[1] Landegent JE, Jansen in De Wal N, Dirks RW, Baas F, van Der Ploeg M. Use of whole cosmid cloned genomic sequences for chromosomal localization by non-radioactive in situ hybridization. Hum Genet, 1987, 77(4): 366-370.[2] Sepehr A, Tanière P, Martel-Planche G, Zia'ee AA, Rastgar-Jazii F, Yazdanbod M, Etemad-Moghadam G, Kamangar F, Saidi F, Hainaut P. Distinct pattern of TP53 mutations in squamous cell carcinoma of the esophagus in Iran. Oncogene, 2001, 20(50): 7368-7374.[3] Ersfeld K. Fiber-FISH: fluorescence in situ hybridization on stretched DNA. Methods Mol Biol, 2004, 270: 395-402.[4] Weier HU. DNA fiber mapping techniques for the assembly of high-resolution physical maps. J Histochem Cytochem, 2001, 49(8): 939-948.[5] Jiang JM, Gill BS. Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome, 2006, 49(9): 1057-1068.[6] Carneiro A, Isinger A, Karlsson A, Johansson J, Jonsson G, Bendahl PO, Falkenback D, Halvarsson B, Nilbert M. Prognostic impact of array-based genomic profiles in esophageal squamous cell cancer. BMC Cancer, 2008, 8: 98.[7] Chang YC, Yeh KT, Liu TC, Chang JG. Molecular cytogenetic characterization of esophageal cancer detected by comparative genomic hybridization. J Clin Lab Anal, 2010, 24(3): 167-174.[8] Kwong D, Lam A, Guan XY, Law S, Tai A, Wong J, Sham J. Chromosomal aberrations in esophageal squamous cell carcinoma among Chinese: gain of 12p predicts poor prognosis after surgery. Hum Pathol, 2004, 35(3): 309-316.[9] Yang YL, Chu JY, Wu YP, Luo ML, Xu X, Han YL, Cai Y, Zhan QM, Wang MR. Chromosome analysis of esophageal squamous cell carcinoma cell line KYSE 410-4 by repetitive multicolor fluorescence in situ hybridization. J Genet Genomics, 2008, 35(1): 11-16.[10] Tada K, Oka M, Tangoku A, Hayashi H, Oga A, Sasaki K. Gains of 8q23-qter and 20q and loss of 11q22-qter in esophageal squamous cell carcinoma associated with lymph node metastasis. Cancer, 2000, 88(2): 268-273.[11] Yao HQ, He S, Wu YP, Wang XC, Han YL, Xu X, Cai Y, Wang GQ, Wang MR. Application of multicolor fluorescence in situ hybridization to early diagnosis of esophageal squamous cell carcinoma. Chin J Cancer, 2008, 27(11): 396-401.[12] Wu YP, Yang YL, Yang GZ, Wang XY, Luo ML, Zhang Y, Feng YB, Xu X, Han YL, Cai Y, Zhan QM, Wu M, Dong JT, Wang MR. Identification of chromosome aberrations in esophageal cancer cell line KYSE180 by multicolor fluorescence in situ hybridization. Cancer Genet Cytogenet, 2006, 170(2): 102-107.[13] Brown J, Bothma H, Veale R, Willem P. Genomic imbalances in esophageal carcinoma cell lines involve Wnt pathway genes. World J Gastroenterol, 2011, 17(24): 2909-2923.[14] Sakai N, Kajiyama Y, Iwanuma Y, Tomita N, Amano T, Isayama F, Ouchi K, Tsurumaru M. Study of abnormal chromosome regions in esophageal squamous cell carcinoma by comparative genomic hybridization: relationship of lymph node metastasis and distant metastasis to selected abnormal regions. Dis Esophagus, 2010, 23(5): 415-421.[15] Gen Y, Yasui K, Zen Y, Zen KK, Dohi O, Endo M, Tsuji K, Wakabayashi N, Itoh Y, Naito Y, Taniwaki M, Nakanuma Y, Okanoue T, Yoshikawa T. SOX2 identified as a target gene for the amplification at 3q26 that is frequently detected in esophageal squamous cell carcinoma. Cancer Genet Cytogenet, 2010, 202(2): 82-93.[16] Akagi I, Miyashita M, Makino H, Nomura T, Hagiwara N, Takahashi K, Cho K, Mishima T, Takizawa T, Tajiri T. SnoN overexpression is predictive of poor survival in patients with esophageal squamous cell carcinoma. Ann Surg Oncol, 2008, 15(10): 2965-2975.[17] Sugimoto T, Arai M, Shimada H, Hata A, Seki N. Integrated analysis of expression and genome alteration reveals putative amplified target genes in esophageal cancer.
|