遗传 ›› 2012, Vol. 34 ›› Issue (5): 519-525.doi: 10.3724/SP.J.1005.2012.00519
蒋焱熠, 王明荣
收稿日期:
2011-12-22
修回日期:
2012-02-06
出版日期:
2012-05-20
发布日期:
2012-05-25
通讯作者:
王明荣
E-mail:wangmr2015@126.com
基金资助:
国家自然科学基金项目(编号:81021061)和国家高技术研究发展规划(863计划)项目(编号:2009AA022706)资助
JIANG Yan-Yi, WANG Ming-Rong
Received:
2011-12-22
Revised:
2012-02-06
Online:
2012-05-20
Published:
2012-05-25
Contact:
Mingrong Wang
E-mail:wangmr2015@126.com
摘要: 食管鳞癌是我国常见的消化道恶性肿瘤, 进展快且预后差。由于早期一般无明显症状, 临床确诊的食管鳞癌大多已发展到了中晚期, 治愈难度较大。越来越多的证据表明, 在食管鳞癌发生发展过程中, 染色体及基因组DNA畸变均是最常见的遗传学改变。文章就食管鳞癌染色体及基因组水平异常的研究进展作一综述。
蒋焱熠,王明荣. 食管鳞癌染色体及基因组DNA畸变研究进展[J]. 遗传, 2012, 34(5): 519-525.
JIANG Yan-Yi, WANG Ming-Rong. Chromosomal and genomic aberrations in esophageal squamous cell carcinoma[J]. HEREDITAS, 2012, 34(5): 519-525.
[1] Landegent JE, Jansen in De Wal N, Dirks RW, Baas F, van Der Ploeg M. Use of whole cosmid cloned genomic sequences for chromosomal localization by non-radioactive in situ hybridization. Hum Genet, 1987, 77(4): 366-370.[2] Sepehr A, Tanière P, Martel-Planche G, Zia'ee AA, Rastgar-Jazii F, Yazdanbod M, Etemad-Moghadam G, Kamangar F, Saidi F, Hainaut P. Distinct pattern of TP53 mutations in squamous cell carcinoma of the esophagus in Iran. Oncogene, 2001, 20(50): 7368-7374.[3] Ersfeld K. Fiber-FISH: fluorescence in situ hybridization on stretched DNA. Methods Mol Biol, 2004, 270: 395-402.[4] Weier HU. DNA fiber mapping techniques for the assembly of high-resolution physical maps. J Histochem Cytochem, 2001, 49(8): 939-948.[5] Jiang JM, Gill BS. Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome, 2006, 49(9): 1057-1068.[6] Carneiro A, Isinger A, Karlsson A, Johansson J, Jonsson G, Bendahl PO, Falkenback D, Halvarsson B, Nilbert M. Prognostic impact of array-based genomic profiles in esophageal squamous cell cancer. BMC Cancer, 2008, 8: 98.[7] Chang YC, Yeh KT, Liu TC, Chang JG. Molecular cytogenetic characterization of esophageal cancer detected by comparative genomic hybridization. J Clin Lab Anal, 2010, 24(3): 167-174.[8] Kwong D, Lam A, Guan XY, Law S, Tai A, Wong J, Sham J. Chromosomal aberrations in esophageal squamous cell carcinoma among Chinese: gain of 12p predicts poor prognosis after surgery. Hum Pathol, 2004, 35(3): 309-316.[9] Yang YL, Chu JY, Wu YP, Luo ML, Xu X, Han YL, Cai Y, Zhan QM, Wang MR. Chromosome analysis of esophageal squamous cell carcinoma cell line KYSE 410-4 by repetitive multicolor fluorescence in situ hybridization. J Genet Genomics, 2008, 35(1): 11-16.[10] Tada K, Oka M, Tangoku A, Hayashi H, Oga A, Sasaki K. Gains of 8q23-qter and 20q and loss of 11q22-qter in esophageal squamous cell carcinoma associated with lymph node metastasis. Cancer, 2000, 88(2): 268-273.[11] Yao HQ, He S, Wu YP, Wang XC, Han YL, Xu X, Cai Y, Wang GQ, Wang MR. Application of multicolor fluorescence in situ hybridization to early diagnosis of esophageal squamous cell carcinoma. Chin J Cancer, 2008, 27(11): 396-401.[12] Wu YP, Yang YL, Yang GZ, Wang XY, Luo ML, Zhang Y, Feng YB, Xu X, Han YL, Cai Y, Zhan QM, Wu M, Dong JT, Wang MR. Identification of chromosome aberrations in esophageal cancer cell line KYSE180 by multicolor fluorescence in situ hybridization. Cancer Genet Cytogenet, 2006, 170(2): 102-107.[13] Brown J, Bothma H, Veale R, Willem P. Genomic imbalances in esophageal carcinoma cell lines involve Wnt pathway genes. World J Gastroenterol, 2011, 17(24): 2909-2923.[14] Sakai N, Kajiyama Y, Iwanuma Y, Tomita N, Amano T, Isayama F, Ouchi K, Tsurumaru M. Study of abnormal chromosome regions in esophageal squamous cell carcinoma by comparative genomic hybridization: relationship of lymph node metastasis and distant metastasis to selected abnormal regions. Dis Esophagus, 2010, 23(5): 415-421.[15] Gen Y, Yasui K, Zen Y, Zen KK, Dohi O, Endo M, Tsuji K, Wakabayashi N, Itoh Y, Naito Y, Taniwaki M, Nakanuma Y, Okanoue T, Yoshikawa T. SOX2 identified as a target gene for the amplification at 3q26 that is frequently detected in esophageal squamous cell carcinoma. Cancer Genet Cytogenet, 2010, 202(2): 82-93.[16] Akagi I, Miyashita M, Makino H, Nomura T, Hagiwara N, Takahashi K, Cho K, Mishima T, Takizawa T, Tajiri T. SnoN overexpression is predictive of poor survival in patients with esophageal squamous cell carcinoma. Ann Surg Oncol, 2008, 15(10): 2965-2975.[17] Sugimoto T, Arai M, Shimada H, Hata A, Seki N. Integrated analysis of expression and genome alteration reveals putative amplified target genes in esophageal cancer. Oncol Rep, 2007, 18(2): 465-472.[18] Hirasaki S, Noguchi T, Mimori K, Onuki J, Morita K, Inoue H, Sugihara K, Mori M, Hirano T. BAC clones related to prognosis in patients with esophageal squamous carcinoma: an array comparative genomic hybridization study. Oncologist, 2007, 12(4): 406-417.[19] Arai H, Ueno T, Tangoku A, Yoshino S, Abe T, Kawauchi S, Oga A, Furuya T, Oka M, Sasaki K. Detection of amplified oncogenes by genome DNA microarrays in human primary esophageal squamous cell carcinoma: comparison with conventional comparative genomic hybridization analysis. Cancer Genet Cytogenet, 2003, 146(1): 16-21.[20] Shi ZZ, Liang JW, Zhan T, Wang BS, Lin DC, Liu SG, Hao JJ, Yang H, Zhang Y, Zhan QM, Zhang KT, Wang MR. Genomic alterations with impact on survival in esophageal squamous cell carcinoma identified by array comparative genomic hybridization. Genes Chromosomes Cancer, 2011, 50(7): 518-526.[21] Chattopadhyay I, Singh A, Phukan R, Purkayastha J, Kataki A, Mahanta J, Saxena S, Kapur S. Genome-wide analysis of chromosomal alterations in patients with esophageal squamous cell carcinoma exposed to tobacco and betel quid from high-risk area in India. Mutat Res, 2010, 696(2): 130-138.[22] Qin YR, Fu L, Sham PC, Kwong DL, Zhu CL, Chu KK, Li Y, Guan XY. Single-nucleotide polymorphism-mass array reveals commonly deleted regions at 3p22 and 3p14. 2 associate with poor clinical outcome in esophageal squamous cell carcinoma. Int J Cancer, 2008, 123(4): 826-830.[23] Hu N, Wang CY, Ng D, Clifford R, Yang HH, Tang ZZ, Wang QH, Han XY, Giffen C, Goldstein AM, Taylor PR, Lee MP. Genomic characterization of esophageal squamous cell carcinoma from a high-risk population in China. Cancer Res, 2009, 69(14): 5908-5917.[24] Hu N, Wang C, Su H, Li WJ, Emmert-Buck MR, Li G, Roth MJ, Tang ZZ, Lu N, Giffen C, Albert PS, Taylor PR, Goldstein AM. High frequency of CDKN2A alterations in esophageal squamous cell carcinoma from a high-risk Chinese population. Genes Chromosomes Cancer, 2004, 39(3): 205-216.[25] Kim DH, Muto M, Kuwahara Y, Nakanishi Y, Watanabe H, Aoyagi K, Ogawa K, Yoshida T, Sasaki H. Array-based comparative genomic hybridization of circulating esophageal tumor cells. Oncol Rep, 2006, 16(5): 1053-1059.[26] Ando T, Ishiguro H, Kimura M, Mitsui A, Mori Y, Sugito N, Tomoda K, Mori R, Harada K, Katada T, Ogawa R, Fujii Y, Kuwabara Y. Frequent loss of the long arm of chromosome 18 in esophageal squamous cell carcinoma. Oncol Rep, 2007, 17(5): 1005-1011.[27] Nancarrow DJ, Handoko HY, Smithers BM, Gotley DC, Drew PA, Watson DI, Clouston AD, Hayward NK, Whiteman DC. Genome-wide copy number analysis in esophageal adenocarcinoma using high-density single-nucleotide polymorphism arrays. Cancer Res, 2008, 68(11): 4163-4172.[28] Shiraishi H, Mikami T, Yoshida T, Tanabe S, Kobayashi N, Watanabe M, Okayasu I. Early genetic instability of both epithelial and stromal cells in esophageal squamous cell carcinomas, contrasted with Barrett's adenocarcinomas. J Gastroenterol, 2006, 41(12): 1186-1196.[29] Egashira A, Morita M, Kakeji Y, Sadanaga N, Oki E, Honbo T, Ohta M, Maehara Y. p53 gene mutations in esophageal squamous cell carcinoma and their relevance to etiology and pathogenesis: results in Japan and comparisons with other countries. Cancer Sci, 2007, 98(8): 1152-1156.[30] Patel K, Mining S, Wakhisi J, Gheit T, Tommasino M, Martel-Planche G, Hainaut P, Abedi-Ardekani B. TP53 mutations, Human Papilloma Virus DNA and inflammation markers in Esophageal Squamous Cell Carcinoma from the Rift Valley, a high-incidence area in Kenya. BMC Res Notes, 2011, 4(1): 469.[31] Silveira AP, Da Silva Manoel-Caetano F, Aoki S, Yamasaki LH, Rahal P, Silva AE. Gene mutations and polymorphisms of TP53 and FHIT in chronic esophagitis and esophageal carcinoma. Anticancer Res, 2011, 31(5): 1685-1690.[32] Hu N, Li G, Li WJ, Wang C, Goldstein AM, Tang ZZ, Roth MJ, Dawsey SM, Huang J, Wang QH, Ding T, Giffen C, Taylor PR, Emmert-Buck MR. Infrequent mutation in the BRCA2 gene in esophageal squamous cell carcinoma. Clin Cancer Res, 2002, 8(4): 1121-1126.[33] Akbari MR, Malekzadeh R, Nasrollahzadeh D, Amanian D, Islami F, Li S, Zandvakili I, Shakeri R, Sotoudeh M, Aghcheli K, Salahi R, Pourshams A, Semnani S, Boffetta P, Dawsey SM, Ghadirian P, Narod SA. Germline BRCA2 mutations and the risk of esophageal squamous cell carcinoma. Oncogene, 2008, 27(9): 1290-1296.[34] Kaushal M, Chattopadhyay I, Phukan R, Purkayastha J, Mahanta J, Kapur S, Saxena S. Contribution of germ line BRCA2 sequence alterations to risk of familial esophageal cancer in a high-risk area of India. Dis Esophagus, 2010, 23(1): 71-75.[35] Kim YR, Oh JE, Kim MS, Kang MR, Park SW, Han JY, Eom HS, Yoo NJ, Lee SH. Oncogenic NRF2 mutations in squamous cell carcinomas of oesophagus and skin. J Pathol, 2010, 220(4): 446-451.[36] Shibata T, Kokubu A, Saito S, Narisawa-Saito M, Sasaki H, Aoyagi K, Yoshimatsu Y, Tachimori Y, Kushima R, Kiyono T, Yamamoto M. NRF2 mutation confers malignant potential and resistance to chemoradiation therapy in advanced esophageal squamous cancer. Neoplasia, 2011, 13(9): 864-873.[37] Mohammad Ganji S, Miotto E, Callegari E, Sayehmiri K, Fereidooni F, Yazdanbod M, Rastgar-Jazii F, Negrini M. Associations of risk factors obesity and occupational airborne exposures with CDKN2A/p16 aberrant DNA methylation in esophageal cancer patients. Dis Esophagus, 2010, 23(7): 597-602.[38] Taghavi N, Biramijamal F, Sotoudeh M, Khademi H, Malekzadeh R, Moaven O, Memar B, A'rabi A, Abbaszadegan MR. p16INK4a hypermethylation and p53, p16 and MDM2 protein expression in esophageal squamous cell carcinoma. BMC Cancer, 2010, 10: 138.[39] Salam I, Hussain S, Mir MM, Dar NA, Abdullah S, Siddiqi MA, Lone RA, Zargar SA, Sharma S, Hedau S, Basir SF, Bharti AC, Das BC. Aberrant promoter methylation and reduced expression of p16 gene in esophageal squamous cell carcinoma from Kashmir valley: a high-risk area. Mol Cell Biochem, 2009, 332(1-2): 51-58.[40] Wang JS, Guo MZ, Montgomery EA, Thompson RE, Cosby H, Hicks L, Wang SL, Herman JG, Canto MI. DNA promoter hypermethylation of p16 and APC predicts neoplastic progression in Barrett's esophagus. Am J Gastroenterol, 2009, 104(9): 2153-2160.[41] Zare M, Jazii FR, Alivand MR, Nasseri NK, Malekzadeh R, Yazdanbod M. Qualitative analysis of Adenomatous Polyposis Coli promoter: hypermethylation, engagement and effects on survival of patients with esophageal cancer in a high risk region of the world, a potential molecular marker. BMC Cancer, 2009, 9: 24.[42] Kim YT, Park JY, Jeon YK, Park SJ, Song JY, Kang CH, Sung SW, Kim JH. Aberrant promoter CpG island hypermethylation of the adenomatosis polyposis coli gene can serve as a good prognostic factor by affecting lymph node metastasis in squamous cell carcinoma of the esophagus. Dis Esophagus, 2009, 22(2): 143-150.[43] Lima SC, Hernández-Vargas H, Simão T, Durand G, Kruel CD, Le Calvez-Kelm F, Ribeiro Pinto LF, Herceg Z. Identification of a DNA methylome signature of esophageal squamous cell carcinoma and potential epigenetic biomarkers. Epigenetics, 2011, 6(10): 1217-1227.[44] Guo XQ, Wang SJ, Zhang LW, Wang XL, Zhang JH, Guo W. DNA methylation and loss of protein expression in esophageal squamous cell carcinogenesis of high-risk area. J Exp Clin Cancer Res, 2007, 26(4): 587-594.[45] Ling ZQ, Li P, Ge MH, Zhao X, Hu FJ, Fang XH, Dong ZM, Mao WM. Hypermethylation-modulated down-regulation of CDH1 expression contributes to the progression of esophageal cancer. Int J Mol Med, 2011, 27(5): 625-635. |
[1] | 史晓黎,何伊琳,凌宏清. 小麦A基因组测序与进化研究进展[J]. 遗传, 2019, 41(9): 836-844. |
[2] | 王燕超,马晓燕,孙筱放,冼嘉嘉,李少英,何文智,王晓蔓,黎青. Y染色体微缺失人群中Y-STR等位基因缺失模式分析[J]. 遗传, 2019, 41(3): 243-253. |
[3] | 彭继苹, 袁海明. 染色体微阵列分析技术在2600例流产物中的应用[J]. 遗传, 2018, 40(9): 779-788. |
[4] | 杨德卫, 郑向华, 程朝平, 叶宁, 黄凤凰, 叶新福. 基于CSSLs群体定位和图位克隆水稻长芒基因GAD1-2[J]. 遗传, 2018, 40(12): 1101-1111. |
[5] | 马磊, 张婷婷. 应用嵌合基因实例拓展遗传学染色体畸变的教学[J]. 遗传, 2018, 40(12): 1129-1135. |
[6] | 田娇阳, 李玉春, 孔庆鹏, 张亚平. 遗传学视角下东亚人群的起源和演化[J]. 遗传, 2018, 40(10): 814-824. |
[7] | 彭继苹,刘芳,谢华,陈晓丽. X染色体变异对男性精神发育迟滞致病性的研究进展[J]. 遗传, 2017, 39(6): 455-468. |
[8] | 廖亚平,王春景,梁猛,胡小梅,吴琦. 平衡复杂染色体重排携带者的遗传与生育情况分析[J]. 遗传, 2017, 39(5): 396-412. |
[9] | 徐赫鸣,谢泽雄,刘夺,吴毅,李炳志,元英进. 酿酒酵母染色体设计与合成研究进展[J]. 遗传, 2017, 39(10): 865-876. |
[10] | 陈凡国,李晴晴. 灯刷染色体的研究进展及其在遗传学教学中的思考[J]. 遗传, 2016, 38(2): 170-177. |
[11] | 李海凤, 刘慧萍, 戴毅, 黄帅, 张军, 高勇, 陈建民. 四倍体小麦背景中长穗偃麦草E染色体传递特征[J]. 遗传, 2016, 38(11): 1020-1029. |
[12] | 李刚, 陈凡国. 果蝇唾腺多线染色体研究进展及其在遗传学教学中的应用[J]. 遗传, 2015, 37(6): 605-612. |
[13] | 李迎迎,刘志广,王丽,袁园园,刘平,王林嵩. 血清miRNAs作为食管鳞癌新的生物标志物[J]. 遗传, 2015, 37(4): 315-320. |
[14] | 王春丽,郝佳洁,吴李飞,潘蓓青,徐昕,蔡岩,王明荣,贾雪梅. IGHMBP2过表达促进食管鳞癌细胞的侵袭和迁移[J]. 遗传, 2015, 37(4): 360-366. |
[15] | 李书粉,李莎,邓传良,卢龙斗,高武军. 转座子在植物XY性染色体起源与演化过程中的作用[J]. 遗传, 2015, 37(2): 157-164. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号
总访问:,今日访问:,当前在线: