[1] | Hecht F, Motulsky AG, Lemire RJ, Shepard TE . Predominance of hemoglobin Gower 1 in early human embryonic development. Science, 1966,152(3718):91-92. | [2] | Huehns ER, Flynn FV, Butler EA, Beaven GH . Two new haemoglobin variants in a very young human embryo. Nature, 1961,189:496-497. | [3] | Albitar M, Care A, Peschle, Liebhaber SA . Developmental switching of messenger RNA expression from the human alpha-globin cluster: fetal/adult pattern of theta-globin gene expression. Blood, 1992,80(6):1586-1591. | [4] | Stamatoyannopoulos G . Control of globin gene expression during development and erythroid differentiation. Exp Hematol, 2005,33(3):259-271. | [5] | Donze D, Jeancake PH, Townes TM . Activation of delta-globin gene expression by erythroid Krupple-like factor: a potential approach for gene therapy of sickle cell disease. Blood, 1996,88(10):4051-4057. | [6] | Taher AT, Weatherall DJ, Cappellini MD . Thalassaemia. Lancet, 2018,391(10116):155-167. | [7] | Modell B, Darlison M . Global epidemiology of haemoglobin disorders and derived service indicators. Bull World Health Organ, 2008,86(6):480-487. | [8] | Weatherall DJ . Single gene disorders or complex traits: lessons from the thalassaemias and other monogenic diseases. BMJ, 2000,321(7269):1117-1120. | [9] | Xu XM, Zhou YQ, Luo GX, Liao C, Zhou M, Chen PY, Lu JP, Jia SQ, Xiao GF, Shen X, Li J, Chen HP, Xia YY, Wen YX, Mo QH, Li WD, Li YY, Zhuo LW, Wang ZQ, Chen YJ, Qin CH, Zhong M . The prevalence and spectrum of alpha and beta thalassaemia in Guangdong Province: implications for the future health burden and population screening. J Clin Pathol, 2004,57(5):517-522. | [10] | Piel FB, Patil AP, Howes RE, Nyangiri OA, Gething PW, Dewi M, Temperley WH, Williams TN, Weatherall DJ, Hay SI . Global epidemiology of sickle haemoglobin in neonates: a contemporary geostatistical model-based map and population estimates. Lancet, 2013,381(9861):142-151. | [11] | Sankaran VG, Weiss MJ . Anemia: progress in molecular mechanisms and therapies. Nat Med, 2015,21(3):221-230. | [12] | Watson J . The significance of the paucity of sickle cells in newborn Negro infants. Am J Med Sci, 1948,215(4):419-423. | [13] | Stamatoyannopoulos G, Wood WG, Papayannopoulou T, Nute PE . A new form of hereditary persistence of fetal hemoglobin in blacks and its association with sickle cell trait. Blood, 1975,46(5):683-692. | [14] | Natta CL, Niazi GA, Ford S, Bank A . Balanced globin chain synthesis in hereditary persistence of fetal hemoglobin. J Clin Invest, 1974,54(2):433-438. | [15] | Platt OS, Brambilla DJ, Rosse WF, Milner PF, Castro O, Steinberg MH, Klug PP . Mortality in sickle cell disease. Life expectancy and risk factors for early death. N Engl J Med, 1994,330(23):1639-1644. | [16] | Carter D, Chakalova L, Osborne CS, Dai YF, Fraser P . Long-range chromatin regulatory interactions in vivo. Nat Genet, 2002,32(4):623-626. | [17] | Li QL, Peterson KR, Fang XD, Stamatoyannopoulos G . Locus control regions. Blood, 2002,100(9):3077-3086. | [18] | Palstra RJ, de Laat W, Grosveld F . Beta-globin regulation and long-range interactions. Adv Genet, 2008,61:107-142. | [19] | Merika M, Orkin SH . DNA-binding specificity of GATA family transcription factors. Mol Cell Biol, 1993,13(7):3999-4010. | [20] | Orkin SH . GATA-binding transcription factors in hematopoietic cells. Blood, 1992,80(3):575-581. | [21] | Shimizu R, Engel JD, Yamamoto M . GATA1-related leukaemias. Nat Rev Cancer, 2008,8(4):279-287. | [22] | Hamlett I, Draper J, Strouboulis J, Iborra F, Porcher C, Vyas P . Characterization of megakaryocyte GATA1-interacting proteins: the corepressor ETO2 and GATA1 interact to regulate terminal megakaryocyte maturation. Blood, 2008,112(7):2738-2749. | [23] | Pevny L, Simon MC, Robertson E, Klein WH, Tsai SF , D'Agati V, Orkin SH, Costantini F. Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature, 1991,349(6306):257-260. | [24] | Im H, Grass JA, Johnson KD, Kim SI, Boyer ME, Imbalzano AN, Bieker JJ, Bresnick EH . Chromatin domain activation via GATA-1 utilization of a small subset of dispersed GATA motifs within a broad chromosomal region. Proc Natl Acad Sci USA, 2005,102(47):17065-17070. | [25] | Harju-Baker S, Costa FC, Fedosyuk H, Neades R, Peterson KR . Silencing of Agamma-globin gene expression during adult definitive erythropoiesis mediated by GATA-1-FOG-1-Mi2 complex binding at the -566 GATA site. Mol Cell Biol, 2008,28(10):3101-3113. | [26] | Bharadwaj RR, Trainor CD, Pasceri P, Ellis J . LCR-regulated transgene expression levels depend on the Oct-1 site in the AT-rich region of beta-globin intron-2. Blood, 2003,101(4):1603-1610. | [27] | Costa FC, Fedosyuk H, Chazelle AM, Neades RY, Peterson KR . Mi2β is required for γ-globin gene silencing: temporal assembly of a GATA-1-FOG-1-Mi2 repressor complex in β-YAC transgenic mice. PLoS Genet, 2012,8(12):e1003155. | [28] | Miccio A, Blobel GA . Role of the GATA-1/FOG-1/ NuRD pathway in the expression of human beta-like globin genes. Mol Cell Biol, 2010,30(14):3460-3470. | [29] | Tsai FY, Keller G, Kuo FC, Weiss M, Chen J, Rosenblatt M, Alt FW, Orkin SH . An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature, 1994,371(6494):221-226. | [30] | Persons DA, Allay JA, Allay ER, Ashmun RA, Orlic D, Jane SM, Cunningham J . M, Nienhuis A. W. Enforced expression of the GATA-2 transcription factor blocks normal hematopoiesis. Blood, 1999,93(2):488-499. | [31] | Ikonomi P, Noguchi CT, Miller W, Kassahun H, Hardison R, Schechter AN . Levels of GATA-1/GATA-2 transcription factors modulate expression of embryonic and fetal hemoglobins. Gene, 2000,261(2):277-287. | [32] | Song SH, Hou C, Dean A . A positive role for NLI/Ldb1 in long-range beta-globin locus control region function. Mol Cell, 2007,28(5):810-822. | [33] | Yun WJ, Kim YW, Kang Y, Lee J, Dean A, Kim A . The hematopoietic regulator TAL1 is required for chromatin looping between the β-globin LCR and human γ-globin genes to activate transcription. Nucleic Acids Res, 2014,42(7):4283-4293. | [34] | Katsuoka F, Motohashi H, Onodera K, Suwabe N, Engel JD, Yamamoto M . One enhancer mediates mafK transcriptional activation in both hematopoietic and cardiac muscle cells. EMBO J, 2000,19(12):2980-2991. | [35] | Sawado T, Igarashi K, Groudine M . Activation of beta-major globin gene transcription is associated with recruitment of NF-E2 to the beta-globin LCR and gene promoter. Proc Natl Acad Sci USA, 2001,98(18):10226-10231. | [36] | Jane SM, Gumucio DL, Ney PA, Cunningham JM, Nienhuis AW . Methylation-enhanced binding of Sp1 to the stage selector element of the human gamma-globin gene promoter may regulate development specificity of expression. Mol Cell Biol, 1993,13(6):3272-3281. | [37] | Jane SM, Nienhuis AW, Cunningham JM . Hemoglobin switching in man and chicken is mediated by a heteromeric complex between the ubiquitous transcription factor CP2 and a developmentally specific protein. EMBO J, 1995,14(1):97-105. | [38] | Zhou W, Clouston DR, Wang X, Cerruti L, Cunningham JM, Jane SM . Induction of human fetal globin gene expression by a novel erythroid factor, NF-E4. Mol Cell Biol, 2000,20(20):7662-7672. | [39] | Zhou W, Zhao Q, Sutton R, Cumming H, Wang X, Cerruti L, Hall M, Wu R, Cunningham JM, Jane SM . The role of p22 NF-E4 in human globin gene switching. J Biol Chem, 2004,279(25):26227-26232. | [40] | Zhao Q, Zhou W, Rank G, Sutton R, Wang X, Cumming H, Cerruti L, Cunningham JM, Jane SM . Repression of human gamma-globin gene expression by a short isoform of the NF-E4 protein is associated with loss of NF-E2 and RNA polymerase II recruitment to the promoter. Blood, 2005,107(5):2138-2145. | [41] | Miller IJ, Bieker JJ . A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Krüppel family of nuclear proteins. Mol Cell Biol, 1993,13(5):2776-2786. | [42] | Jackson DA , McDowell JC, Dean A. Beta-globin locus control region HS2 and HS3 interact structurally and functionally. Nucleic Acids Res, 2003,31(4):1180-1190. | [43] | Liu D, Zhang XH, Yu LH, Cai R, Ma XX, Zheng CG, Zhou YQ, Liu QJ, Wei XF, Lin L, Yan TZ, Huang JW, Mohandas N, An XL, Xu XM . KLF1 mutations are relatively more common in a thalassemia endemic region and ameliorate the severity of β-thalassemia. Blood, 2014,124(5):803-811. | [44] | Donze D, Townes TM, Bieker JJ . Role of erythroid Kruppel-like factor in human gamma- to beta-globin gene switching. J Biol Chem, 1995,270(4):1955-1959. | [45] | Zhou DW, Liu KM, Sun CW, Pawlik KM, Townes TM . KLF1 regulates BCL11A expression and γ- to β-globin gene switching. Nat Genet, 2010,42(9):742-744. | [46] | Wienert B, Martyn GE, Kurita R, Nakamura Y, Quinlan KGR, Crossley M . KLF1 drives the expression of fetal hemoglobin in British HPFH. Blood, 2017,130(6):803-807. | [47] | Drissen R, von Lindern M, Kolbus A, Driegen S, Steinlein P, Beug H, Grosveld F, Philipsen S . The erythroid phenotype of EKLF-null mice: defects in hemoglobin metabolism and membrane stability. Mol Cell Biol, 2005,25(12):5205-5214. | [48] | Uda M, Galanello R, Sanna S, Lettre G, Sankaran V G' Chen W, Usala G, Busonero F, Maschio A, Albai G, Piras MG, Sestu N, Lai S, Dei M, Mulas A, Crisponi L, Naitza S, Asunis I, Deiana M, Nagaraja R, Perseu L, Satta S, Cipollina MD, Sollaino C, Moi P, Hirschhorn JN, Orkin SH, Abecasis GR, Schlessinger D, Cao A. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia. Proc Natl Acad Sci USA, 2008,105(5):1620-1625. | [49] | Sankaran VG, Menne TF, Xu J, Akie TE, Lettre G, Van Handel B, Mikkola HK, Hirschhorn JN, Cantor AB, Orkin SH . Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science, 2008,322(5909):1839-1842. | [50] | Sankaran VG, Xu J, Orkin SH . Transcriptional silencing of fetal hemoglobin by BCL11A. Ann N Y Acad Sci, 2010,1202:64-68. | [51] | Xu J, Peng C, Sankaran VG, Shao Z, Esrick EB, Chong BG, Ippolito GC, Fujiwara Y, Ebert BL, Tucker PW, Orkin SH . Correction of sickle cell disease in adult mice by interference with fetal hemoglobin silencing. Science, 2011,334(6058):993-996. | [52] | Xu J, Sankaran VG, Ni M, Menne TF, Puram RV, Kim W, Orkin SH . Transcriptional silencing of {gamma}-globin by BCL11A involves long-range interactions and cooperation with SOX6. Genes Dev, 2010,24(8):783-798. | [53] | Liu N, Hargreaves VV, Zhu Q, Kurland JV, Hong J, Kim W, Sher F, Macias-Trevino C, Rogers JM, Kurita R, Nakamura Y, Yuan GC, Bauer DE, Xu J, Bulyk ML, Orkin SH . Direct promoter repression by BCL11A controls the fetal to adult hemoglobin switch. Cell, 2018, 173(2): 430- 442. e417. | [54] | Martyn GE, Wienert B, Yang L, Shah M, Norton LJ, Burdach J, Kurita R, Nakamura Y, Pearson RCM, Funnell APW, Quinlan KGR, Crossley M . Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding. Nat Genet, 2018,50(4):498-503. | [55] | Thein SL, Menzel S, Peng X, Best S, Jiang J, Close J, Silver N, Gerovasilli A, Ping C, Yamaguchi M, Wahlberg K, Ulug P, Spector TD, Garner C, Matsuda F, Farrall M, Lathrop M . Intergenic variants of HBS1L- MYB are responsible for a major quantitative trait locus on chromosome 6q23 influencing fetal hemoglobin levels in adults. Proc Natl Acad Sci USA, 2007,104(27):11346-11351. | [56] | Lettre G, Sankaran VG, Bezerra MA, Araujo AS, Uda M, Sanna S, Cao A, Schlessinger D, Costa FF, Hirschhorn JN, Orkin SH . DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc Natl Acad Sci USA, 2008,105(33):11869-11874. | [57] | Wahlberg K, Jiang J, Rooks H, Jawaid K, Matsuda F, Yamaguchi M, Lathrop M, Thein SL, Best S . The HBS1L-MYB intergenic interval associated with elevated HbF levels shows characteristics of a distal regulatory region in erythroid cells. Blood, 2009,114(6):1254-1262. | [58] | Stadhouders R, Aktuna S, Thongjuea S, Aghajanirefah A, Pourfarzad F, van Ijcken W, Lenhard B, Rooks H, Best S, Menzel S, Grosveld F, Thein SL, Soler E . HBS1L-MYB intergenic variants modulate fetal hemoglobin via long-range MYB enhancers. J Clin Invest, 2014,124(4):1699-1710. | [59] | Davies JM, Hawe N, Kabarowski J, Huang QH, Zhu J, Brand NJ, Leprince D, Dhordain P, Cook M, Morriss- Kay G, Zelent A . Novel BTB/POZ domain zinc-finger protein, LRF, is a potential target of the LAZ-3/BCL-6 oncogene. Oncogene, 1999,18(2):365-375. | [60] | Maeda T . Regulation of hematopoietic development by ZBTB transcription factors. Int J Hematol, 2016,104(3):310-323. | [61] | Masuda T, Wang X, Maeda M, Canver M C, Sher F, Funnell A. P, Fisher C, Suciu M, Martyn G. E, Norton LJ, Zhu C, Kurita R, Nakamura Y, Xu J, Higgs DR, Crossley M, Bauer DE, Orkin SH, Kharchenko PV, Maeda T. . Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin. Science, 2016,351(6270):285-289. | [62] | Maeda T, Ito K, Merghoub T, Poliseno L, Hobbs RM, Wang G, Dong L, Maeda M, Dore LC, Zelent A, Luzzatto L, Teruya-Feldstein J, Weiss MJ, Pandolfi PP . LRF is an essential downstream target of GATA1 in erythroid development and regulates BIM-dependent apoptosis. Dev Cell, 2009,17(4):527-540. | [63] | Su L, Hershberger RJ, Weissman IL . LYAR, a novel nucleolar protein with zinc finger DNA-binding motifs, is involved in cell growth regulation. Genes Dev, 1993,7(5):735-748. | [64] | Ju JY, Wang Y, Liu RH, Zhang YC, Xu Z, Wang Y, Wu YD, Liu M, Cerruti L, Zou FW, Ma C, Fang M, Tan RX, Jane SM, Zhao Q . Human fetal globin gene expression is regulated by LYAR. Nucleic Acids Res, 2014,42(15):9740-9752. | [65] | Breveglieri G, Bianchi N, Cosenza L . C, Gamberini M. R, Chiavilli F, Zuccato C, Montagner G, Borgatti M, Lampronti I, Finotti A, Gambari R. An Agamma-globin G->A gene polymorphism associated with β 039 thalassemia globin gene and high fetal hemoglobin production . BMC Med Genet, 2017,18(1):93. | [66] | Bianchi N, Cosenza LC, Lampronti I, Finotti A, Breveglieri G, Zuccato C, Fabbri E, Marzaro G, Chilin A, De Angelis G, Borgatti M, Gallucci C, Alfieri C, Ribersani M, Isgro A, Marziali M, Gaziev J, Morrone A, Sodani P, Lucarelli G, Gambari R, Paciaroni K . Structural and functional insights on an uncharacterized Aγ-globin-gene polymorphism present in four β0-thalassemia families with high fetal hemoglobin levels. Mol Diagn Ther, 2016,20(2):161-173. | [67] | Chen D, Zuo Y, Zhang X, Ye Y, Bao X, Huang H, Tepakhan W, Wang L, Ju J, Chen G, Zheng M, Liu D, Huang S, Zong L, Li C, Chen Y, Zheng C, Shi L, Zhao Q, Wu Q, Fucharoen S, Zhao C, Xu X . A genetic variant ameliorates β-thalassemia severity by epigenetic-mediated elevation of human fetal hemoglobin expression. Am J Hum Genet, 2017,101(1):130-138. | [68] | Tanabe O, McPhee D, Kobayashi S, Shen YN, Brandt W, Jiang X, Campbell AD, Chen YT, Chang CS, Yamamoto M, Tanimoto K, Engel JD . Embryonic and fetal beta-globin gene repression by the orphan nuclear receptors, TR2 and TR4. EMBO J, 2007,26(9):2295-2306. | [69] | Cui S, Kolodziej KE, Obara N, Amaral-Psarris A, Demmers J, Shi L, Engel JD, Grosveld F, Strouboulis J, Tanabe O . Nuclear receptors TR2 and TR4 recruit multiple epigenetic transcriptional corepressors that associate specifically with the embryonic β-type globin promoters in differentiated adult erythroid cells. Mol Cell Biol, 2011,31(16):3298-3311. | [70] | Campbell AD, Cui S, Shi L, Urbonya R, Mathias A, Bradley K, Bonsu KO, Douglas RR, Halford B, Schmidt L, Harro D, Giacherio D, Tanimoto K, Tanabe O, Engel JD . Forced TR2/TR4 expression in sickle cell disease mice confers enhanced fetal hemoglobin synthesis and alleviated disease phenotypes. Proc Natl Acad Sci USA, 2011,108(46):18808-18813. | [71] | Mabaera R, Richardson CA, Johnson K, Hsu M, Fiering S, Lowrey CH . Developmental- and differentiation- specific patterns of human gamma- and beta-globin promoter DNA methylation. Blood, 2007,110(4):1343-1352. | [72] | Feng Q, Zhang Y . The MeCP1 complex represses transcription through preferential binding, remodeling, and deacetylating methylated nucleosomes. Genes Dev, 2001,15(7):827-832. | [73] | Rupon JW, Wang SZ, Gaensler K, Lloyd J, Ginder GD . Methyl binding domain protein 2 mediates gamma- globin gene silencing in adult human betaYAC transgenic mice. Proc Natl Acad Sci USA, 2006,103(17):6617-6622. | [74] | Gnanapragasam MN, Scarsdale JN, Amaya ML, Webb HD, Desai MA, Walavalkar NM, Wang SZ, Zu Zhu S, Ginder GD, Williams DC , Jr. p66Alpha-MBD2 coiled- coil interaction and recruitment of Mi-2 are critical for globin gene silencing by the MBD2-NuRD complex. Proc Natl Acad Sci USA, 2011,108(18):7487-7492. | [75] | Zentner GE, Henikoff S . Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol, 2013,20(3):259-266. | [76] | Marmorstein R . Structure and function of histone acetyltransferases. Cell Mol Life Sci, 2001,58(5-6):693-703. | [77] | Li Y, Seto E . HDACs and HDAC Inhibitors in cancer development and therapy. Cold Spring Harb Perspect Med, 2016, 6(10): pii: a026831. | [78] | Ginder GD, Whitters MJ, Pohlman JK . Activation of a chicken embryonic globin gene in adult erythroid cells by 5-azacytidine and sodium butyrate. Proc Natl Acad Sci USA, 1984,81(13):3954-3958. | [79] | Perrine SP, Rudolph A, Faller DV, Roman C, Cohen RA, Chen SJ, Kan YW . Butyrate infusions in the ovine fetus delay the biologic clock for globin gene switching. Proc Natl Acad Sci USA, 1988,85(22):8540-8542. | [80] | Dai Y, Chen TW, Ijaz H, Cho EH, Steinberg MH . SIRT1 activates the expression of fetal hemoglobin genes. Am J Hematol, 2017,92(11):1177-1186. | [81] | Boyes J, Byfield P, Nakatani Y, Ogryzko V . Regulation of activity of the transcription factor GATA-1 by acetylation. Nature, 1998,396(6711):594-598. | [82] | Zhao Q, Cumming H, Cerruti L, Cunningham JM, Jane SM . Site-specific acetylation of the fetal globin activator NF-E4 prevents its ubiquitination and regulates its interaction with the histone deacetylase, HDAC1. J Biol Chem, 2004,279(40):41477-41486. | [83] | Boosalis MS, Bandyopadhyay R, Bresnick EH, Pace BS, Van DeMark K, Zhang B, Faller DV, Perrine SP . Short-chain fatty acid derivatives stimulate cell proliferation and induce STAT-5 activation. Blood, 2001,97(10):3259-3267. | [84] | Witt O, Monkemeyer S, Ronndahl G, Erdlenbruch B, Reinhardt D, Kanbach K, Pekrun A . Induction of fetal hemoglobin expression by the histone deacetylase inhibitor apicidin. Blood, 2003,101(5):2001-2007. | [85] | Sangerman J, Lee MS, Yao X, Oteng E, Hsiao CH, Li W, Zein S, Ofori-Acquah S F, Pace BS . Mechanism for fetal hemoglobin induction by histone deacetylase inhibitors involves gamma-globin activation by CREB1 and ATF-2. Blood, 2006,108(10):3590-3599. | [86] | Rank G, Cerruti L, Simpson RJ, Moritz RL, Jane SM, Zhao Q . Identification of a PRMT5-dependent repressor complex linked to silencing of human fetal globin gene expression. Blood, 2010,116(9):1585-1592. | [87] | Zhao Q, Rank G, Tan YT, Li H, Moritz RL, Simpson RJ, Cerruti L, Curtis DJ, Patel DJ, Allis CD, Cunningham JM, Jane SM . PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. Nat Struct Mol Biol, 2009,16(3):304-311. | [88] | He YH, Rank G, Zhang MM, Ju JJ, Liu RH, Xu Z, Brown F, Cerruti L, Ma C, Tan RX, Jane SM, Zhao Q . Induction of human fetal hemoglobin expression by adenosine-2°,3°-dialdehyde. J Transl Med, 2013,11:14. | [89] | van Dijk TB, Gillemans N, Pourfarzad F, van Lom K, von Lindern M, Grosveld F, Philipsen S . Fetal globin expression is regulated by Friend of Prmt1. Blood, 2010,116(20):4349-4352. | [90] | Li XG, Hu X, Patel B, Zhou Z, Liang S, Ybarra R, Qiu Y, Felsenfeld G, Bungert J, Huang S . H4R3 methylation facilitates β-globin transcription by regulating histone acetyltransferase binding and H3 acetylation. Blood, 2010,115(10):2028-2037. | [91] | Xu J, Bauer DE, Kerenyi MA, Vo TD, Hou S, Hsu YJ, Yao HL, Trowbridge JJ, Mandel G, Orkin SH . Corepressor-dependent silencing of fetal hemoglobin expression by BCL11A. Proc Natl Acad Sci USA, 2013,110(16):6518-6523. | [92] | Shi L, Cui S, Engel JD, Tanabe O . Lysine-specific demethylase 1 is a therapeutic target for fetal hemoglobin induction. Nat Med, 2013,19(3):291-294. | [93] | Lavelle D, Saunthararajah Y, Desimone J . DNA methylation and mechanism of action of 5-azacytidine. Blood, 2008,111(4):2485. | [94] | Banzon V, Ibanez V, Vaitkus K, Ruiz MA, Peterson K, DeSimone J, Lavelle D . siDNMT1 increases gamma-globin expression in chemical inducer of dimerization (CID) -dependent mouse betaYAC bone marrow cells and in baboon erythroid progenitor cell cultures. Exp Hematol, 2011, 39(1): 26- 36.e21. | [95] | Roosjen M, McColl B, Kao B, Gearing LJ, Blewitt ME, Vadolas J . Transcriptional regulators Myb and BCL11A interplay with DNA methyltransferase 1 in developmental silencing of embryonic and fetal β-like globin genes. FASEB J, 2014,28(4):1610-1620. | [96] | Renneville A, Van Galen P, Canver MC, McConkey M, Krill-Burger JM, Dorfman DM, Holson EB, Bernstein BE, Orkin SH, Bauer DE, Ebert BL . EHMT1 and EHMT2 inhibition induces fetal hemoglobin expression. Blood, 2015,126(16):1930-1939. | [97] | Forsberg EC, Johnson K, Zaboikina TN, Mosser EA, Bresnick EH . Requirement of an E1A-sensitive coactivator for long-range transactivation by the beta- globin locus control region. J Biol Chem, 1999,274(38):26850-26859. | [98] | Forsberg EC, Downs KM, Christensen HM, Im H, Nuzzi PA, Bresnick EH . Developmentally dynamic histone acetylation pattern of a tissue-specific chromatin domain. Proc Natl Acad Sci USA, 2000,97(26):14494-14499. | [99] | Xu Z, He Y, Ju J, Rank G, Cerruti L, Ma C, Simpson RJ, Moritz RL, Jane SM, Zhao Q . The role of WDR5 in silencing human fetal globin gene expression. Haematologica, 2012,97(11):1632-1640. | [100] | Charache S, Terrin ML, Moore RD, Dover GJ, Barton FB, Eckert SV, McMahon RP . Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. Investigators of the multicenter study of hydroxyurea in sickle cell anemia. N Engl J Med, 1995,332(20):1317-1322. | [101] | Dixit A, Chatterjee TC, Mishra P, Choudhry DR, Mahapatra M, Tyagi S, Kabra M, Saxena R, Choudhry VP . Hydroxyurea in thalassemia intermedia--a promising therapy. Ann Hematol, 2005,84(7):441-446. | [102] | Zhu XG, Hu TX, Ho MH, Wang YC, Yu M, Patel N, Pi WH, Choi JH, Xu HY, Ganapathy V, Kutlar F, Kutlar A, Tuan D . Hydroxyurea differentially modulates activator and repressors of γ-globin gene in erythroblasts of responsive and non-responsive patients with sickle cell disease in correlation with Index of Hydroxyurea Responsiveness. Haematologica, 2017,102(12):1995-2004. | [103] | Hanft VN, Fruchtman SR, Pickens CV, Rosse WF, Howard TA, Ware RE . Acquired DNA mutations associated with in vivo hydroxyurea exposure. Blood, 2000,95(11):3589-3593. | [104] | Busslinger M, Hurst J, Flavell RA . DNA methylation and the regulation of globin gene expression. Cell, 1983,34(1):197-206. | [105] | DeSimone J, Heller P, Hall L, Zwiers D . 5-Azacytidine stimulates fetal hemoglobin synthesis in anemic baboons. Proc Natl Acad Sci USA, 1982,79(14):4428-4431. | [106] | Ley TJ, DeSimone J, Anagnou NP, Keller GH, Humphries RK, Turner PH, Young NS, Keller P, Nienhuis AW . 5-azacytidine selectively increases gamma-globin synthesis in a patient with beta+ thalassemia. N Engl J Med, 1982,307(24):1469-1475. | [107] | Koshy M, Dorn L, Bressler L, Molokie R, Lavelle D, Talischy N, Hoffman R, van Overveld W, DeSimone J . 2-deoxy 5-azacytidine and fetal hemoglobin induction in sickle cell anemia. Blood, 2000,96(7):2379-2384. | [108] | Cao H . Pharmacological induction of fetal hemoglobin synthesis using histone deacetylase inhibitors. Hematology, 2004,9(3):223-233. | [109] | Shahbazian MD, Grunstein M . Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem, 2007,76:75-100. | [110] | Cao H, Stamatoyannopoulos G, Jung M . Induction of human gamma globin gene expression by histone deacetylase inhibitors. Blood, 2004,103(2):701-709. | [111] | Weinberg RS, Ji XJ, Sutton M, Perrine S, Galperin Y, Li QL, Liebhaber SA, Stamatoyannopoulos G, Atweh GF . Butyrate increases the efficiency of translation of gamma-globin mRNA. Blood, 2005,105(4):1807-1809. | [112] | Pace BS, Chen YR, Thompson A, Goodman SR . Butyrate-inducible elements in the human gamma-globin promoter. Exp Hematol, 2000,28(3):283-293. | [113] | Beevers CS, Li F, Liu L, Huang S . Curcumin inhibits the mammalian target of rapamycin-mediated signaling pathways in cancer cells. Int J Cancer, 2006,119(4):757-764. | [114] | Hay N, Sonenberg N . Upstream and downstream of mTOR. Genes Dev, 2004,18(16):1926-1945. | [115] | Fibach E, Bianchi N, Borgatti M, Zuccato C, Finotti A, Lampronti I, Prus E, Mischiati C, Gambari R . Effects of rapamycin on accumulation of alpha-, beta- and gamma-globin mRNAs in erythroid precursor cells from beta-thalassaemia patients. Eur J Haematol, 2006,77(5):437-441. | [116] | Bernaudin F, Socie G, Kuentz M, Chevret S, Duval M, Bertrand Y, Vannier JP, Yakouben K, Thuret I, Bordigoni P, Fischer A, Lutz P, Stephan JL, Dhedin N, Plouvier E, Margueritte G, Bories D, Verlhac S, Esperou H, Coic L, Vernant JP, Gluckman E, Sfgm TC . Long-term results of related myeloablative stem-cell transplantation to cure sickle cell disease. Blood, 2007,110(7):2749-2756. | [117] | Cavazzana M, Antoniani C, Miccio A . Gene Therapy for β-hemoglobinopathies. Mol Ther, 2017,25(5):1142-1154. | [118] | May C, Rivella S, Callegari J, Heller G, Gaensler KM, Luzzatto L, Sadelain M . Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. Nature, 2000,406(6791):82-86. | [119] | Pawliuk R, Westerman KA, Fabry ME, Payen E, Tighe R, Bouhassira EE, Acharya SA, Ellis J, London IM, Eaves CJ, Humphries RK, Beuzard Y, Nagel RL, Leboulch P . Correction of sickle cell disease in transgenic mouse models by gene therapy. Science, 2001,294(5550):2368-2371. | [120] | Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, Fusil F, Down J, Denaro M, Brady T, Westerman K, Cavallesco R, Gillet-Legrand B, Caccavelli L, Sgarra R, Maouche-Chretien L, Bernaudin F, Girot R, Dorazio R, Mulder G J, Polack A, Bank A, Soulier J, Larghero J, Kabbara N, Dalle B, Gourmel B, Socie G, Chretien S, Cartier N, Aubourg P, Fischer A, Cornetta K, Galacteros F, Beuzard Y, Gluckman E, Bushman F, Hacein-Bey- Abina S, Leboulch P . Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia. Nature, 2010,467(7313):318-322. | [121] | Wang Y, Zheng CG, Jiang Y, Zhang J, Chen J, Yao C, Zhao Q, Liu S, Chen K, Du J, Yang Z, Gao S . Genetic correction of β-thalassemia patient-specific iPS cells and its use in improving hemoglobin production in irradiated SCID mice. Cell Res, 2012,22(4):637-648. | [122] | Ribeil JA, Hacein-Bey-Abina S, Payen E, Magnani A, Semeraro M, Magrin E, Caccavelli L, Neven B, Bourget P, El Nemer W, Bartolucci P, Weber L, Puy H, Meritet JF, Grevent D, Beuzard Y, Chretien S, Lefebvre T, Ross R. W, Negre O, Veres G, Sandler L, Soni S, de Montalembert M, Blanche S, Leboulch P, Cavazzana M . Gene therapy in a patient with sickle cell disease. N Engl J Med, 2017,376(9):848-855. | [123] | Sankaran VG, Xu J, Ragoczy T, Ippolito GC, Walkley CR, Maika SD, Fujiwara Y, Ito M, Groudine M, Bender MA, Tucker PW, Orkin SH . Developmental and species-divergent globin switching are driven by BCL11A. Nature, 2009,460(7259):1093-1097. | [124] | Bauer DE, Kamran SC, Lessard S, Xu J, Fujiwara Y, Lin C, Shao Z, Canver MC, Smith EC, Pinello L, Sabo PJ, Vierstra J, Voit RA, Yuan GC, Porteus MH, Stamatoyannopoulos JA, Lettre G, Orkin SH . An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science, 2013,342(6155):253-257. | [125] | Frock RL, Hu J, Meyers RM, Ho YJ, Kii E, Alt FW . Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat Biotechnol, 2015,33(2):179-186. | [126] | Dolgin E , The most popular genes in the human genome. Nature, 2017,551(7681):427-431. | [127] | Pauling L, Itano HA, Singer SJ, Wells IC . Sickle cell anemia, a molecular disease. Science, 1949,110(2865):543-548. | [128] | Muirhead H, Perutz MF . Structure of haemoglobin: A three-dimensional fourier synthesis of reduced human haemoglobin at 5.5 ? resolution. Nature, 1963,199:633-638. | [129] | Evans T, Reitman M, Felsenfeld G . An erythrocyte-specific DNA-binding factor recognizes a regulatory sequence common to all chicken globin genes. Proc Natl Acad Sci USA, 1988,85(16):5976-5980. | [130] | Gaensler KM, Kitamura M, Kan YW . Germ-line transmission and developmental regulation of a 150-kb yeast artificial chromosome containing the human beta-globin locus in transgenic mice. Proc Natl Acad Sci USA, 1993,90(23):11381-11385. | [131] | Kurita R, Suda N, Sudo K, Miharada K, Hiroyama T, Miyoshi H, Tani K, Nakamura Y . Establishment of immortalized human erythroid progenitor cell lines able to produce enucleated red blood cells. PLoS One, 2013,8(3):e59890. | [132] | Liu X, Zhang Y, Chen Y, Li M, Zhou F, Li K, Cao H, Ni M, Liu Y, Gu Z, Dickerson K. E, Xie S, Hon G. C, Xuan Z, Zhang M. Q, Shao Z, Xu J . In situ capture of chromatin interactions by biotinylated dCas9. Cell, 2017, 170(5): 1028-1043. e19. |
|