Xu LW , Ding QR . Applications of genome editing tools in precision medicine research. Hereditas (Beijing), 2017, 39( 3): 177- 188. | [14] | 李爽, 杨圆圆, 邱艳, 陈彦好, 徐璐薇, 丁秋蓉 . 基因组编辑技术在精准医学中的应用. 遗传, 2017, 39( 3): 177- 188. [DOI] | [15] | Wang GC , Ma M , Ye YZ , Xi JZ . High-throughput functional screening using CRISPR/Cas9 system. Hereditas (Beijing), 2016, 38( 5): 391- 401. | [15] | 王干诚, 马明, 叶延帧, 席建忠 . 基于CRISPR/Cas9系统高通量筛选研究功能基因. 遗传, 2016, 38( 5): 391- 401. | [16] | Hoban MD, Bauer DE . A genome editing primer for the hematologist. Blood, 2016, 127(21):2525-2535. | [17] | Hoban MD, Cost GJ, Mendel MC, Romero Z, Kaufman ML, Joglekar AV, Ho M, Lumaquin D, Gray D, Lill GR, Cooper AR, Urbinati F, Senadheera S, Zhu A, Liu PQ, Paschon DE, Zhang L, Rebar EJ, Wilber A, Wang X, Gregory PD, Holmes MC, Reik A, Hollis RP, Kohn DB . Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells. Blood, 2015, 125(17):2597-2604. | [18] | DeWitt MA, Magis W, Bray NL, Wang T, Berman JR, Urbinati F, Heo SJ, Mitros T, Mu?oz DP, Boffelli D, Kohn DB, Walters MC, Carroll D, Martin DI, Corn JE . Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Sci Transl Med, 2016, 8(360):360ra134. | [19] | Bahal R , Ali McNeer N, Quijano E, Liu YF, Sulkowski P, Turchick A, Lu YC, Bhunia DC, Manna A, Greiner DL, Brehm MA, Cheng CJ, López-Giráldez F, Ricciardi A, Beloor J, Krause DS, Kumar P, Gallagher PG, Braddock DT, Mark Saltzman W, Ly DH, Glazer PM. In vivo correction of anaemia in β-thalassemic mice by γPNA- mediated gene editing with nanoparticle delivery. Nat Commun, 2016, 7:13304. | [20] | Dever DP, Bak RO, Reinisch A, Camarena J, Washington G, Nicolas CE, Pavel-Dinu M, Saxena N, Wilkens AB, Mantri S, Uchida N, Hendel A, Narla A, Majeti R, Weinberg KI, Porteus MH . CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature, 2016, 539(7629):384-389. | [21] | Wienert B, Funnell APW, Norton LJ, Pearson RC, Wilkinson-White LE, Lester K, Vadolas J, Porteus MH, Matthews JM, Quinlan KGR, Crossley M . Editing the genome to introduce a beneficial naturally occurring mutation associated with increased fetal globin. Nat Commun, 2015, 6:7085. | [22] | Traxler EA, Yao Y, Wang YD, Woodard KJ, Kurita R, Nakamura Y, Hughes JR, Hardison RC, Blobel GA, Li CL, Weiss MJ . A genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Nat Med, 2016, 22(9):987-990. | [23] | Hossain MA, Bungert J . Genome editing for sickle cell disease: a little BCL11A goes a long way. Mol Ther, 2017, 25(3):561-562. | [24] | Canver MC, Smith EC, Sher F, Pinello L, Sanjana NE, Shalem O, Chen DD, Schupp PG, Vinjamur DS, Garcia SP, Luc S, Kurita R, Nakamura Y, Fujiwara Y, Maeda T, Yuan GC, Zhang F, Orkin SH, Bauer DE . BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature, 2015, 527(7577):192-197. | [25] | Chang KH, Smith SE, Sullivan T, Chen K, Zhou QH, West JA, Liu M, Liu YC, Vieira BF, Sun C, Hong VP, Zhang MX, Yang X, Reik A, Urnov FD, Rebar EJ, Holmes MC, Danos O, Jiang HY, Tan SY . Long-term engraftment and fetal globin induction upon BCL11A gene editing in bone- marrow-derived CD34+ hematopoietic stem and progenitor cells. Mol Ther Methods Clin Dev , 2017, 4: 137-148. | [26] | Guda S, Brendel C, Renella R, Du P, Bauer DE, Canver MC, Grenier JK, Grimson AW, Kamran SC , Thornton J, de Boer H, Root DE, Milsom MD, Orkin SH, Gregory RI, Williams DA. miRNA-embedded shRNAs for lineage- specific BCL11A knockdown and hemoglobin f induction. Mol Ther, 2015, 23(9):1465-1474. | [27] | Masuda T, Wang X, Maeda M, Canver MC, Sher F, Funnell AP, Fisher C, Suciu M, Martyn GE, Norton LJ, Zhu C, Kurita R, Nakamura Y, Xu J, Higgs DR, Crossley M, Bauer DE, Orkin SH, Kharchenko PV, Maeda T . Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin. Science, 2016, 351(6270):285-289. | [28] | Renneville A, Van Galen P, Canver MC, McConkey M, Krill-Burger JM, Dorfman DM, Holson EB, Bernstein BE, Orkin SH, Bauer DE, Ebert BL . EHMT1 and EHMT2 inhibition induces fetal hemoglobin expression. Blood, 2015, 126(16):1930-1939. | [29] | Lee YT, de Vasconcellos JF, Yuan J, Byrnes C, Noh SJ, Meier ER, Kim KS, Rabel A, Kaushal M, Muljo SA, Miller JL . LIN28B-mediated expression of fetal hemoglobin and production of fetal-like erythrocytes from adult human erythroblasts ex vivo.. Blood, 2013, 122(6):1034-1041. | [30] | Lohani N, Bhargava N, Munshi A, Ramalingam S . Pharmacological and molecular approaches for the treatment of β-hemoglobin disorders. J Cell Physiol, 2017, doi: 10.1002/jcp.26292.[DOI] | [31] | Capellera-Garcia S, Pulecio J, Dhulipala K, Siva K, Rayon-Estrada V, Singbrant S, Sommarin MNE, Walkley CR, Soneji S, Karlsson G, Raya A, Sankaran VG, Flygare J . Defining the minimal factors required for erythropoiesis through direct lineage conversion. Cell Rep, 2016, 15(11):2550-2562. | [32] | Lucarelli G, Isgrò A, Sodani P, Gaziev J . Hematopoietic stem cell transplantation in thalassemia and sickle cell anemia. Cold Spring Harb Perspect Med, 2012, 2(5):a011825. | [33] | Karponi G, Psatha N, Lederer CW, Adair JE, Zervou F, Zogas N, Kleanthous M, Tsatalas C, Anagnostopoulos A, Sadelain M, Rivière I, Stamatoyannopoulos G, Yannaki E . Plerixafor + G-CSF-mobilized CD34+ cells represent an optimal graft source for thalassemia gene therapy . Blood, 2015, 126(5):616-619. | [34] | Yang YY, Zhang XB, Yi L, Hou ZZ, Chen JY, Kou XC, Zhao YH, Wang H, Sun XF, Jiang CZ, Wang YX, Gao SR . Na?ve induced pluripotent stem cells generated from β- thalassemia fibroblasts allow efficient gene correction with CRISPR/Cas9. Stem Cells Transl Med, 2016, 5(1):8-19. | [35] | Song B, Fan Y, He WY, Zhu DT, Niu XH, Wang D, Ou ZH, Luo M, Sun XF . Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system. Stem Cells Dev, 2015, 24(9):1053-1065. | [36] | Xie F, Ye L, Chang JC, Beyer AI, Wang JM, Muench MO, Kan YW . Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res, 2014, 24(9):1526-1533. | [37] | Cornu TI, Mussolino C, Cathomen T . Refining strategies to translate genome editing to the clinic. Nat Med, 2017, 23(4):415-423. | [38] | Hoban MD, Lumaquin D, Kuo CY, Romero Z, Long J, Ho M, Young CS, Mojadidi M, Fitz-Gibbon S, Cooper AR, Lill GR, Urbinati F, Campo-Fernandez B, Bjurstrom CF, Pellegrini M, Hollis RP, Kohn DB . CRISPR/Cas9-mediated correction of the sickle mutation in human CD34+ cells. Mol Ther, 2016, 24(9):1561-1569. | [39] | Ye L, Wang JM, Tan YT, Beyer AI, Xie F, Muench MO, Kan YW . Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: an approach for treating sickle cell disease and β-thalassemia. Proc Natl Acad Sci USA, 2016, 113(38):10661-10665. | [40] | Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE, Roy S, Steinfeld I, Lunstad BD, Kaiser RJ, Wilkens AB, Bacchetta R, Tsalenko A, Dellinger D, Bruhn L, Porteus MH . Chemically modified guide RNAs enhance CRISPR- Cas genome editing in human primary cells. Nat Biotechnol, 2015, 33(9):985-989. | [41] | Murugan K, Babu K, Sundaresan R, Rajan R, Sashital DG . The revolution continues: newly discovered systems expand the CRISPR-cas toolkit. Mol Cell, 2017, 68(1):15-25. | [42] | Zhang H , McCarty N. CRISPR-Cas9 technology and its application in haematological disorders. Br J Haematol, 2016, 175(2):208-225. |
|